Introduction fo Programming Using

Y. DANIEL LIANG

ONLINE ACCESS

Thank you for purchasing a new copy of Introduction to Programming Using Python. Your
textbook includes six months of prepaid access to the book’s Companion Website. This
prepaid subscription provides you with full access to the following student support areas:

¢ VideoNotes are step-by-step video tutorials specifically designed to enhance the program-
ming concepts presented in this textbook.

e Web Chapters are included for more advanced courses.

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Introduction to Programming Using Python Companion Website for the
first time, you will need to register online using a computer with an Internet connection and
a web browser. The process takes just a couple of minutes and only needs to be completed
once.

1. Go to http://www.pearsonhighered.com/liang
2. Click on Companion Website.
3. Click on the Register button.

4. On the registration page, enter your student access code™ found beneath the scratch-off
panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online registration
process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using the
Introduction to Programming Using Python Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at http://www.pearsonhighered.com/liang by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for six months
upon activation and is not transferable. If this access code has already been revealed, it may
no longer be valid. If this is the case, you can purchase a subscription by going to http://
www.pearsonhighered.com/liang and following the on-screen instructions.

http://www.pearsonhighered.com/liang
http://www.pearsonhighered.com/liang
http://www.pearsonhighered.com/liang
http://www.pearsonhighered.com/liang

L

get with the programming

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

MyProgramminglLab™

Learn more at www.myprogramminglab.com

ALWAYS LEARNING PEARSON

www.myprogramminglab.com

This page intentionally left blank

INTRODUCTION TO
PROGRAMMING USING

PYTHO

Y. Daniel Liang

Armstrong Atlantic State University

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton
Editor-in-Chief: Michael Hirsch

Executive Editor: Tracy Dunkelberger

Associate Editor: Carole Snyder

Director of Marketing: Patrice Jones

Marketing Manager: Yezan Alayan

Marketing Coordinator: Kathryn Ferranti

Director of Production: Vince O’Brien

Managing Editor: Jeff Holcomb

Production Project Manager: Heather McNally
Manufacturing Buyer: Lisa McDowell

Art Director and Cover Designer: Anthony Gemmellaro
Text Designer: Gillian Hall

Cover Art: “Life Aquatic” © Arthur Xanthopoulos from Damaged Photography
Media Editor: Daniel Sandin

Full-Service Project Management: Gillian Hall
Composition: Laserwords

Printer/Binder: Edwards Brothers

Cover Printer: Lehigh-Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on Credits page located in the end matter.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored
or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2013 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the
United States of America. This publication is protected by Copyright, and permission should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on file.

Prentice Hall
is an imprint of

10987654321

PEARSON

— ISBN 13: 978-0-13-274718-9

www.pearsonhighered.com ISBN 10: D0-13-274718-9

www.pearsonhighered.com

This book is dedicated to my former colleagues
at the National Severe Storms Laboratory,
in Norman, Oklahoma.

To Samantha, Michael, and Michelle

PREFACE

what is programming?

why Python?

graphics

optional Turtle

problem-driven

fundamentals first

examples and exercises

Dear Reader,

This book assumes that you are a new programmer with no prior knowledge of programming.
So, what is programming? Programming solves problems by creating solutions—writing
programs—in a programming language. The fundamentals of problem solving and programming
are the same regardless of which programming language you use. You can learn programming
using any high-level programming language such as Python, Java, C++, or C#. Once you know
how to program in one language, it is easy to pick up other languages, because the basic tech-
niques for writing programs are the same.

So what are the benefits of learning programming using Python? Python is easy to learn
and fun to program. Python code is simple, short, readable, intuitive, and powerful, and thus
it is effective for introducing computing and problem solving to beginners.

Beginners are motivated to learn programming so they can create graphics. A big reason
for learning programming using Python is that you can start programming using graphics on
day one. We use Python’s built-in Turtle graphics module in Chapters 1-6 because it is a good
pedagogical tool for introducing fundamental concepts and techniques of programming. We
introduce Python’s built-in Tkinter in Chapter 9, because it is a great tool for developing
comprehensive graphical user interfaces and for learning object-oriented programming. Both
Turtle and Tkinter are remarkably simple and easy to use. More importantly, they are valuable
pedagogical tools for teaching the fundamentals of programming and object-oriented
programming.

To give instructors flexibility to use this book, we cover Turtle at the end of Chapters 1-6
so they can be skipped as optional material.

The book teaches problem solving in a problem-driven way that focuses on problem solv-
ing rather than syntax. We stimulate student interests in programming by using interesting
examples in a broad context. While the central thread of the book is on problem solving,
appropriate Python syntax and library are introduced in order to solve the problems. To sup-
port the teaching of programming in a problem-driven way, the book provides a wide variety
of problems at various levels of difficulty to motivate students. In order to appeal to students
in all majors, the problems cover many application areas in math, science, business, financial
management, gaming, animation, and multimedia.

All data in Python are objects. We introduce and use objects from Chapter 3, but defining
custom classes are covered in the middle of the book starting from Chapter 7. The book
focuses on fundamentals first: it introduces basic programming concepts and techniques on
selections, loops, and functions before writing custom classes.

The best way to teach programming is by example, and the only way to learn programming
is by doing. Basic concepts are explained by example and a large number of exercises with
various levels of difficulty are provided for students to practice. Our goal is to produce a text
that teaches problem solving and programming in a broad context using a wide variety of
interesting examples and exercises.

Sincerely,

Y. Daniel Liang
y.daniel.liang @ gmail.com
www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

Preface wvii

Pedagogical Features

The book uses the following elements to get the most from the material:

B Objectives list what students should learn in each chapter. This will help them determine
whether they have met the objectives after completing the chapter.

B The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

B Key Points highlight the important concepts covered in each section.

B Check Points provide review questions to help students track their progress and evaluate
their learning.

B Problems, carefully chosen and presented in an easy-to-follow style, teach problem
solving and programming concepts. The book uses many small, simple, and stimulating
examples to demonstrate important ideas.

B Key Terms are listed with a page number to give students a quick reference to the impor-
tant terms introducd in the chapter.

B The Chapter Summary reviews the important subjects that students should understand
and remember. It helps them reinforce the key concepts they have learned in the chapter.

B Test Questions are available online, grouped by sections for students to do self-test on
programming concepts and techniques.

B Programming Exercises are grouped by sections to provide students with opportunities
to apply on their own the new skills they have learned. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning
programming is practice, practice, and practice. To that end, the book provides a great
many exercises.

Notes, Tips, and Cautions are inserted throughout the text to offer valuable advice and
insight on important aspects of program development.

Note

Provides additional information on the subject and reinforces important concepts.

Tip

Teaches good programming style and practice.

Caution
Helps students steer away from the pitfalls of programming errors.

Flexible Chapter Orderings

Graphics is a valuable pedagogical tool for learning programming. The book uses Turtle
graphics in Chapters 1-6 and Tkinter in the rest of the book. However, the book is designed to
give the instructors the flexibility to skip the sections on graphics or to cover them later. The
following diagram shows the chapter dependencies.

Chapter 10, Lists can be covered right after Chapter 6, Functions. Chapter 14, Tuples,
Sets, and Dictionaries can be covered after Chapter 10.

A\

-

—

Preface

Part I: Fundamentals of Part II: Object-Oriented Part I1I: Data Structures and

Programming Programming Algorithms

Note: Chapters 16-23 are bonus
chapters available from the
Companion Website

Organization of the Book

The chapters can be grouped into three parts that, taken together, form a comprehensive intro-
duction to Python programming. Because knowledge is cumulative, the early chapters pro-
vide the conceptual basis for understanding programming and guide students through simple
examples and exercises; subsequent chapters progressively present Python programming in
detail, culminating with the development of comprehensive applications.

Part I: Fundamentals of Programming (Chapters 1-6)

The first part of the book is a stepping stone, preparing you to embark on the journey of learn-
ing programming. You will begin to know Python (Chapter 1) and will learn fundamental pro-
gramming techniques with data types, variables, constants, assignments, expressions,
operators, objects, and simple functions and string operations (Chapters 2-3), selection state-
ments (Chapter 4), loops (Chapter 5), and functions (Chapter 6).

Part II: Object-Oriented Programming (Chapters 7-13)

This part introduces object-oriented programming. Python is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide great
flexibility, modularity, and reusability in developing software. You will learn object-oriented
programming (Chapters 7-8), GUI programming using Tkinter (Chapter 9), lists (Chapter
10), multidimensional lists (Chapter 11), inheritance, polymorphism, and class design
(Chapter 12), and files and exception handling (Chapter 13).

Part III: Data Structures and Algorithms (Chapters 14-15 and Bonus Chapters 16-23)

This part introduces the main subjects in a typical data structures course. Chapter 14 intro-
duces Python built-in data structures: tuples, sets, and dictionaries. Chapter 15 introduces

recursion to write functions for solving inherently recursive problems. Chapters 16-23 are
bonus chapters on the Companion Website. Chapter 16 introduces measurement of algorithm
efficiency and common techniques for developing efficient algorithms. Chapter 17 discusses
classic sorting algorithms. You will learn how to implement linked lists, queues, and priority
queues in Chapter 18. Chapter 19 presents binary search trees, and you will learn about AVL
trees in Chapter 20. Chapter 21 introduces hashing, and Chapters 22 and 23 cover graph algo-
rithms and applications.

Student Resource Website

The Student Resource Website (www.cs.armstrong.edu/liang/py) contains the following resources:

Answers to review questions

Solutions to even-numbered programming exercises

Source code for the examples in the book

Interactive self-test questions (organized by sections for each chapter)
Supplements on using Python IDEs, advanced topics, etc.

Resource links

Errata

Additional Supplements

The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The supplements listed in this table are available
from the Companion Website.

Part I. General Supplements
A. Glossary
B. Installing and Using Python
C. Python IDLE
D. Python on Eclipse
E. Python on Eclipse Debugging
F. Python Coding Style Guidelines

Part II. Advanced Python Topics
A. Regular Expressions
B. Obtaining Date and Time
C. The str Class’s format Method
D. Pass Arguments from Command Line
E. Database Programming

Instructor Resource Website

The Instructor Resource Website, accessible from www.cs.armstrong.edu/liang/py, contains the
following resources:

B Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

H Solutions to all the review questions and exercises. Students will have access to the solu-
tions of even-numbered programming exercises.

B Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than 800 questions.)

Preface

ix

www.cs.armstrong.edu/liang/py
www.cs.armstrong.edu/liang/py

X Preface

MyProgramminglab’

VideoNote

B Sample exams. In general, each exam has four parts:
B Multiple-choice questions or short-answer questions
m Correct programming errors
B Trace programs

B Write programs

B Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment
with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the basic
concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to figure out what went wrong—and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores the
code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration, to
see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit www.myprogramminglab.com.

VideoNotes

VideoNotes are Pearson’s new visual tool designed for teaching students key programming con-
cepts and techniques. These short step-by-step videos demonstrate how to solve problems from
design through coding. VideoNotes allow for self-placed instruction with easy navigation includ-
ing the ability to select, play, rewind, fast-forward, and stop within each VideoNote exercise.

Margin icons in your textbook let you know when a VideoNote video is available for a par-
ticular concept or homework problem.

LivelLab

This book is accompanied by a complementary Web-based course assessment and manage-
ment system for instructors. The system has four main components:

B The Automatic Grading System can automatically grade programs.

B The Quiz Creation/Submission/Grading System enables instructors to create and mod-
ify quizzes that students can take and be graded upon automatically.

B The Peer Evaluation System enables peer evaluations.

m Checking plagiarisms, tracking grades, attendance, etc., lets students track their grades,
and enables instructors to view the grades of all students, to check plagiarisms, and to track
students’ attendance.

www.myprogramminglab.com

Preface

The main features of the Automatic Grading System include:

Students can run and submit exercises. (The system checks whether their program runs
correctly—students can continue to run and resubmit the program before the due date.)

Instructors can review submissions, run programs with instructor test cases, correct them,
and provide feedback to students.

Instructors can create/modify their own exercises, create public and secret test cases, as-
sign exercises, and set due dates for the whole class or for individuals.

All the exercises in the text can be assigned to students. Additionally, LiveLab provides
extra exercises that are not printed in the text.

Instructors can sort and filter all exercises and check grades (by time frame, student,
and/or exercise).

Instructors can check plagiarisms for a programming exercise.
Instructors can delete students from the system.

Students and instructors can track grades on exercises.

The main features of the Quiz System are:

Instructors can create/modify quizzes from the test bank or a text file or create completely
new tests online.

Instructors can assign the quizzes to students and set a due date and test time limit for the
whole class or for individuals.

Students and instructors can review submitted quizzes.
Instructors can analyze quizzes and identify students’ weaknesses.

Students and instructors can track grades on quizzes.

The main features of the Peer Evaluation System include:

Instructors can assign/unassign exercises for peer evaluation.

Instructors can view peer evaluation reports.

Acknowledgments

I would like to thank Armstrong Atlantic State University for enabling me to teach what I
write and for supporting me in writing what I teach. Teaching is the source of inspiration for
the book. I am grateful to the instructors and students who have offered comments, sugges-
tions, bug reports, and praise.

This book has been greatly enhanced thanks to the outstanding reviewers. They are:

Claude Anderson — Rose-Hulman Institute of Technology
Lee Cornell — Minnesota State University — Mankato
John Magee — Boston University

Shyamal Mitra — University of Texas — Austin

Yenumula Reddy — Grambling State University

David Sullivan — Boston University

Hong Wang — University of Toledo

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank

Tracy Dunkelberger, Marcia Horton, Michael Hirsch, Matt Goldstein, Carole Snyder, Tim
Huddleston, Yez Alayan, Jeff Holcomb, Gillian Hall, Rebecca Greenberg, and their colleagues
for organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Xi

BRIEF CONTENTS

[SSIN 8)

eI RN B)W) N

10

12
13
14
15

xii

Introduction to Computers, Programs,
and Python

Elemcntary Programming

Mathematical Functions, Strings,
and Objects

Selections

Loops

Functions

Objects and Classes

More on Strings and Special Methods
GUI Programming Using Tkinter
Lists

Multidimensional Lists
Inheritance and Polymorphism
Files and Exception Handling
Tuples, Sets, and Dictionaries

Recursion

31

63
91
133
171
215
241
271
313
361
399
439
475
499

Chapters 16-23 are bonus Web chapters

16 Developing Efficient Algorithms
17 Sorting

18 Linked Lists, Stacks, Queues,
and Priority Queues

19 Binary Search Trees
20 AVL Trees

21 Hashing: Implementing Dictionaries
and Sets

22 Graphs and Applications
23 Weighted Graphs and Applications

APPENDIXES

A Python Keywords

B The ASCII Character Set
C Number Systems

INDEX

CREDITS

16-1
17-1

18-1
19-1
20-1

21-1
22-1
23-1

533
534
536

541
557

CONTENTS

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Chapter 3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

Introduction to Computers, Programs,

and Python

Introduction

What Is a Computer?

Programming Languages

Operating Systems

The History of Python

Getting Started with Python

Programming Style and Documentation
Programming Errors

Getting Started with Graphics Programming

Elementary Programming

Introduction

Writing a Simple Program

Reading Input from the Console

Identifiers

Variables, Assignment Statements, and Expressions
Simultaneous Assignments

Named Constants

Numeric Data Types and Operators

Evaluating Expressions and Operator Precedence
Augmented Assignment Operators

Type Conversions and Rounding

Case Study: Displaying the Current Time
Software Development Process

Case Study: Computing Distances

Mathematical Functions, Strings,
and Objects

Introduction

Common Python Functions

Strings and Characters

Case Study: Minimum Number of Coins
Introduction to Objects and Methods
Formatting Numbers and Strings
Drawing Various Shapes

Drawing with Colors and Fonts

O NN =

12
13
14
18
19
21

31

32
32
34
36
36
38
39
40
43
44
45
46
48
52

63

64
64
67
72
74
76
81
83

xiii

xiv Contents

Chapter 4

4.
4.2
43
4.4
45
4.6
4.7
48
4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Selections

Introduction

Boolean Types, Values, and Expressions
Generating Random Numbers

if Statements

Case Study: Guessing Birthdays
Two-Way 1if-else Statements

Nested 1if and Multi-Way if-el1if-else Statements

Common Errors in Selection Statements
Case Study: Computing Body Mass Index
Case Study: Computing Taxes

Logical Operators

Case Study: Determining Leap Years

Case Study: Lottery

Conditional Expressions

Operator Precedence and Associativity
Detecting the Location of an Object

Loops

Introduction

The while Loop

The for Loop

Nested Loops

Minimizing Numerical Errors

Case Studies

Keywords break and continue

Case Study: Displaying Prime Numbers
Case Study: Random Walk

Functions

Introduction

Defining a Function

Calling a Function

Functions with/without Return Values

Positional and Keyword Arguments

Passing Arguments by Reference Values
Modularizing Code

Case Study: Converting Decimals to Hexadecimals
The Scope of Variables

Default Arguments

Returning Multiple Values

Case Study: Generating Random ASCII Characters
Function Abstraction and Stepwise Refinement
Case Study: Reusable Graphics Functions

91
92
92
93
95
96
100
102
105
107
108
110
113
114
116
117
118

133

134
134
143
145
147
148

151
154
156

171

172
172
173
176
179
180
183
185
187
189
190
191
192
199

Chapter 7

7.1
72
73
1.4
7.5
7.6
.7

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6

Chapter 9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12
9.13
9.14

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

Objects and Classes

Introduction

Defining Classes for Objects

UML Class Diagrams

Immutable Objects vs. Mutable Objects
Hiding Data Fields

Class Abstraction and Encapsulation
Object-Oriented Thinking

More on Strings and Special Methods

Introduction

The str Class

Case Study: Checking Palindromes

Case Study: Converting Hexadecimals to Decimals
Operator Overloading and Special Methods

Case Study: The Rational Class

GUI Programming Using Tkinter

Introduction

Getting Started with Tkinter
Processing Events

The Widget Classes

Canvas

The Geometry Managers
Case Study: Loan Calculator
Displaying Images

Menus

Popup Menus

Mouse, Key Events, and Bindings
Animations

Scrollbars

Standard Dialog Boxes

Lists

Introduction

List Basics

Case Study: Lotto Numbers

Case Study: Deck of Cards

Deck of Cards GUI

Copying Lists

Passing Lists to Functions

Returning a List from a Function

Case Study: Counting the Occurrences of Each Letter
Searching Lists

215

216
216
222
225
227
229
233

241
242
242
253
254
257
258

271

272
272
273
275
280
283
287
288
290
292
294
297
300
301

313

314
315
325
327
329
330
332
334
335
338

Contents xv

xvi Contents

10.11
10.12

Chapter 11

1.1
11.2
1.3
11.4
1.5
11.6
1.7
11.8
1.9

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

Chapter 14

14.1
14.2
14.3
14.4

Sorting Lists
Case Study: Bouncing Balls

Multidimensional Lists

Introduction

Processing Two-Dimensional Lists

Passing Two-Dimensional Lists to Functions
Problem: Grading a Multiple-Choice Test
Problem: Finding the Closest Pair

GUI: Finding the Closest Pair

Problem: Sudoku

Case Study: Sudoku GUI

Multidimensional Lists

Inheritance and Polymorphism

Introduction

Superclasses and Subclasses
Overriding Methods

The object Class

Polymorphism and Dynamic Binding
The isinstance Function

Case Study: A Reusable Clock

Class Relationships

Case Study: Designing the Course Class
Designing a Class for Stacks

Case Study: The FigureCanvas Class

Files and Exception Handling

Introduction

Text Input and Output

File Dialogs

Case Study: Counting Each Letter in a File
Retrieving Data from the Web

Exception Handling

Raising Exceptions

Processing Exceptions Using Exception Objects
Defining Custom Exception Classes
Binary 10 Using Pickling

Case Study: Address Book

Tuples, Sets, and Dictionaries
Introduction

Tuples

Sets

Comparing the Performance of Sets and Lists

341
345

361

362
362
365
367
368
370
372
375
377

399

400
400
405
406
409

411
414
418
421
423
425

439
440
440
448
451
452
454
457
460
460
465
467

475
476
476
479
485

14.5
14.6
14.7

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

15.10
15.11

A detailed table of contents for the Web chapters is available on the

Case Study: Counting Keywords
Dictionaries
Case Study: Occurrences of Words

Recursion

Introduction

Case Study: Computing Factorials
Case Study: Computing Fibonacci Numbers
Problem Solving Using Recursion
Recursive Helper Functions

Case Study: Finding the Directory Size
Case Study: Towers of Hanoi

Case Study: Fractals

Case Study: Eight Queens

Recursion vs. Iteration

Tail Recursion

companion Website:

Chapter 16
Chapter 17
Chapter 18

Chapter 19
Chapter 20

Chapter

Chapter 22
Chapter 23

APPENDIXES

21

Appendix A

Appendix B

Appendix C

INDEX
CREDITS

Developing Efficient Algorithms
Sorting

Linked Lists, Stacks, Queues,
and Priority Queues

Binary Search Trees
AVL Trees

Hashing: Implementing Dictionaries
and Sets

Graphs and Applications
Weighted Graphs and Applications

Python Keywords
The ASCII Character Set
Number Systems

486
487
492

499
500
500
503
505
507
510
512
515
518
520
521

18-1

19-1

20-1

533
534
536
541

557

Contents xvii

Location of VideoNotes in the Text

XV

Chapter 1 Start with Python, p. 14
Start with Turtle graphics, p. 21

Chapter 3 String operations, p. 75
Draw shapes, p. 81

Chapter 5 whiTe loop, p. 134
for loop, p. 143

Chapter 7 Define and use classes, p. 217
Private data fields, p. 227

Chapter 9 Simple GUI, p. 273
Create GUI application, p. 287

Chapter 11 Process a matrix, p. 362
Chessboard, p. 394

Chapter 13 Process text file, p. 443
Handle exceptions, p. 454

Chapter 15 Function sum, p. 500
Function print numbers, p. 506

CHAPTER

INTRODUCTION
TO COMPUTERS,
PROGRAMS,
AND PYTHON

B To demonstrate a basic understanding of computer hardware,
programs, and operating systems (§§1.2—1.4).

To describe the history of Python (§1.5).
To explain the basic syntax of a Python program (§1.6).

To write and run a simple Python program (§1.6).

To explain the importance of, and provide examples of,
proper programming style and documentation (§1.7).

B To explain the differences between syntax errors, runtime errors,
and logic errors (§1.8).

B To create a basic graphics program using Turtle (§1.9).

2 Chapter | Introduction to Computers, Programs, and Python

K
Gﬁoi?l,;

what is programming?
program

programming languages

K
ke

hardware

software

bus

[.I Introduction

The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
the instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices that you might not think would need it. Of
course, you expect to find and use software on a personal computer, but software also plays a
role in running airplanes, cars, cell phones, and even toasters. On a personal computer, you
use word processors to write documents, Web browsers to explore the Internet, and e-mail
programs to send messages. These programs are all examples of software. Software develop-
ers create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Python programming
language. There are many programming languages, some of which are decades old. Each
language was invented for a specific purpose—to build on the strengths of a previous lan-
guage, for example, or to give the programmer a new and unique set of tools. Knowing that
there are so many programming languages available, it would be natural for you to wonder
which one is best. But, in truth, there is no “best” language. Each one has its own strengths
and weaknesses. Experienced programmers know that one language might work well in some
situations, whereas a different language may be more appropriate in other situations. For this
reason, seasoned programmers try to master as many different programming languages as
they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other
languages. The key is to learn how to solve problems using a programming approach. That is
the main theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it
is helpful to review computer basics, programs, and operating systems. If you are already
familiar with such terms as CPU, memory, disks, operating systems, and programming
languages, you may skip the review in Sections 1.2—-1.4.

[.2 What Is a Computer?

A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that a
program’s instructions have on the computer and its components. This section introduces com-
puter hardware components and their functions.

A computer consists of the following major hardware components (Figure 1.1):

B A central processing unit (CPU)
Memory (main memory)
Storage devices (such as disks and CDs)

Input devices (such as the mouse and keyboard)

Output devices (such as monitors and printers)
B Communication devices (such as modems and network interface cards)

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and

1.2 What Is a Computer? 3

<—>CPUI

<—> Memory |

Stor.age |
Devices

Bus

Input
Devices
Output |
Devices

-
Communication 3
> g
Devices | / A

FiGure 1.1 A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

power travel along the bus from one part of the computer to another. In personal computers,
the bus is built into the computer’s motherboard, which is a circuit case that connects all of
the parts of a computer together, as shown in Figure 1.2.

[.2.1 Central Processing Unit

The central processing unit (CPU) is the computer’s brain. It retrieves instructions from
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other
components. The arithmetic/logic unit performs numeric operations (addition, subtraction,
multiplication, division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock, which emits electronic pulses at a constant rate.
These pulses are used to control and synchronize the pace of operations. A higher clock speed
enables more instructions to be executed in a given period of time. The unit of measurement of
clock speed is the hertz (Hz), with 1 hertz equaling 1 pulse per second. In the 1990s computers
measured clocked speed in megahertz, but CPU speed has been improving continuously, and

motherboard

CPU

speed

hertz
megahertz

4 Chapter | Introduction to Computers, Programs, and Python

CPU is placed
under the fan

Memory

s Motherboard

FIGURE 1.2 The motherboard connects all parts of computer together.

gigahertz

core

bits

byte

encoding scheme

the clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest proces-
sors run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor
that performs the reading and executing of instructions. In order to increase CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent processors. Today’s consumer
computers typically have two, three, and even four separate cores. Soon, CPUs with tens or
even hundreds of cores will be affordable.

[.2.2 Bits and Bytes

Before we discuss memory, let’s look at how information (data and programs) are stored in a
computer.

A computer is really nothing more than a series of switches. Each switch exists in two
states: on or off. Storing information in a computer is simply a matter of setting a sequence
of switches on or off. If the switch is on, its value is 1. If the switch is off, its value is O.
These Os and 1s are interpreted as digits in the binary number system and called bizs (binary
digits).

The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A
small number such as 3 can be stored as a single byte. To store a number that cannot fit
into a single byte, the computer uses several bytes.

Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As
a programmer, you don’t need to worry about the encoding and decoding of data, which the
computer system performs automatically, based on the encoding scheme. An encoding
scheme is a set of rules that govern how a computer translates characters, numbers, and sym-
bols into data the computer can actually work with. Most schemes translate each character
into a predetermined string of numbers. In the popular ASCII encoding scheme, for example,
the character C is represented as 01000011 in one byte.

1.2 What Is a Computer? 5

A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

B A kilobyte (KB) is about 1,000 bytes. kilobyte (KB)
B A megabyte (MB) is about 1 million bytes. megabyte (MB)
B A gigabyte (GB) is about 1 billion bytes. gigabyte (GB)
B A ferabyte (TB) is about 1 trillion bytes. terabyte (TB)

A typical one-page word document might take 20 KB. So 1 MB can store 50 pages of doc-
uments and 1 GB can store 50000 pages of documents. A typical two-hour high-resolution
movie might take 8 GB. So it would require 160 GB to store 20 movies.

[.2.3 Memory

A computer’s memory consists of an ordered sequence of bytes for storing programs as well ~ memory
as data that the program is working with. You can think of memory as the computer’s work
area for executing a program. A program and its data must be moved into the computer’s
memory before they can be executed by the CPU.
Every byte in the memory has a unique address, as shown in Figure 1.3. The address is unique address
used to locate the byte for storing and retrieving the data. Since the bytes in the memory can
be accessed in any order, the memory is also referred to as random-access memory (RAM). RAM

Memory address Memory content

v

2000 | 01000011 | Encoding for character ‘C’
2001 | 01110010 | Encoding for character ‘1’

2002 | 01100101 | Encoding for character ‘e’

2003 [01110111 | Encoding for character ‘w’
2004 | 00000011 | Encoding for number 3

FiGure 1.3 Memory stores data and program instructions in uniquely addressed memory
locations. Each memory location can store one byte of data.

Today’s personal computers usually have at least 1 gigabyte of RAM, but they more com-
monly have 2 to 4 GB installed. Generally speaking, the more RAM a computer has, the faster
it can operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of
transistors embedded on their surface. Compared to CPU chips, memory chips are less com-
plicated, slower, and less expensive.

[.2.4 Storage Devices

A computer’s memory is a volatile form of data storage: any information that hasn’t been stored

in memory (that is, saved) is lost when the system’s power is turned off. Programs and data are

permanently stored on storage devices and are moved, when the computer actually uses them, to storage device
memory, which operates at much faster speeds than permanent storage devices can.

6 Chapter | Introduction to Computers, Programs, and Python

There are three main types of storage devices:
B Magnetic disk drives
B Optical disc drives (CD and DVD)
m USB flash drives

drive Drives are devices for operating a medium, such as disks and CDs. A storage medium physi-
cally stores data or program instructions. The drive reads data from the medium and/or writes
data onto the medium.

Disks

hard disk A computer usually has at least one hard disk drive (Figure 1.4). Hard disks are used for per-
manently storing data and programs. Newer computers have hard disks that can store from 200
to 800 gigabytes of data. Hard disk drives are usually encased inside the computer, but remov-
able hard disks are also available.

FIGURE 1.4 A hard disk is a device for permanently storing programs and data.

CDs and DVDs

CD-R CD stands for compact disc. There are two types of CD drives: CD-R and CD-RW. A CD-R
is for read-only permanent storage; the user cannot modify its contents once they are
CD-RW recorded. A CD-RW can be used like a hard disk; that is, you can write data onto the disc,

and then overwrite that data with new data. A single CD can hold up to 700 MB. Most new
PCs are equipped with a CD-RW drive that can work with both CD-R and CD-RW discs.
DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and you
DVD can use either to store data. A DVD can hold more information than a CD; a standard DVD’s
storage capacity is 4.7 GB. Like CDs, there are two types of DVDs: DVD-R (read-only) and
DVD-RW (rewritable).

1.2 What Is a Computer? 7

USB Flash Drives

Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral devices
to the computer. You can use a USB to connect a printer, digital camera, mouse, external hard
disk drive, and other devices to the computer.

A USB flash drive is a device for storing and transporting data. A flash drive is small—
about the size of a pack of gum, as shown in Figure 1.5. It acts like a portable hard drive that
can be plugged into your computer’s USB port. USB flash drives are currently available with
up to 256 GB storage capacity.

FiGure 1.5 USB flash drives are popular portable devices for storing data.

[.2.5 Input and Output Devices

Input and output devices let the user communicate with the computer. The most common input
devices are keyboards and mice. The most common output devices are monitors and printers.

The Keyboard

A keyboard is a device for entering input. A typical keyboard is shown in Figure 1.6. Compact
keyboards are available without a numeric keypad.

Insert

Function

Delete

Page Up

Page Down
Modifier

Numeric Keypad

Arrows

FIGURE 1.6 A computer keyboard consists of the keys for sending input to a computer.

Function keys are located across the top of the keyboard and are prefaced with the letter F. function key
Their functions depend on the software currently being used.

8 Chapter |

modifier key
numeric keypad
arrow keys
Insert key
Delete key

Page Up key
Page Down key

screen resolution

pixels

dot pitch

modem

digital subscriber line (DSL)
cable modem

network interface card (NIC)
local area network (LAN)

million bits per second
(mbps)

ﬁheck
Point

MyProgramminglab’

Introduction to Computers, Programs, and Python

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the
normal action of another key when the two are pressed simultaneously.

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for entering numbers quickly.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse

A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of an
arrow) called a cursor around the screen or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor

The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper and
clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper the display.

1.2.6 Communication Devices

Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a DSL or cable modem, a wired network interface card, or a wire-
less adapter.

B A dial-up modem uses a phone line and can transfer data at a speed up to 56,000 bps
(bits per second).

B A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

B A cable modem uses the cable TV line maintained by the cable company and is
generally faster than DSL.

B A network interface card (NIC) is a device that connects a computer to a local area
network (LAN), as shown in Figure 1.7. LANs are commonly used in universities,
businesses, and government agencies. A high-speed NIC called 1000BaseT can
transfer data at 1,000 million bits per second (mbps).

B Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables
the computer to connect to a local area network and the Internet.

K4 Note
Answers to checkpoint questions are on the Companion Website.
I.1 What are hardware and software?
1.2 List five major hardware components of a computer.

[.3 What does the acronym “CPU” stand for?

[.3 Programming Languages 9

Network Interface Card

)

FIGURE 1.7 A local area network connects computers in close proximity to each other.

1.4
1.5
1.6
1.7
1.8
1.9

What unit is used to measure CPU speed?

What is a bit? What is a byte?

What is memory for? What does RAM stand for? Why is memory called RAM?
What unit is used to measure memory size?

What unit is used to measure disk size?

What is the primary difference between memory and a storage device?

[.3 Programming Languages

Computer programs, known as software, are instructions that tell a computer what to do. 6 fKey

Computers do not understand human languages, so programs must be written in a language a

Point

computer can use. There are hundreds of programming languages, and they were developed to
make the programming process easier for people. However, all programs must be converted
into a language the computer can understand.

[.3.1

Machine Language

A computer’s native language, which differs among different types of computers, is its machine machine language
language—a set of built-in primitive instructions. These instructions are in the form of binary
code, so if you want to give a computer an instruction in its native language, you have to enter

10 Chapter |

assembly language

assembler

low-level language

high-level language

statement

source program
source code

interpreter
compiler

Introduction to Computers, Programs, and Python

the instruction as binary code. For example, to add two numbers, you might have to write an
instruction in binary code, like this:

1101101010011010

[.3.2 Assembly Language

Programming in machine language is a tedious process. Moreover, programs written in
machine language are very difficult to read and modify. For this reason, assembly language
was created in the early days of computing as an alternative to machine languages. Assembly
language uses a short descriptive word, known as mnemonic, to represent each of the machine-
language instructions. For example, the mnemonic add typically means to add numbers and
sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you might write
an instruction in assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot understand assembly language, another program—called an assembler—is
used to translate assembly-language programs into machine code, as shown in Figure 1.8.

Assembly Source File

add 2,

Machine-Code File

| Assembler |

result

.3.’.

1101101010011010

FiIGUre 1.8 An assembler translates assembly-language instructions into machine code.

Writing code in assembly language is easier than in machine language. However, it is still
tedious to write code in assembly language. An instruction in assembly language essentially
corresponds to an instruction in machine code. Writing in assembly requires that you know how
the CPU works. Assembly language is referred to as a low-level language, because assembly
language is close in nature to machine language and is machine dependent.

[.3.3 High-Level Language

In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform-independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are English-like
and easy to learn and use. The instructions in a high-level programming language are called
statements. Here, for example, is a high-level language statement that computes the area of a
circle with a radius of 5:

area = 5 * 5 * 3.1415

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

A program written in a high-level language is called a source program or source code.
Because a computer cannot understand a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool
called an interpreter or a compiler.

B An interpreter reads one statement from the source code, translates it to the machine
code or virtual machine code, and then executes it right away, as shown in Figure 1.9a.

[.3 Programming Languages 11

TaBLE 1.1 Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada language was
developed for the Department of Defense and is used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. C combines the power of an assembly language with the ease of use and portability
of a high-level language.

C++ C++ is an object-oriented language, based on C.

C# Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-independent
Internet applications.

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a simple, structured,
general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic

Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop Windows-based
applications.

High-Level Source File

Output

===y

Output

===y

0101100011011100
1111100011000100

Executor

(b)

FIGURE 1.9 (a) An interpreter translates and executes a program one statement at a time. (b) A compiler translates the entire

source program into a machine-language file for execution.

Note that a statement from the source code may be translated into several machine
instructions.

B A compiler translates the entire source code into a machine-code file, and the
machine code file is then executed, as shown in Figure 1.9b.

Python code is executed using an interpreter. Most other programming languages are
processed using a compiler.

[.10 What language does the CPU understand?

ﬁheck

I.1l What is an assembly language? " Point

12 Chapter | Introduction to Computers, Programs, and Python

MyProgramminglab’ 1.12 What is an assembler?
I.13 Whatis a high-level programming language?
1.14 Whatis a source program?
I.15 What is an interpreter?
I.16 What is a compiler?
I.17 What is the difference between an interpreted language and a compiled language?

[.4 Operating Systems

Key The operating system (OS) is the most important program that runs on a computer.
6 Point The OS manages and controls a computer’s activities.

operating system (OS) The popular operating systems for general-purpose computers are Microsoft Windows, Mac
OS, and Linux. Application programs, such as a Web browser or a word processor, cannot run
unless an operating system is installed and running on the computer. Figure 1.10 shows the
interrelationship of hardware, operating system, application software, and the user.

User

f

Application Programs

f

Operating System

f

Hardware

FiGure 1.10 Users and applications access the computer’s hardware via the operating system.

The major tasks of an operating system are:
B Controlling and monitoring system activities
B Allocating and assigning system resources

B Scheduling operations

[.4.1 Controlling and Monitoring System Activities

Operating systems perform basic tasks, such as recognizing input from the keyboard, sending
output to the monitor, keeping track of files and folders on storage devices, and controlling
peripheral devices, such as disk drives and printers. An operating system must also ensure that
different programs and users working at the same time do not interfere with each other. In
addition, the OS is responsible for security, ensuring that unauthorized users and programs do
not access the system.

1.4.2 Allocating and Assigning System Resources

The operating system is responsible for determining what computer resources a program
needs (such as CPU time, memory space, disks, input and output devices) and for allocating
and assigning them to run the program.

[.5 The History of Python 13

1.4.3 Scheduling Operations

The OS is responsible for scheduling programs’ activities to make efficient use of system
resources. Many of today’s operating systems support such techniques as multiprogramming,
multithreading, and multiprocessing to increase system performance.

Multiprogramming allows multiple programs to run simultaneously by sharing the same
CPU. The CPU is much faster than the computer’s other components. As a result, it is idle
most of the time—for example, while waiting for data to be transferred from a disk or waiting
for other system resources to respond. A multiprogramming OS takes advantage of this situa-
tion by allowing multiple programs to use the CPU when it would otherwise be idle. For
example, multiprogramming enables you to use a word processor to edit a file at the same
time as your Web browser is downloading a file.

Multithreading allows a single program to execute multiple tasks at the same time. For
instance, a word-processing program allows users to simultaneously edit text and save it to a
disk. In this example, editing and saving are two tasks within the same application. These two
tasks may run concurrently.

Multiprocessing, or parallel processing, uses two or more processors together to per-
form subtasks concurrently and then combine solutions of the subtasks to obtain a solution
for the entire task. It is like a surgical operation where several doctors work together on one
patient.

1.18 What is an operating system? List some popular operating systems.
[.19 What are the major responsibilities of an operating system?

1.20 What are multiprogramming, multithreading, and multiprocessing?

[.5 The History of Python

Python is a general-purpose, interpreted, object-oriented programming language.

Python was created by Guido van Rossum in the Netherlands in 1990 and was named after
the popular British comedy troupe Monty Python’s Flying Circus. Van Rossum developed
Python as a hobby, and Python has become a popular programming language widely used
in industry and academia due to its simple, concise, and intuitive syntax and extensive
library.

Python is a general-purpose programming language. That means you can use Python to
write code for any programming task. Python is now used in the Google search engine, in
mission-critical projects at NASA, and in transaction processing at the New York Stock
Exchange.

Python is interpreted, which means that Python code is translated and executed by an inter-
preter, one statement at a time, as described earlier in the chapter.

Python is an object-oriented programming (OOP) language. Data in Python are objects
created from classes. A class is essentially a type or category that defines objects of the same
kind with properties and methods for manipulating objects. Object-oriented programming is a
powerful tool for developing reusable software. Object-oriented programming in Python will
be covered in detail starting in Chapter 7.

Python is now being developed and maintained by a large team of volunteers and is avail-
able for free from the Python Software Foundation. Two versions of Python are currently
coexistent: Python 2 and Python 3. The programs written in Python 3 will not run in Python
2. Python 3 is a newer version, but it is not backward-compatible with Python 2. This means
that if you write a program using the Python 2 syntax, it may not work with a Python 3 inter-
preter. Python provides a tool that automatically converts code written in Python 2 into syntax
Python 3 can use. Python 2 will eventually be replaced by Python 3. This book teaches pro-
gramming using Python 3.

multiprogramming

multithreading

multiprocessing

ﬁheck
Point

MyProgramminglab’

K
ke

general-purpose
programming language

interpreted

object-oriented programming
(0O0P)

Python 2 vs. Python 3

14 Chapter I Introduction to Computers, Programs, and Python

/Iheck
Point

MyProgramminglab’

K
ke

console
console input
console output

install Python

VideoNote
Start with Python

IDLE

ol i

1.21 Python is interpreted. What does that mean?
1.22 Can a program written in Python 2 run in Python 3?
1.23 Can a program written using Python 3 run in Python 2?

[.6 Getting Started with Python

A Python program is executed from the Python interpreter.

Let’s get started by writing a simple Python program that displays the messages We'l come
to Python and Python 1is fun on the console. The word console is an old computer
term that refers to the text entry and display device of a computer. Console input means
to receive input from the keyboard and console output means to display output to the
monitor.

T Note

You can run Python on the Windows, UNIX, and Mac operating systems. For informa-
tion on installing Python, see Supplement I.B, Installing and Using Python, on the
Companion Website.

[.6.1 Launching Python

Assume you have Python installed on the Windows OS. You can start Python in a com-
mand window by typing python at the command prompt, as shown in Figure 1.11, or by
using IDLE, as shown in Figure 1.12. IDLE (Interactive DeveLopment Environment) is an
integrated development environment (IDE) for Python. You can create, open, save, edit,
and run Python programs in IDLE. Both the command-line Python interpreter and IDLE
are available after Python is installed on your machine. Note that Python (command line)

\Python32)python)
Python 3.2.1 {default, Jul 18 2611, 21:51:15> [MSC v.1588 32 bit <Intel>] on win

ype "help". "copyright', “credits" or "license'" for more information.
>>>» print{("WYelcome to Python">
elcome to Python

Puthon is fun
>» "Z

jc =~Puthon32>

FIGURE I.11 You can launch Python from the command window.

Debug Options Windows Help

Python 3.2.1

(default, Jul 10 2011, 21:51:15) [M5C v.1500 32 bit (Intel)] on wim32

Type "copyright”, "credits" or "license(}" for more information.
>>»> print ("Welcome to Python"}

Welcome to Python

>»> print {"Python dis fun")

Python is fun
> |

FIGURre 1.12 You can use Python from IDLE.

|.6 Getting Started with Python 15

Programs (4)
Python IDLE ———>- ' L& (Python GuD

. - 3
Python command line ———>f = Phen (cammandfine]
¥ Python Manuals

19 Uninstall Pythan
Files (1)
) python-32 1 amd6d

- See more results

Enter Python here ——>§ |mthen x|

FIGURE I.13 You can launch the Python IDLE and command line from the Start button.

and IDLE can also be accessed directly from the Windows Start button by searching for
Python (command line) or IDLE (Python GUI) on Windows 7 or Vista, as shown in
Figure 1.13.

After Python starts, you will see the symbol >>>. This is the Python statement prompt, and
it is where you can enter a Python statement.

Note
Type the commands exactly as they are written in this text. Formatting and other rules
will be discussed later in this chapter.

Now, type print("Welcome to Python") and press the Enter key. The string Welcome
to Python appears on the console, as shown in Figure 1.11. String is a programming term
meaning a sequence of characters.

T Note

Note that Python requires double or single quotation marks around strings to delineate
them from other code. As you can see in the output, Python doesn’t display those
quotation marks.

The print statement is one of Python’s built-in functions that can be used to display a
string on the console. A function performs actions. In the case of the print function, it dis-
plays a message to the console.

Note
In programming terminology, when you use a function, you are said to be “invoking a
function” or “calling a function.”

Next, type print("Python is fun") and press the Enter key. The string Python 1is
fun appears on the console, as shown in Figure 1.11. You can enter additional statements at
the statement prompt >>>.

Note
To exit Python, press CTRL+Z and then the Enter key.

Python statement prompt >>>

string

function

invoking a function
calling a function

16 Chapter |

source file
script file
module

.py file

script mode
interactive mode

Python on Eclipse

comment
print a message

line numbers

execute the program

comment

line comment
paragraph comment

Introduction to Computers, Programs, and Python

[.6.2 Creating Python Source Code Files

Entering Python statements at the statement prompt >>> is convenient, but the statements are
not saved. To save statements for later use, you can create a text file to store the statements
and use the following command to execute the statements in the file:

python filename.py

The text file can be created using a text editor such as Notepad. The text file, £77ename, is
called a Python source file or script file, or module. By convention, Python files are named
with the extension . py.

Running a Python program from a script file is known as running Python in script mode.
Typing a statement at the statement prompt >>> and executing it is called running Python in
interactive mode.

T Note

Besides developing and running Python programs from the command window, you can
create, save, modify, and run a Python script from IDLE. For information on using IDLE,
see Supplement |.C on the Companion Website. Your instructor may also ask you to use
Eclipse. Eclipse is a popular interactive development environment (IDE) used to develop
programs quickly. Editing, running, debugging, and online help are integrated in one
graphical user interface. If you want to develop Python programs using Eclipse, see
Supplement I.D, on the Companion Website.

Listing 1.1 shows you a Python program that displays the messages Welcome to Python
and Python 1is fun.

LisTING I.I Welcome.py

1 # Display two messages
2 print("Welcome to Python™
3 print("Python is fun')

In this text, line numbers are displayed for reference purposes; they are not part of the pro-
gram. So, don’t type line numbers in your program.

Suppose the statements are saved in a file named Welcome.py. To run the program, enter
python Welcome.py at the command prompt, as shown in Figure 1.14.

@ Administrater: Command Prom tw@ﬂg

»Jpython Welcome . py
elcome to Python
Python is fun

N>

FIGURE 1.14 You can run a Python script file from a command window.

In Listing 1.1, line 1 is a comment that documents what the program is and how it is con-
structed. Comments help programmers communicate and understand a program. They are not
programming statements and thus are ignored by the interpreter. In Python, comments are
preceded by a pound sign (#) on a line, called a line comment, or enclosed between three con-
secutive single quotation marks (' ' ") on one or several lines, called a paragraph comment.

|.6 Getting Started with Python

When the Python interpreter sees #, it ignores all text after # on the same line. When it sees
"', it scans for the next and ignores any text between the triple quotation marks. Here
are examples of comments:

This program displays Welcome to Python

""" This program displays Welcome to Python and
Python is fun

Indentation matters in Python. Note that the statements are entered from the first column in indentation
the new line. The Python interpreter will report an error if the program is typed as follows:

Display two messages oov
print("Welcome to Python") g,b“c
print(""Python is fun')

Don’t put any punctuation at the end of a statement. For example, the Python interpreter
will report errors for the following code:

Display two messages oo¥

print("Welcome to Python"). Y,p,‘)c

print("Python is fun"),

Python programs are case sensitive. It would be wrong, for example, to replace print in case sensitive
the program with Print.

You have seen several special characters (#, ", ()) in the program. They are used in special characters
almost every program. Table 1.2 summarizes their uses.

TaBLE 1.2 Special Characters

Character ~ Name Description
O Opening and closing parentheses Used with functions.
Pound sign Precedes a comment line.

Opening and closing quotation marks Encloses a string (i.e., sequence of characters).

Paragraph comments Encloses a paragraph comment.

The program in Listing 1.1 displays two messages. Once you understand the program, it is
easy to extend it to display more messages. For example, you can rewrite the program to dis-
play three messages, as shown in Listing 1.2.

LisTING 1.2 WelcomeWithThreeMessages.py

1 # Display three messages comment

2 print("Welcome to Python™) print statement
3 print("Python is fun")

4 print("Problem Driven')

Welcome to Python E
Python is fun

ProbTem Driven

17

18 Chapter | Introduction to Computers, Programs, and Python

[.6.3 Using Python to Perform Mathematical Computations
Python programs can perform all sorts of mathematical computations and display the result.

To display the addition, subtraction, multiplication, and division of two numbers, x and y, use
the following code:

print(x + y)
print(x - y)
print(x * y)
print(x / y)

105 +2 X3

Listing 1.3 shows an example of a program that evaluates 45 — 35

and prints its result.

LisTING 1.3 ComputeExpression.py

comment 1 # Compute expression
compute expression 2 print((10.5 + 2 * 3) / (45 - 3.5))

g 0.397590361446

As you can see, it is a straightforward process to translate an arithmetic expression to a
Python expression. We will discuss Python expressions further in Chapter 2.

ﬁheck 1.24 You can run Python in two modes. Explain these two modes.

Point].25 Is Python case sensitive?
MyProgrammingLab’” 1.26 What is the Python source filename extension by convention?
1.27 What is the command to run a Python source file?
1.28 What is a comment? How do you denote a comment line and a comment paragraph?
1.29 What is the statement to display the message Hello worTld on the console?

1.30 Identify and fix the errors in the following code:

1 # Display two messages
2 print("Welcome to Python')
3 print("Python is fun').

1.31 Show the output of the following code:
print("3.5 * 4 / 2 - 2.5 1is")
print(3.5 * 4 / 2 - 2.5)

[.7 Programming Style and Documentation

Key Good programming style and proper documentation make a program easy to read and
6 Point prevents errors.

programming style Programming style deals with what programs look like. When you create programs with a
professional programming style, they not only execute properly but are easy for people to
read and understand. This is very important if other programmers will access or modify your
programs.

documentation Documentation is the body of explanatory remarks and comments pertaining to a program.
These remarks and comments explain various parts of the program and help others understand
its structure and function. As you saw earlier in the chapter, remarks and comments are

[.8 Programming Errors

embedded within the program itself; Python’s interpreter simply ignores them when the pro-
gram is executed.
Programming style and documentation are as important as coding. Here are a few guidelines.

[.7.1 Appropriate Comments and Comment Styles

Include a summary comment at the beginning of the program to explain what the program
does, its key features, and any unique techniques it uses. In a long program, you should also
include comments that introduce each major step and explain anything that is difficult to read.
It is important to make comments concise so that they do not crowd the program or make it
difficult to read.

[.7.2 Proper Spacing

A consistent spacing style makes programs clear and easy to read, debug (find and fix errors),
and maintain.

A single space should be added on both sides of an operator, as shown in the following
statement:

| print(3+4%4) |<—Bad style
|pr'int(3 + 4 % 4) |<—Good style

More detailed guidelines can be found in Supplement I.F, Python Coding Style Guidelines,
on the Companion Website.

[.8 Programming Errors

Programming errors can be categorized into three types: syntax errors, runtime errors,
and logic errors.

[.8.1 Syntax Errors

The most common error you will encounter are syntax errors. Like any programming lan-
guage, Python has its own syntax, and you need to write code that obeys the syntax rules. If
your program violates the rules—for example, if a quotation mark is missing or a word is
misspelled—Python will report syntax errors.

Syntax errors result from errors in code construction, such as mistyping a statement, incor-
rect indentation, omitting some necessary punctuation, or using an opening parenthesis with-
out a corresponding closing parenthesis. These errors are usually easy to detect, because
Python tells you where they are and what caused them. For example, the following print
statement has a syntax error:

>>> print(“Progﬁéﬁhing is fun>
File “<stdin>", line 1
print("Programming is funz

K
Gﬁoifl)l’;

common errors
syntax rules

syntax errors

19

20 Chapter | Introduction to Computers, Programs, and Python

The string Programming is fun should be closed with a closing quotation mark.

AT Tip
fix syntax errors If you don’t know how to correct a syntax error, compare your program closely, charac-
ter by character, with similar examples in the text. In the first few weeks of this course,
you will probably spend a lot of time fixing syntax errors. Soon, you will be familiar with
Python syntax and will be able to fix syntax errors quickly.

1.8.2 Runtime Errors

runtime errors Runtime errors are errors that cause a program to terminate abnormally. They occur while a
program is running if the Python interpreter detects an operation that is impossible to carry
input errors out. Input mistakes typically cause runtime errors. An input error occurs when the user

enters a value that the program cannot handle. For instance, if the program expects to read in
a number, but instead the user enters a string of text, this causes data-type errors to occur in
the program.

Another common source of runtime errors is division by zero. This happens when the divi-
sor is zero for integer divisions. For example, the expression 1 / 0 in the following statement
would cause a runtime error.

1.8.3 Logic Errors

logic errors Logic errors occur when a program does not perform the way it was intended to. Errors of this
kind occur for many different reasons. For example, suppose you wrote the program in
Listing 1.4 to convert a temperature (35 degrees) from Fahrenheit to Celsius.

LisTING 1.4 ShowlLogicErrors.py

1 # Convert Fahrenheit to Celsius
2 print("Fahrenheit 35 1is Celsius degree ")
3 print(5 / 9 * 35 - 32)

E Fahrenheit 35 is Celsius degree
-12.555555555555554

You will get Celsius -12.55 degrees, which is wrong. It should be 1.66. To get the correct
result, youneedtouse 5 / 9 # (35 - 32) ratherthan5 / 9 * 35 — 32 inthe expression.
That is, you need to add parentheses around (35 - 32) so Python will calculate that expression
first before doing the division.

In Python, syntax errors are actually treated like runtime errors because they are detected
by the interpreter when the program is executed. In general, syntax and runtime errors are
easy to find and easy to correct, because Python gives indications as to where the errors
came from and why they are wrong. Finding logic errors, on the other hand, can be very
challenging.

1.9 Getting Started with Graphics Programming 21

1.32 What are three kinds of program errors?

1.33 If you forget to put a closing quotation mark on a string, what kind of error will be
raised?

1.34 If your program needs to read data from a file, but the file does not exist, an error
would occur when running this program. What kind of error is this?

1.35 Suppose you write a program for computing the perimeter of a rectangle and you
mistakenly write your program so that it computes the area of a rectangle. What kind
of error is this?

[.9 Getting Started with Graphics Programming

Turtle is Python’s built-in graphics module for drawing lines, circles, and other
shapes, including text. It is easy to learn and simple to use.

Beginners often enjoy learning programming by using graphics. For this reason, we provide a
section on graphics programming at the end of most of the chapters in the first part of the
book. However, these materials are not mandatory. They can be skipped or covered later.

There are many ways to write graphics programs in Python. A simple way to start graphics
programming is to use Python’s built-in turt1e module. Later in the book, we will introduce
Tkinter for developing comprehensive graphical user interface applications.

1.9.1 Drawing and Adding Color to a Figure

The following procedure will give you a basic introduction to using the turt1e module. Sub-
sequent chapters introduce more features.

1. Launch Python by choosing Python (command line) from the Windows Start button or
by typing python at the command prompt.

2. At the Python statement prompt >>>, type the following command to import the turtle
module. This command imports all functions defined in the turtle module and makes
them available for you to use.

>>> import turtle # Import turtle module

3. Type the following command to show the current location and direction of the turtle, as
shown in Figure 1.15a.

>>> turtle.showturtle()

Graphics programming using the Python Turtle module is like drawing with a pen. The
arrowhead indicates the current position and direction of the pen. turtle is initially
positioned at the center of the window. Here, turtle refers to the object for drawing
graphics (objects will be introduced in Chapter 3).

4. Type the following command to draw a text string:
>>> turtle.write("Welcome to Python™)
Your window should look like the one shown in Figure 1.15b.

5. Type the following command to move the arrowhead 100 pixels forward to draw a line
in the direction the arrow is pointing:

>>> turtle.forward(100)
Your window should now look like the one shown in Figure 1.15c.

To draw the rest of Figure 1.15, continue with these steps.

ﬁheck
Point

MyProgramminglab’

K
Gﬁoifl);

turtle
Tkinter

VideoNote
Start with Turtle graphics

22 Chapter | Introduction to Computers, Programs, and Python

Pythan Turtle Graphics (1= :.?.é Py'thor1 'I.'Ert!e Graphics T Pﬁh?nTﬂe Graphics L

B

L

Welcome to Py'thnn! J

(©)
| 7 Python Turte Graphics E—Lgi@&];

A|

L —

-

Walcems to Python J
=

o

FiGure 1.15 Graphics are dynamically displayed with each statement.

6. Type the following commands to turn the arrowhead right 90 degrees, change the
turtle’s color to red, and move the arrowhead 50 pixels forward to draw a line, as
shown in Figure 1.15d:

>>> turtle.right(90)
>>> turtle.color("red")
>>> turtle.forward(50)

7. Now, type the following commands to turn the arrowhead right 90 degrees, set the color to
green, and move the arrowhead 100 pixels forward to draw a line, as shown in Figure 1.15e:

>>> turtle.right(90)
>>> turtle.color("green")
>>> turtle.forward(100)

8. Finally, type the following commands to turn the arrowhead right 45 degrees and move
it 80 pixels forward to draw a line, as shown in Figure 1.15f:

>>> turtle.right(45)
>>> turtle.forward(80)

9. You can now close the Turtle Graphics window and exit Python.

1.9.2 Moving the Pen to Any Location

When the Turtle program starts, the arrowhead is at the center of the Python Turtle Graphics
window at the coordinates (0, 0), as shown in Figure 1.16a. You can also use the goto(x, y)
command to move the turtle to any specified point (x, y).

Restart Python and type the following command to move the pen to (0, 50) from (0, 0), as
shown in Figure 1.16b.

>>> import turtle
>>> turtle.goto(0, 50)

1.9 Getting Started with Graphics Programming 23

Y-axis
(0,0) X-axis
(0,0) (50, =50)
(a) (b) (©)
B Dy thon Turtle Graphics Mlgli 2% Python Turile Graphics i

(d) (e)

FIGURE 1.16 (a) The center of the Turtle Graphics window is at the coordinates (0, 0). (b) Move to (0, 50). (c) Move the
pen to (50, —50). (d) Set color to red. (e) Draw a circle using the circle command.

You can also lift the pen up or put it down to control whether to draw a line when the pen
is moved by using the penup() and pendown() commands. For example, the following
commands move the pen to (50, -50), as shown in Figure 1.16c.

>>> turtle.penup()
>>> turtle.goto(50, -50)
>>> turtle.pendown()

You can draw a circle using the circle command. For example, the following commands
set color red (Figure 1.16d) and draw a circle with radius 50 (Figure 1.16e).

>>> turtle.color("red™)
>>> turtle.circle(50) # Draw a circle with radius 50

1.9.3 Drawing the Olympic Rings Logo

Listing 1.5 shows a program for drawing the Olympics rings logo, as shown in Figure 1.17.

LisTING 1.5 OlympicSymbol.py

import turtle

turtle.color("blue™) draw blue circle
turtle.penup()

turtle.goto(-110, -25)

turtTle.pendown()

turtle.circle(45)

OooNOUUVIA~ WN R

turtle.color("black™) draw black circle

24 Chapter | Introduction to Computers, Programs, and Python

draw red circle

draw yellow circle

draw green circle

pause

ﬁheck
Point

MyProgramminglLab’

& Python Turtle Graghics _

FiGUure 1.17 The program draws the Olympics rings logo.

10 turtle.penup()

11 turtle.goto(0, -25)
12 turtle.pendown()

13 turtle.circle(45)

14

15 turtle.color("red™)
16 turtle.penup()

17 turtle.goto(110, -25)
18 turtle.pendown()

19 turtle.circle(45)

20

21 turtle.color("yellow™)
22 turtle.penup()

23 turtle.goto(-55, -75)
24 turtle.pendown()

25 turtle.circle(45)

26

27 turtle.color('"green')
28 turtle.penup()

29 turtle.goto(55, -75)
30 turtle.pendown()

31 turtle.circle(45)

32

33 turtle.done()

The program imports the turtle module to use the Turtle Graphics window (line 1). It
moves the pen to (—110, —25) (line 5) and draws a blue circle with radius 45 (line 7). Similarly,
it draws a black circle (lines 9—13), a red circle (lines 15-19), a yellow circle (lines 21-25), and
a green circle (lines 27-31).

Line 33 invokes turtle’s done() command, which causes the program to pause until the
user closes the Python Turtle Graphics window. The purpose of this is to give the user time to
view the graphics. Without this line, the graphics window would be closed right after the pro-
gram is finished.

1.36 How do you import the turtle module?

1.37 How do you display text in Turtle?

1.38 How do you move the pen forward?

1.39 How do you set a new color?

1.40 How do you move the pen without drawing anything?

1.41 How do you draw a circle?

1.42 What is the purpose of turtle.done() in line 33 in Listing 1.5?

KEy TERMS

.py file 16
assembler 10
assembly language 10

bit 4
bus 2
byte 4

cable modem 8

calling a function 15

central processing unit (CPU) 3

comment 16

compiler 10

console 14

dot pitch 8

DSL (digital subscriber line) 8

encoding scheme 4

function 15

hardware 2

high-level language 10

IDLE (Interactive DeveLLopment
Environment) 14

indentation 17

interactive mode 16

interpreter 10

invoking a function 15

Note

line comment 16
logic error 20
low-level language 10
machine language 9

memory 5
modem 8
module 16

motherboard 3

network interface card (NIC) 8
operating system (OS) 12
pixel 8

program 2

runtime errors 20
screen resolution 8
script file 16

script mode 16
software 2

source code 10

source file 16

source program 10
statement 10

storage device 5

syntax errors 19

syntax rules 19

The above terms are defined in the present chapter. Supplement I.A, Glossary, lists

all the key terms and descriptions in the book, organized by chapters.

CHAPTER SUMMARY

2
3.
4

A computer is an electronic device that stores and processes data.

. A computer includes both hardware and software.

Hardware is the physical aspect of the computer that can be touched.

. Computer programs, known as software, are the invisible instructions that control the

hardware and make it perform tasks.

. Computer programming is the writing of instructions (i.e., code) for computers to

perform.

. The central processing unit (CPU) is a computer’s brain. It retrieves instructions

from memory and executes them.

Computers use zeros and ones because digital devices have two stable electrical
states, off and on, referred to by convention as zero and one.

. A bitis a binary digit O or 1.

Chapter Summary

Supplement LA

25

26 Chapter |

Introduction to Computers, Programs, and Python

9.
10.

1.
12.
13.

14.

I5.
16.

17.
18.
19.

20.

21.
22.

23.

24.

25.

26.

27.

A byte is a sequence of 8 bits.

A kilobyte is about 1,000 bytes, a megabyte about 1 million bytes, a gigabyte about
1 billion bytes, and a terabyte about 1,000 gigabytes.

Memory stores data and program instructions for the CPU to execute.
A memory unit is an ordered sequence of bytes.

Memory is volatile, because information that hasn’t been saved is lost when the
power is turned off.

Programs and data are permanently stored on storage devices and are moved to
memory when the computer actually uses them.

The machine language is a set of primitive instructions built into every computer.

Assembly language is a low-level programming language in which a mnemonic is
used to represent each machine-language instruction.

High-level languages are English-like and easy to learn and program.
A program written in a high-level language is called source code.

A compiler is a software program that translates the source program into a machine-
language program.

The operating system (OS) is a program that manages and controls a computer’s
activities.

You can run Python on Windows, UNIX, and Mac.

Python is interpreted, meaning that Python translates each statement and processes it
one at a time.

You can enter Python statements interactively from the Python statement prompt >>>
or store all your code in one file and execute it using one command.

To run a Python source file from the command line, use the python filename.py
command.

In Python, comments are preceded by a pound sign (#) on a line, called a line comment,
or enclosed between triple quotation marks (""" and ''") on one or several lines,
called a paragraph comment.

Python source programs are case sensitive.

Programming errors can be categorized into three types: syntax errors, runtime
errors, and logic errors. Syntax and runtime errors cause a program to terminate
abnormally. Logic errors occur when a program does not perform the way it was
intended to.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

www.cs.armstrong.edu/liang/py/test.html

Programming Exercises 27

PROGRAMMING EXERCISES MyProgramminglab’

T Note

Solutions to even-numbered exercises in this book are on the Companion Website.
Solutions to all exercises are on the Instructor Resource Website. The level of difficulty level of difficulty
is rated easy (no star), moderate (*), hard (**), or challenging (**%).

Section 1.6

1.2

*1.3

1.4

1.5

1.6

1.7

1.8

(Display three different messages) Write a program that displays Welcome to
Python, Welcome to Computer Science, and Programming is fun.

(Display the same message five times) Write a program that displays Welcome to
Python five times.

(Display a pattern) Write a program that displays the following pattern:

FFFFFFF U U NN NN
FF U U NNN NN
FFFFFFF U U NNN NN
FF U U NN N NN
FF uuu NN NNN

(Print a table) Write a program that displays the following table:

a a2 a3
1 1 1
2 4 8
3 9 27
4 16 64

(Compute expressions) Write a program that displays the result of

9.5 X 45 —25X3
455 — 35

(Summation of a series) Write a program that displays the result of 1 + 2 +
3+4+5+6+7+8+09.

(Approximate) 1 can be computed using the following formula:

1 1 1 1 1
T=4X(l-—=+--=+—-——+ ...
35 7 9 11
)) 1 1 1 1 1
Write a program that displays the resultof 4 X { 1 — -+ —- — — + — — —
35 7 9 11

1 1
and4><<1—3+—

1 1
57

1 1
-+ — =
113 15

(Area and perimeter of a circle) Write a program that displays the area and
perimeter of a circle that has a radius of 5.5 using the following formulas:

+

O | —

area = radius X radius X

perimeter = 2 X radius X

28 Chapter | Introduction to Computers, Programs, and Python

1.9

1.10

*1.11

(Area and perimeter of a rectangle) Write a program that displays the area and
perimeter of a rectangle with the width of 4.5 and height of 7.9 using the follow-
ing formula:

area = width X height

(Average speed) Assume a runner runs 14 kilometers in 45 minutes and 30 sec-
onds. Write a program that displays the average speed in miles per hour. (Note that
1 mile is 1.6 kilometers.)

(Population projection) The US Census Bureau projects population based on the
following assumptions:

One birth every 7 seconds
One death every 13 seconds
One new immigrant every 45 seconds

Write a program to display the population for each of the next five years. Assume the
current population is 312032486 and one year has 365 days. Hint: in Python, you
can use integer division operator // to perform division. The result is an integer. For
example, 5 // 4is 1 (not1.25)and 10 // 41is 2 (not 2.5).

Section 1.9

1.12

(Turtle: draw four squares) Write a program that draws four squares in the center
of the screen, as shown in Figure 1.18a.

(a)

(b) (d)

FiGure 1.18 Four squares are drawn in (a), a cross is drawn in (b), a triangle is drawn in (¢), and two triangles are drawn

in (d).

I.13
1.14

I1.15

1.16

1.17

(Turtle: draw a cross) Write a program that draws a cross as shown in Figure 1.18b.

(Turtle: draw a triangle) Write a program that draws a triangle as shown in
Figure 1.18c.

(Turtle: draw two triangles) Write a program that draws two triangles as shown in
Figure 1.18d.

(Turtle: draw four circles) Write a program that draws four circles in the center of
the screen, as shown in Figure 1.19a.

(Turtle: draw a line) Write a program that draws a red line connecting two points
(-39, 48) and (50, -50) and displays the coordinates of the two points, as shown
in Figure 1.19b.

(Turtle: draw a star) Write a program that draws a star, as shown in Figure 1.19c.
(Hint: The inner angle of each point in the star is 36 degrees.)

Programming Exercises 29

_g.é Python Turtle Graphics

(a) (®)

FiGure 1.19 Four circles are drawn in (a), a line is drawn in (b), and a star is drawn in (c).

1.19 (Turtle: draw a polygon) Write a program that draws a polygon that connects the
points (40, -69.28), (-40, -69.28), (-80, -9.8), (-40, 69), (40, 69), and (80,
0) in this order, as shown in Figure 1.20a.

[thon Turtle Graphics

mr—

12

(b) (c)

FIGURE 1.20 (a) The program displays a polygon. (b) The program displays a rectanguloid. (c) The program displays a
clock for the time.

1.20 (Turtle: display a rectanguloid) Write a program that displays a rectanguloid, as
shown in Figure 1.20b.

“1.21 (Turtle: display a clock) Write a program that displays a clock to show the time
9:15:00, as shown in Figure 1.20c.

This page intentionally left blank

CHAPTER

ELEMENTARY
PROGRAMMING

Objectives

To write programs that perform simple computations (§2.2).

To obtain input from a program’s user by using the input function (§2.3).
To use identifiers to name elements such as variables and functions (§2.4).
To assign data to variables (§2.5).

To perform simultaneous assignment (§2.6).

To define named constants (§2.7).

To use the operators +, -, *, /, //, %, and ** (§2.8).

To write and evaluate numeric expressions (§2.9).

To use augmented assignment operators to simplify coding (§2.10).

To perform numeric type conversion and rounding with
the int and round functions (§2.11).

To obtain the current system time by using time.time() (§2.12).

To describe the software development process and apply it to develop
a loan payment program (§2.13).

To compute and display the distance between two points in graphics (§2.14).

32 Chapter 2 Elementary Programming

2.1 Introduction

Key The focus of this chapter is on learning elementary programming techniques to solve
6 Point problems.

In Chapter 1 you learned how to create and run very basic Python programs. Now you will
learn how to solve problems by writing programs. Through these problems, you will learn
fundamental programming techniques, such as the use of variables, operators, expressions,
and input and output.

Suppose, for example, that you need to take out a student loan. Given the loan amount,
loan term, and annual interest rate, can you write a program to compute the monthly payment
and total payment? This chapter shows you how to write programs like this. Along the way,
you learn the basic steps that go into analyzing a problem, designing a solution, and imple-
menting the solution by creating a program.

2.2 Writing a Simple Program

Ke Writing a program involves designing a strategy for solving the problem and then
6 poin)tl using a programming language to implement that strategy.

problem Let’s first consider the simple problem of computing the area of a circle. How do we write a
program for solving this problem?
Writing a program involves designing algorithms and then translating them into program-
ming instructions, or code. When you code—that is, when you write a program—you translate
algorithm an algorithm into a program. An algorithm describes how a problem is solved by listing the
actions that need to be taken and the order of their execution. Algorithms can help the
programmer plan a program before writing it in a programming language. Algorithms can be
pseudocode described in natural languages or in pseudocode (natural language mixed with some program-
ming code). The algorithm for calculating the area of a circle can be described as follows:

1. Get the circle’s radius from the user.
2. Compute the area by applying the following formula:

area = radius X radius X
3. Display the result.

Tip
It's always good practice to outline your program (or its underlying problem) in the form
of an algorithm before you begin coding.

In this problem, the program needs to read the radius, which the program’s user enters
from the keyboard. This raises two important issues:

B Reading the radius.
B Storing the radius in the program.

Let’s address the second issue first. The value for the radius is stored in the computer’s

variable memory. In order to access it, the program needs to use a variable. A variable is a name
that references a value stored in the computer’s memory. Rather than using x and y as
descriptive names variable names, choose descriptive names: in this case, for example, you can use the name

radius for the variable that references a value for radius and area for the variable that
references a value for area.

The first step is to prompt the user to designate the circle’s radius. You will learn how to
prompt the user for information shortly. For now, to learn how variables work, you can assign
a fixed value to radius in the program as you write the code.

2.2 Writing a Simple Program 33

The second step is to compute area by assigning the result of the expression radius *
radius * 3.14159to area.

In the final step, the program will display the value of area on the console by using
Python’s print function.

The complete program is shown in Listing 2.1.

LisTING 2.1 ComputeArea.py

1 # Assign a value to radius

2 radius = 20 # radius 1is now 20 radius —>

3

4 # Compute area

5 area = radius * radius * 3.14159 area —» [1256.636

6

7 # Display results

8 print("The area for the circle of radius", radius, "is", area) display result
The area for the circle of radius 20 is 1256.636 E

Variables such as radius and area reference values stored in memory. Every variable has
a name that refers to a value. You can assign a value to a variable using the syntax as shown assign value
in line 2.

radius = 20

This statement assigns 20 to the variable radius. So now radius references the value
20. The statement in line 5

area = radius * radius * 3.14159

uses the value in radius to compute the expression and assigns the result into the variable

area. The following table shows the value for radius and area as the program is executed.

Each row in the table shows the values of variables after the statement in the corresponding

line in the program is executed. This method of reviewing how a program works is called

tracing a program. Tracing programs are helpful for understanding how programs work, and trace a program
they are useful tools for finding errors in programs.

line# radius area O\

20
5 1256.636

If you have programmed in other languages, such as Java, you know you have to declare a
variable with a data type to specify what type of values are being used, such as integers or text data type
characters. You don’t do this in Python, however, because Python automatically figures out
the data type according to the value assigned to the variable.
The statement in line 8 displays four items on the console. You can display any number of
items in a print statement using the following syntax:

print(iteml, item2, ..., itemk) print(iteml, ...)

34 Chapter 2 Elementary Programming

ﬁheck
Point

MyProgramminglLab’

eval function

input radius

compute area

display result

K
Gﬁoi?;

2
2

If an item is a number, the number is automatically converted to a string for displaying.

2.1 Show the printout of the following code:
width = 5.5
height = 2
print("area is", width * height)

2.2 Translate the following algorithm into Python code:
m Step 1: Use a variable named mi1es with initial value 100.
B Step 2: Multiply miles by 1.609 and assign it to a variable named kilometers.
m Step 3: Display the value of kilometers.
What is kiTlometers after Step 3?

2.3 Reading Input from the Console

Reading input from the console enables the program to accept input from the user.

In Listing 2.1, a radius is set in the source code. To use a different radius, you have to modify
the source code. You can use the input function to ask the user to input a value for the radius.
The following statement prompts the user to enter a value, and then it assigns the value to the
variable:

variable = input("Enter a value: ")

The value entered is a string. You can use the function eval to evaluate and convert it to a
numeric value. For example, eval ("'34.5") returns 34.5, eval("345") returns 345,
eval ("3 + 4") returns 7, and eval (51 + (54 * (3 + 2))'") returns 321.

Listing 2.2 rewrites Listing 2.1 to prompt the user to enter a radius.

LisTING 2.2 ComputeAreaWithConsolelInput.py

Prompt the user to enter a radius
radius = eval(input("Enter a value for radius: "))

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius", radius,

CONOYUVIhA WN R

is", area)

Enter a value for radius: 2.5

The area for the circle of radius 2.5 is 19.6349375

Enter a value for radius: 23 |uEnter
The area for the circle of radius 23 is 1661.90111

Line 2 prompts the user to enter a value (in the form of a string) and converts it to a num-
ber, which is equivalent to

s = input("Enter a value for radius: ") # Read input as a string
radius = eval(s) # Convert the string to a number

After the user enters a number and presses the Enter key, the number is read and assigned
to radius.

2.3 Reading Input from the Console 35

Listing 2.2 shows how to prompt the user for a single input. However, you can prompt for

multiple inputs as well. Listing 2.3 gives an example of reading multiple inputs from the key-
board. This program reads three integers and displays their average.

LisTING 2.3 ComputeAverage.py

1 # Prompt the user to enter three numbers

2 numberl = eval(input("Enter the first number: "))
3 number2 = eval(input("Enter the second number: "))
4 number3 = eval(input("Enter the third number: "))
5

6 # Compute average

7 average = (numberl + number2 + number3) / 3

8

9 # Display result
10 print("The average of", numberl, number2, number3,
11 "is", average)

Enter the first number: 1 [Sener|
Enter the second number: 2 [Semer
Enter the third number: 3 [Semer|
The average of 1 2 3 is 2.0

The program prompts the user to enter three integers (lines 2—4), computes their average
(line 7), and displays the result (lines 10—11).

If the user enters something other than a number, the program will terminate with a runtime
error. In Chapter 13, you will learn how to handle the error so that the program can continue to run.

Normally a statement ends at the end of the line. In the preceding listing, the print state-
ment is split into two lines (lines 10-11). This is okay, because Python scans the print state-
ment in line 10 and knows it is not finished until it finds the closing parenthesis in line 11. We
say that these two lines are joined implicitly.

r Note

In some cases, the Python interpreter cannot determine the end of the statement
written in multiple lines. You can place the line continuation symbol (\) at the end
of a line to tell the interpreter that the statement is continued on the next line. For
example, the following statement

sum = 1 +3+4+\
5

+ 2
+ 6
is equivalent to

sum=1+2+3 +4+5+6

r Note

Most of the programs in early chapters of this book perform three steps: Input, Process,
and Output, called /PO. Input is to receive input from the user. Process is to produce
results using the input. Output is to display the results.

2.3 How do you write a statement to prompt the user to enter a numeric value?

2.4 What happens if the user enters 5a when executing the following code?
radius = eval(input("Enter a radius: "))

2.5 How do you break a long statement into multiple lines?

input numberl
input number?2
input number3

2

runtime error

joining lines explicitly

line continuation symbol

split a long statement

IPO

ﬁheck
Point

MyProgramminglLab’

36 Chapter 2 Elementary Programming

2.4 ldentifiers

fKey Identifiers are the names that identify the elements such as variables and functions in a
6 Point program.

As you can see in Listing 2.3, number1, number2, number3, average, input, eval, and
identifiers print are the names of things that appear in the program. In programming terminology, such
names are called identifiers. All identifiers must obey the following rules:

identifier naming rules B An identifier is a sequence of characters that consists of letters, digits, and
underscores ().

B An identifier must start with a letter or an underscore. It cannot start with a digit.

B An identifier cannot be a keyword. (See Appendix A, Python Keywords, for a list of
keyword keywords.) Keywords, also called reserved words, have special meanings in Python.
reserved word For example, import is a keyword, which tells the Python interpreter to import a

module to the program.

B An identifier can be of any length.

For example, area, radius, and numberl are legal identifiers, whereas 2A and d+4 are
not because they do not follow the rules. When Python detects an illegal identifier, it reports a
syntax error and terminates the program.

Note
case sensitive Because Python is case sensitive, area, Area, and AREA are all different identifiers.
AT Tip
descriptive names Descriptive identifiers make programs easy to read. Avoid using abbreviations for identi-

fiers. Using complete words is more descriptive. For example, numberOfStudents is
better than numStuds, numOfStuds, or numOfStudents. We use descriptive
names for complete programs in the text. However, we will occasionally use variables
names such as 1, j, k, x, and y in the code snippets for brevity. These names also
provide a generic tone to the code snippets.

-~

variable naming convention Use lowercase letters for variable names, as in radius and area. If a name consists of
several words, concatenate them into one, making the first word lowercase and capital-
izing the first letter of each subsequent word—for example, numberOfStudents.

camelCase This naming style is known as the camelCase because the uppercase characters in the
name resemble a camel’s humps.

Cﬁeck 2.6 Which of the following identifiers are valid? Which are Python keywords (see
Point Appendix A)?

MyProgrammingLab” miles, Test, a+b, b-a, 4#R, $4, #44, apps
if, elif, x, y, radius

2.5 Variables, Assignment Statements, and Expressions

6 fKey Variables are used to reference values that may be changed in the program.

Point A you can see from the programs in the preceding sections, variables are the names that refer-

why called variables? ence values stored in memory. They are called “variables” because they may reference different
values. For example, in the following code, radius is initially 1.0 (line 2) and then changed to
2.0 (line 7), and area is set to 3.14159 (line 3) and then reset to 12.56636 (line 8).

2.5 Variables, Assignment Statements, and Expressions 37

1 # Compute the first area

2 radius = 1.0 radius —» [1.0 u

3 area = radius * radius * 3.14159 area —>» [3.14159 VideoNote

4 print("The area is", area, "for radius", radius) Assignment statement
5

6 # Compute the second area

7 radius = 2.0 radius —» |2.0

8 area = radius * radius * 3.14159 area —» [12.56636

9

print("The area is", area, "for radius", radius)

The statement for assigning a value to a variable is called an assignment statement. In assignment statement
Python, the equal sign (=) is used as the assignment operator. The syntax for assignment state- assignment operator
ments is as follows:

variable = expression

An expression represents a computation involving values, variables, and operators that, expression
taken together, evaluate to a value. For example, consider the following code:

y =1 # Assign 1 to variable y

radius = 1.0 # Assign 1.0 to variable radius
Xx=5%*3/2)+3 %2 # Assign the value of the expression to x
XxX=y+1 # Assign the addition of y and 1 to x
area = radius * radius * 3.14159 # Compute area

You can use a variable in an expression. A variable can also be used in both sides of the =
operator. For example,

X =x+ 1

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the state-
ment is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assign-
ment operator. Thus, the following statement is wrong:

1 =x # Wrong

t— Note

In mathematics, x = 2 * x + 1 denotes an equation. However, in Python, x = 2 *
x + 1isan assignment statement that evaluates the expression 2 * x + 1 and assigns
the result to x.

If a value is assigned to multiple variables, you can use a syntax like this:

which is equivalent to

k=1
j =
i=73

Every variable has a scope. The scope of a variable is the part of the program where the scope of a variable
variable can be referenced. The rules that define the scope of a variable will be introduced
gradually later in the book. For now, all you need to know is that a variable must be created
before it can be used. For example, the following code is wrong:

38 Chapter 2 Elementary Programming

>>> count = count + 1

NameError: count is not defined
>>>

count 1is not defined yet.

To fix it, you may write the code like this:

E >>> count
>>> count

>>>

1 # count is not created
count + 1 # Now increment count

T Caution

A variable must be assigned a value before it can be used in an expression. For example,

interestRate = 0.05
interest = interestrate * 45

This code is wrong, because interestRate is assigned a value 0.05, but
interestrate is not defined. Python is case-sensitive. interestRate and
interestrate are two different variables.

2.6 Simultaneous Assignments

simultaneous assignment Python also supports simultaneous assignment in syntax like this:

varl, var2, ..., varn = expl, exp2, ., expn

It tells Python to evaluate all the expressions on the right and assign them to the corre-
sponding variable on the left simultaneously. Swapping variable values is a common opera-
tion in programming and simultaneous assignment is very useful to perform this operation.
Consider two variables: x and y. How do you write the code to swap their values? A common
approach is to introduce a temporary variable as follows:

>>> X = 1
E >>>y = 2
>>> temp = x # Save x in a temp variable

>>> X = Yy # Assign the value in y to x
>>> y = temp # Assign the value in temp to y

But you can simplify the task using the following statement to swap the values of x and y.

E >>> X, Y=Y, X # Swap x with y

Simultaneous assignment can also be used to obtain multiple input in one statement.
Listing 2.3 gives an example that prompts the user to enter three numbers and obtains their
average. This program can be simplified using a simultaneous assignment statement, as
shown in Listing 2.4.

2.7 Named Constants 39

LiIsTING 2.4 ComputeAverageWithSimultaneousAssignment.py

1 # Prompt the user to enter three numbers

2 numberl, number2, number3 = eval(input(

3 "Enter three numbers separated by commas: "))
4

5 # Compute average

6 average = (numberl + number2 + number3) / 3

7

8 # Display result

9 print("The average of", numberl, number2, number3
10 "is", average)

Enter three numbers separated by commas: 1, 2, 3
The average of 1 2 3 is 2.0

2.7 What is the naming convention for variables?
2.8 What is wrong in the following statement?
2 =a
2.9 Whatis x, y, and z after the following statement?
X=y=2z=20
2.10 Assumethata = landb = 2. Whatis a and b after the following statement?

a, b=>b, a

2.7 Named Constants

A named constant is an identifier that represents a permanent value.

The value of a variable may change during the execution of a program, but a named constant
(or simply constant) represents permanent data that never changes. In our ComputeArea
program, 7 is a constant. If you use it frequently, you don’t want to keep typing 3.14159;
instead, you can use a descriptive name PI for the value. Python does not have a special
syntax for naming constants. You can simply create a variable to denote a constant. However,
to distinguish a constant from a variable, use all uppercase letters to name a constant. For
example, you can rewrite Listing 2.1 to use a named constant for 7, as follows:

Assign a radius
radius = 20 # radius is now 20

Compute area
PI = 3.14159
area = radius * radius * PI

Display results
print("The area for the circle of radius",

radius, "is", area)

There are three benefits of using constants:
1. You don’t have to repeatedly type the same value if it is used multiple times.

2. If you have to change the constant’s value (e.g., from 3.14 to 3.14159 for PI), you
need to change it only in a single location in the source code.

3. Descriptive names make the program easy to read.

input numbers

E enter input in one line

ﬁheck
Point

MyProgramminglLab’

K
Gﬁoifl{

constant naming convention

benefits of constants

40 Chapter 2 Elementary Programming

K
¢fxe

floating-point numbers
integer
int

float

VideoNote
Perform computation

literal

operands
operators +, -, *, /, //, *¥*,%

unary operator
binary operator

/ operator

// operator

2

2.8 Numeric Data Types and Operators

Python has two numeric types—integers and floating-point numbers—yfor working
with the operators +, -, *, /, //, *%, and %.

The information stored in a computer is generally referred to as data. There are two types
of numeric data: integers and real numbers. Integer types (int for short) are for represent-
ing whole numbers. Real types are for representing numbers with a fractional part. Inside
the computer, these two types of data are stored differently. Real numbers are represented
as floating-point (or float) values. How do we tell Python whether a number is an integer
or a float? A number that has a decimal point is a float even if its fractional part is 0. For
example, 1.0 is a float, but 1 is an integer. These two numbers are stored differently in the
computer. In the programming terminology, numbers such as 1.0 and 1 are called literals. A
literal is a constant value that appears directly in a program.

The operators for numeric data types include the standard arithmetic operators, as shown
in Table 2.1. The operands are the values operated by an operator.

TasLE 2.1 Numeric Operators

Name Meaning Example Result
+ Addition 34 + 1 35
- Subtraction 34.0 - 0.1 33.9
Multiplication 300 * 30 9000
/ Float Division 1/2 0.5
// Integer Division 1// 2 0
Exponentiation 4 *% 0.5 2.0
% Remainder 20 % 3 2
The +, -, and * operators are straightforward, but note that the + and - operators can be

both unary and binary. A unary operator has only one operand; a binary operator has two. For
example, the - operator in -5 is a unary operator to negate the number 5, whereas the - oper-
atorin 4 - 5 is a binary operator for subtracting 5 from 4.

2.8.1 The/, //,and ** Operators

The / operator performs a float division that results in a floating number. For example,

>> 4 /2
2.0
>> 2 / 4
0.5

>>>

The // operator performs an integer division; the result is an integer, and any fractional
part is truncated. For example,

>> 5 // 2
2

>> 2 // 4
0

>>>

2.8 Numeric Data Types and Operators 41

To compute a” (a with an exponent of b) for any numbers a and b, you can write a ** b ** exponent operator
in Python. For example,

>>> 2.3 ** 3.5

18.45216910555504 g
>>> (=2.5) ** 2
6.25

>>>

2.8.2 The % Operator

The % operator, known as remainder or modulo operator, yields the remainder after division. % operator
The left-side operand is the dividend and the right-side operand is the divisor. Therefore, 7 %
3yields 1,3 % 7 yields 3,12 % 4yields 0,26 % 8 yields 2, and 20 % 13 yields 7.

1 <—— Quotient

/ 7/ 3 / / 26 Divisor —— 13/ 20 <—— Dividend

13
3 0 2 7 <—— Remainder

The remainder operator is very useful in programming. For example, an even number % 2
is always 0 and an odd number % 2 is always 1. Thus, you can use this property to determine
whether a number is even or odd. If today is Saturday, it will be Saturday again in 7 days. Sup-
pose you and your friends are going to meet in 10 days. What day is in 10 days? You can find
that the day is Tuesday using the following expression:

Day 6 in a week is Saturday
l A week has 7 days

(6 + 10) % 7 is 2

T RN Day 2 in a week is Tuesday

Note: Day 0 in a week is Sunday
After 10 days

Listing 2.5 shows a program that obtains minutes and remaining seconds from an amount
of time in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

LISTING 2.5 DisplayTime.py

Prompt the user for input
seconds = eval(input("Enter an integer for seconds: ")) input seconds

minutes = seconds // 60 # Find minutes in seconds getminutes
remainingSeconds = seconds % 60 # Seconds remaining get remainingSeconds
print(seconds, "seconds is', minutes,

1

2

3

4 # Get minutes and remaining seconds

5

6

7

8 "minutes and", remainingSeconds, "seconds")

Enter an integer for seconds: 500 lqsnter E

500 seconds is 8 minutes and 20 seconds

42 Chapter 2 Elementary Programming

O

scientific notation

why called floating point?

what is overflow?

2

what is underflow?

ﬁheck
Point

MyProgramminglab’

line# seconds minutes remainingSeconds
2 500
5 8
6 20

Line 2 reads an integer for seconds. Line 5 obtains the minutes using seconds // 60. Line
6 (seconds % 60) obtains the remaining seconds after taking away the minutes.

2.8.3 Scientific Notation

Floating-point values can be written in scientific notation in the form of a X 10°. For example,
the scientific notation for 123.456 is 1.23456 X 107 and for 0.0123456 is 1.23456 X 1072,
Python uses a special syntax to write scientific notation numbers. For example, 1.23456 X 10?
is written as 1.23456E2 or 1.23456E+2, and 1.23456 X 10 2 as 1.23456E-2. The letter E
(or e) represents an exponent and can be in either lowercase or uppercase.

t— Note

The float type is used to represent numbers with a decimal point. Why are they called
floating-point numbers? These numbers are stored in scientific notation in memory.
When a number such as 50.534 is converted into scientific notation, such as
5.0534E+1, its decimal point is moved (floated) to a new position.

t— Caution

When a variable is assigned a value that is too large (in size) to be stored in memory, it
causes overflow. For example, executing the following statement causes overflow.

>>> 245.0 ** 1000
OverflowError: 'Result too large'
>>>

When a floating-point number is too small (that is, too close to zero), it causes
underflow and Python approximates it to zero. Therefore, usually you don’t need to be
concerned with underflow.

2.11 What are the results of the following expressions?

Expression Result
42 / 5

42 // 5

42 % 5

40 % 5

1% 2

2% 1

45 + 4 * 4 - 2

45 + 43 % 5 * (23 * 3 % 2)
5 %% 2

5.1 %% 2

2.9 Evaluating Expressions and Operator Precedence 43

2.12 If today is Tuesday, what day of the week will it be in 100 days?

2.13 What is the result of 25 / 4? How would you rewrite the expression if you wished
the result to be an integer number?

2.9 Evaluating Expressions and Operator Precedence
Python expressions are evaluated in the same way as arithmetic expressions. 6 fKey

Writing a numeric expression in Python involves a straightforward translation of an arith- Point

metic expression using operators. For example, the arithmetic expression

+ 4 10y — 5)(a + b + +
3 x (v)a c) N 9<4 N 9 x>
5 X X y

can be translated into a Python expression as:

B+4*x)/5-10* (-5 *@+b+a/x+
9% 4/ x+ O+x)/y)

Though Python has its own way to evaluate an expression behind the scene, the results of ~ evaluate an expression
a Python expression and its corresponding arithmetic expression are the same. Therefore,
you can safely apply the arithmetic rules for evaluating a Python expression. Operators con-
tained within pairs of parentheses are evaluated first. Parentheses can be nested, in which
case the expression in the inner parentheses is evaluated first. When more than one operator
is used in an expression, the following operator precedence rule is used to determine the operator precedence rule
order of evaluation.

m Exponentiation (**) is applied first.

B Multiplication (*), float division (/), integer division (//) , and remainder operators
(%) are applied next. If an expression contains several multiplication, division, and
remainder operators, they are applied from left to right.

B Addition (+) and subtraction (-) operators are applied last. If an expression
contains several addition and subtraction operators, they are applied from left
to right.

Here is an example of how an expression is evaluated:

3+4 %4 4+5* (4+3)-1

(1) inside parentheses first

3+4 %44+ 5%7 -1
(2) multiplication

3 +16+5*7 -1

(i

3+ 16 + 35 -1

(3) multiplication

(4) addition
19 + 35 - 1

(5) addition
54 - 1

* (6) subtraction

53

44 Chapter 2 Elementary Programming

ﬁheck
Point

MyProgramminglLab’

K
Gﬁoi?tl

augmented assignment
compound assignment

addition assignment operator

ﬁheck
Point

MyProgramminglLab’

2.14 How would you write the following arithmetic expression in Python?

SN B)
30+ 34 J@tbo a+ bd

2.15 Suppose m and r are integers. Write a Python expression for mr?,

2.10 Augmented Assignment Operators

The operators +, -, %, /, //, %, and *% can be combined with the assignment operator
(=) to form augmented assignment operators.

Very often the current value of a variable is used, modified, and then reassigned back
to the same variable. For example, the following statement increases the variable count
by 1:

count = count + 1

Python allows you to combine assignment and addition operators using an augmented
(or compound) assignment operator. For instance, the preceding statement can be written
as:

count += 1

The += operator is called the addition assignment operator. All augmented assignment
operators are shown in Table 2.2.

TABLE 2.2 Augmented Assignment Operators

Operator Name Example Equivalent

+= Addition assignment i+= 8 i=14+ 8
-= Subtraction assignment i-=38 i=1-38
= Multiplication assignment i *= 8 i=1 %8
/= Float division assignment i/=8 i=1i/38
//= Integer division assignment i//=38 i=1//8
%= Remainder assignment i %= 8 i=1%38
wE= Exponent assignment i ¥¥=8 i=1 %8

Caution

There are no spaces in the augmented assignment operators. For example, + = should be +=.

2.16 Assumethata = 1, and that each expression is independent. What are the results of
the following expressions?

a += 4
a-=4
a *= 4
a /=4
a//=4
a %= 4
a=56*a+6

2.1l Type Conversions and Rounding 45

2.11 Type Conversions and Rounding

If one of the operands for the numeric operators is a float value, the result will be a fKey
float value. 6 Point
Can you perform binary operations with two operands of different types? Yes. If an integer
and a float are involved in a binary operation, Python automatically converts the integer to a
float value. This is called type conversion. So, 3 % 4.5 isthe sameas 3.0 * 4.5. type conversion
Sometimes, it is desirable to obtain the integer part of a fractional number. You can use the
int(value) function to return the integer part of a float value. For example, int function
>>> value = 5.6
>>> int(value) g
5
>>>

Note that the fractional part of the number is truncated, not rounded up.
You can also use the round function to round a number to the nearest whole value. For round function
example,

>>> value = 5.6 E
>>> round(value)

6
>>>

We will discuss the round function more in Chapter 3.

t— Note

The functions int and round do not change the variable being converted. For exam-
ple, value is not changed after invoking the function in the following code:

>>> value = 5.6
>>> round(value)
>>> value

5.6
>>>

T Note

The int function can also be used to convert an integer string into an integer. For

example, int("'34") returns 34. So you can use the eval or int function to

convert a string into an integer. Which one is better? The int function performs a sim-

ple conversion. It does not work for a non-integer string. For example, int("'3.4")

will cause an error. The eval function does more than a simple conversion. It can be int vs. eval functions
used to evaluate an expression. For example, eval ("3 + 4") returns 7. However,

there is a subtle “gotcha” for using the eval function. The eval function will pro-

duce an error for a numeric string that contains leading zeros. In contrast, the int

function works fine for this case. For example, eva’l (""003") causes an error, but

int("003"™) returns 3.

46 Chapter 2 Elementary Programming
Listing 2.6 shows a program that displays the sales tax with two digits after the decimal point.

LISTING 2.6 SalesTax.py

Prompt the user for input

input purchaseAmount purchaseAmount = eval(input("Enter purchase amount: "))

compute tax tax = purchaseAmount * 0.06

1

2

3

4 # Compute sales tax

5

6

7 # Display tax amount with two digits after decimal point
8

format print("Sales tax is" int(tax * 100) / 100.0)
E Enter purchase amount: 197.55 I‘JEnter
Sales tax is 11.85
O\ line# purchaseAmount tax output

2 197.55

5 11.853

8 11.85

The value of the variable purchaseAmount is 197 .55 (line 2). The sales tax is 6% of the
format numbers purchase, so the tax is evaluated as 11.853 (line 5). Note that

tax * 100 is 1185.3
int(tax * 100) is 1185
int(tax * 100) / 100.0 is 11.85

So, the statement in line § displays the tax 11.85 with two digits after the decimal point.

ﬁheck 2.17 What does a conversion from a float to an integer do with the fractional part of the
Point float value? Does the int(value) function change the variable value?

MyProgramminglLab’ 2.18 Are the following statements correct? If so, show their printout.
value = 4.6
print(int(value))
print(round(value))
print(eval ("4 * 5 + 2"))
print(int("04"))
print(int("4.5"))
print(eval('04"))

2.12 Case Study: Displaying the Current Time

6 fKey You can use the time () function in the time module to obtain the current system time.

Point e problem is to develop a program that displays the current time in Greenwich Mean Time

(GMT) in the format hour:minute:second, such as 13:19:18.
The time() function in the time module returns the current time in seconds with
millisecond precision elapsed since the time 00:00:00 on January 1, 1970 GMT, as shown
UNIX epoch in Figure 2.1. This time is known as the UNIX epoch. The epoch is the point when time
starts. 1970 was the year when the UNIX operating system was formally introduced. For

2.12 Case Study: Displaying the Current Time

Elapsed >
~— ¢
------- e Time
UNIX epoch Current Time
01-01-1970 time.time ()
00:00:00 GMT

FIGURe 2.1 The time.time() function returns the seconds with millisecond precision
since the UNIX epoch.

example, time.time() returns 1285543663 .205, which means 1285543663 seconds and
205 milliseconds.

You can use this function to obtain the current time, and then compute the current second,
minute, and hour as follows.

1.

Obtain the current time (since midnight, January 1, 1970) by invoking time.time()
(for example, 1203183068.328).

. Obtain the total seconds totalSeconds using the int function (int(1203183068.328)

= 1203183068).

. Compute the current second from totalSeconds % 60 (1203183068 seconds %

60 = 8, which is the current second).

Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (1203183068
seconds // 60 = 20053051 minutes).

Compute the current minute from totalMinutes % 60 (20053051 minutes % 60 = 31,
which is the current minute).

. Obtain the total hours totalHours by dividing totalMinutes by 60 (20053051

minutes // 60 = 334217 hours).

Compute the current hour from totalHours % 24 (334217 hours % 24 = 17, which
is the current hour).

Listing 2.7 gives the complete program.

LISTING 2.7 ShowCurrentTime.py

import time
currentTime = time.time() # Cet current time

Obtain the total seconds since midnight, Jan 1, 1970
totalSeconds = int(currentTime)

Get the current second
currentSecond = totalSeconds % 60

Obtain the total minutes
totalMinutes = totalSeconds // 60

Compute the current minute in the hour
currentMinute = totalMinutes % 60

Obtain the total hours
totalHours = totalMinutes // 60

Compute the current hour
currentHour = totalHours % 24

time.time()

import time module

currentTime

totalSeconds

currentSecond

totalMinutes

currentMinute

totalHours

currentHour

47

48 Chapter 2 Elementary Programming

display output

2

22
23 # Display results
24 print("Current time 1is", currentHour,

25 currentMinute, ":", currentSecond, "GMT')

Current time is 17:31:8 GMT

O line# 3 6 9 12 15 18 21

variables

currentTime

totalSeconds

currentSecond

totalMinutes

currentMinute

totalHours

currentHour

1203183068.328

1203183068

20053051

31

334217

17

ﬁheck
Point

MyProgramminglLab’

K
foxe

requirements specification

Line 3 invokes time.time() to return the current time in seconds as a float value with
millisecond precision. The seconds, minutes, and hours are extracted from the current time using
the // and % operators (lines 6-21).

In the sample run, a single digit 8 is displayed for the second. The desirable output would
be 08. This can be fixed by using a function that formats a single digit with a prefix 0 (see
Exercise 6.48).

2.19 What is the UNIX epoch?
2.20 Whatdoes time.time() return?

2.21 How do you obtain the seconds from the returned value for time. time()?

2.13 Software Development Process

The software development life cycle is a multistage process that includes requirements
specification, analysis, design, implementation, testing, deployment, and maintenance.

Developing a software product is an engineering process. Software products, no matter
how large or how small, have the same life cycle: requirements specification, system
analysis, system design, implementation, testing, deployment, and maintenance, as shown
in Figure 2.2.

Requirements specification is a formal process that seeks to understand the problem that
the software will address and to document in detail what the software system needs to do.
This phase involves close interaction between users and developers. Most of the examples in

2.13 Software Development Process 49

Requirements
Specification
7 S H Input, Process, Output

LA System Analysis PO

-—- Testing _l

L Deployment

I .
v ——- Maintenance |

FIGURE 2.2 At any stage of the software development life cycle, it may be necessary to go
back to a previous stage to correct errors or deal with other issues that might prevent the
software from functioning as expected.

this book are simple, and their requirements are clearly stated. In the real world, however,
problems are not always well defined. Developers need to work closely with their customers
(the individuals or organizations that will use the software) and study the problem carefully to
identify what the software needs to do.
System analysis seeks to analyze the data flow and to identify the system’s input and output. system analysis
When you do analysis, it helps to identify what the output is first, and then figure out what
input data you need in order to produce the output.
System design is to design a process for obtaining the output from the input. This phase system design
involves the use of many levels of abstraction to decompose the problem into manageable
components, and design strategies for implementing each component. You can view a compo-
nent as a subsystem that performs a specific function of the system. The essence of system
analysis and design is input, process, and output (IPO). IPO
Implementation involves translating the system design into programs. Separate programs implementation
are written for each component and then integrated to work together. This phase requires the
use of a programming language such as Python. The implementation involves coding, self
testing, and debugging (that is, finding errors, called bugs, in the code).
Testing ensures that the code meets the requirements specification and weeds out bugs. An testing
independent team of software engineers not involved in the design and implementation of the
product usually conducts such testing.
Deployment makes the software available for use. Depending on the type of the soft- deployment
ware, it may be installed on each user’s machine or installed on a server accessible on the
Internet.
Maintenance is concerned with updating and improving the product. A software product maintenance
must continue to perform and improve in an ever-evolving environment. This requires periodic
upgrades of the product to fix newly discovered bugs and incorporate changes.
To see the software development process in action, we will now create a program that
computes loan payments. The loan can be a car loan, a student loan, or a home mortgage loan.
For an introductory programming course, we focus on requirements specification, analysis,
design, implementation, and testing.

50 Chapter 2

Elementary Programming

Stage 1: Requirements Specification

The program must satisfy the following requirements:

H It must let the user enter the interest rate, the loan amount, and the number of years
for which payments will be made.

B It must compute and display the monthly payment and total payment amounts.

Stage 2: System Analysis

The output is the monthly payment and total payment, which can be obtained using the fol-
lowing formula:

monthlyPayment =

loanAmount X monthlylnterestRate
B 1
(1 + monthlylnterestRate

1)numberOerars X12

totalPayment = monthlyPayment X numberOfYears X 12

So, the input needed for the program is the annual interest rate, the length of the loan in years,
and the loan amount.

v

Note

The requirements specification says that the user must enter the interest rate, the loan
amount, and the number of years for which payments will be made. During analysis,
however, it is possible that you may discover that input is not sufficient or that some
values are unnecessary for the output. If this happens, you can go back to modify the
requirements specification.

Note

In the real world, you will work with customers from all walks of life. You may develop
software for chemists, physicists, engineers, economists, and psychologists and of
course, you will not have (or need) the complete knowledge of all these fields. There-
fore, you don't have to know how the mathematical formulas are derived. Nonetheless,
given the annual interest rate, number of years, and loan amount, you can use this for-
mula to compute the monthly payment. You will, however, need to communicate with
the customers and understand how the mathematic model works for the system.

Stage 3: System Design

During system design, you identify the steps in the program:

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Prompt the user to enter the annual interest rate, number of years, and loan amount.

The input for the annual interest rate is a number in percent format, such as 4.5%.
The program needs to convert it into a decimal by dividing it by 100. To obtain the
monthly interest rate from the annual interest rate, divide it by 12, since a year has
12 months. So to obtain the monthly interest rate in decimal format, you need to
divide the annual interest rate in percentage by 1200. For example, if the annual
interest rate is 4.5%, then the monthly interest rate is 4.5/1200 = 0.00375.

Compute the monthly payment using the formula given in Stage 2.

Compute the total payment, which is the monthly payment multiplied by 12 and
multiplied by the number of years.

Display the monthly payment and total payment.

2.13 Software Development Process 51

Stage 4: Implementation

Implementation is also known as coding (writing the code). In the formula, you have to com-
pute (1 + monthlylnterestRate)™"*¢"%/¥¢@sX12 You can use the exponentiation operator to
write it as

(1 + monthlyInterestRate) ** (numberOfYears * 12)

Listing 2.8 gives the complete program.

LisTING 2.8 ComputelLoan.py

1 # Enter annual interest rate as a percentage, e.g., 7.25

2 annualInterestRate = eval(input(enter interest rate
3 "Enter annual interest rate, e.g., 7.25: "))

4 monthlyInterestRate = annualInterestRate / 1200 obtain monthly interest rate
5

6 # Enter number of years

7 numberOfYears = eval(input(enter years

8 "Enter number of years as an integer, e.g., 5: "))

9

10 # Enter loan amount

11 ToanAmount = eval(input("Enter Toan amount, e.g., 120000.95: ")) enter loan amount
12

13 # Calculate payment

14 monthlyPayment = ToanAmount * monthlyInterestRate / (1 monthlyPayment
15 -1/ (1 + monthlyInterestRate) ** (numberOfYears * 12))

16 totalPayment = monthlyPayment * numberOfYears * 12 totalPayment
17

18 # Display results

19 print("The monthly payment 1is", int(monthlyPayment * 100) / 100) display result

20 print("The total payment 1is", int(totalPayment * 100) /100)

Enter annual interest rate, e.g., 7.25: 5.75 g

Enter number of years as an integer, e.g., 5: 15 W
Enter loan amount, e.g., 120000.95: 250000 W

The monthly payment is 2076.02

The total payment is 373684.53

line# 2 4 7 11 14 16 ()\\

variables

annualInterestRate 5.75

monthlyInterestRate 0.0047916666666

numberOfYears 15

ToanAmount 250000

monthlyPayment 2076.0252175

totalPayment 373684.539

52 Chapter 2 Elementary Programming

format numbers

incremental development and

testing

enter x1, yl

enter X2, y2

compute distance

K
fxe

2

Line 2 reads the annual interest rate, which is converted into the monthly interest rate in
line 4.

The formula for computing the monthly payment is translated into Python code in lines
14-15.

The variable monthTlyPayment is 2076.0252175 (line 14). Note that

int(monthlyPayment * 100) is 207602.52175
int(monthlyPayment * 100) / 100.0 is 2076.02

So, the statement in line 19 displays the tax 2076.02 with two digits after the decimal
point.

Stage 5: Testing

After the program is implemented, test it with some sample input data and verify whether the
output is correct. Some of the problems may involve many cases as you will see in later chap-
ters. For this type of problems, you need to design test data that cover all cases.

AAZT Tip
The system design phase in this example identified several steps. It is a good approach

to develop and test these steps incrementally by adding them one at a time. This
process makes it much easier to pinpoint problems and debug the program.

2.14 Case Study: Computing Distances

This section presents two programs that compute and display the distance between two
points.

Given two points, the formula for computing the distance is \/(x2 —x1)%+ (5 — >

Youcanuse a ** 0.5 tocompute Va. The program in Listing 2.9 prompts the user to enter
two points and computes the distance between them.

LIsTING 2.9 ComputeDistance.py

1 # Enter the first point with two float values

2 x1, yl = eval(input("Enter x1 and yl for Point 1: "))

3

4 # Enter the second point with two float values

5 x2, y2 = eval(input("Enter x2 and y2 for Point 2: "))

6

7 # Compute the distance

8 distance = ((x1 - x2) * (x1 - x2) + (yl - y2) * (yl - y2)) ** 0.5
9
10 print("The distance between the two points is", distance)

Enter x1 and yl for Point 1: 1.5, -3.4
Enter x2 and y2 for Point 2: 4, 5 |~Enter
The distance between the two points is 8.764131445842194

The program prompts the user to enter the coordinates of the first point (line 2) and the
second point (line 5). It then computes the distance between them (line 8) and displays it
(line 10).

| %4 Python Turtlc Graphics

2.14 Case Study: Computing Distances 53

148 66068747318505

Point 2

FIGURE 2.3 The program displays a line and its length.

Puinl 1

//

156.45218719101972

Figure 2.3 illustrates the program in Listing 2.10. This program

1. Prompts the user to enter two points.

2. Computes the distance between the points.

3. Uses Turtle graphics to display the line that connects the two points.

4. Displays the length of the line at the center of the line.

Listing 2.10 gives the program.

LisTING 2.10 ComputeDistanceGraphics.py

import turtle

Prompt the user for inputting two points
x1l, yl = eval(input("Enter x1 and yl for point 1: "))
eval (input("Enter x2 and y2 for point 2: "))

X2, y2

distance = ((x1 - x2) ** 2 4+ (yl - y2) ** 2) ** 0.5

Display two points and the connecting line

1
2
3
4
5
6
7 # Compute the distance
8
9
10
11

turtle.penup()
12 turtle.goto(x1l, yl) # Move to (x1, yl)
13 turtle.pendown()
14 turtle.write("Point 1)

15 turtle.goto(x2, y2) # Draw a line to (x2, y2)

16 turtle.write("Point 2")

18 # Move to the center point of the line
19 turtle.penup()

20 turtle.goto((x1 + x2) / 2, (yl + y2) / 2)

21 turtle.write(distance)

23 turtle.done()

import turtle

enter x1, yl
enter X2, y2

compute distance

move to point 1
display point 1

draw a line
display point 2

move to center
display distance

pause

Enter x1 and yl for Point 1: -50, 34 |~Enter
Enter x2 and y2 for Point 2: 49, -85

2

The program prompts the user to enter the value for two points (x1, y1) and (x2, y2),
and computes their distance (lines 4-8). It then moves to (x1, y1) (line 12), displays the

54 Chapter 2

Elementary Programming

text Point 1 (line 14), draws a line from (x1, y1) to (x2, y2) (line 15), and displays the
text Point 2 (line 16). Finally, it moves to the center of the line (line 20) and displays the

distance (line 21).

KEy TERMS

algorithm 32

assignment operator (=) 37
augmented assignment 44
camelCase 36

compound assignment 44
data type 33

expression 37

floating-point numbers 40
identifiers 36

incremental development and testing 52
input, process, output (IPO) 35
keyword 36

CHAPTER SUMMARY

line continuation symbol 35
literal 40

operands 40

operators 40

pseudocode 32

reserved word 36

scope of a variable 37
simultaneous assignment 38
system analysis 49
system design 49

type conversion 45
variable 32

. Python provides augmented assignment operators:

You can get input using the input function and convert a string into a numerical
value using the eval function.

. Identifiers are the names used for elements in a program.

An identifier is a sequence of characters of any length that consists of letters, digits,
underscores (_), and asterisk signs (*). An identifier must start with a letter or an
underscore; it cannot start with a digit. An identifier cannot be a keyword.

Variables are used to store data in a program.

. The equal sign (=) is used as the assignment operator.

. A variable must be assigned a value before it can be used.

There are two types of numeric data in Python: integers and real numbers. Integer
types (int for short) are for whole numbers, and real types (also called float) are for
numbers with a decimal point.

Python provides assignment operators that perform numeric operations: + (addi-
tion), — (subtraction), * (multiplication), / (division), // (integer division), %
(remainder), and ** (exponent).

. The numeric operators in a Python expression are applied the same way as in an arith-

metic expression.

+= (addition assignment), —=

(subtraction assignment), “= (multiplication assignment), /= (float division assign-
ment), //= (integer division assignment), and %= (remainder assignment). These
operators combine the +, -, *, /, //, and % operators and the assignment operator

into one augmented operators.

12.

13.

14.

I5.

Programming Exercises 55

When evaluating an expression with values of an int type and a float type, Python
automatically converts the int value to a float type value.

You can convert a float to an int using the int(value) function.

System analysis seeks to analyze the data flow and to identify the system’s input and
output.

System design is the stage when programmers develop a process for obtaining the
output from the input.

The essence of system analysis and design is input, process, and output. This is called
IPO.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

PROGRAMMING EXERCISES

T Pedagogical Note

Instructors may ask you to document analysis and design for selected exercises.
You should use your own words to analyze the problem, including the input, output,
and what needs to be computed, and describe how to solve the problem in
pseudocode.

t— Debugging Tip

Python usually gives a reason for a syntax error. If you don't know how to correct it,
compare your program closely, character by character, with similar examples in the text.

Sections 2.2-2.10

2.1

(Convert Celsius to Fahrenheit) Write a program that reads a Celsius degree from
the console and converts it to Fahrenheit and displays the result. The formula for
the conversion is as follows:

fahrenheit = (9 / 5) * celsius + 32

Here is a sample run of the program:

Enter a degree in Celsius: 43

43 Celsius is 109.4 Fahrenheit

2.2

(Compute the volume of a cylinder) Write a program that reads in the radius and
length of a cylinder and computes the area and volume using the following formulas:

A

area = radius radius * &
volume = area * length

Here is a sample run:

MyProgramminglLab’

document analysis and design

learn from examples

2

www.cs.armstrong.edu/liang/py/test.html

56 Chapter 2

Elementary Programming

2

Enter the radius and length of a cylinder: 5.5, 12 [<enter
The area is 95.0331
The volume is 1140.4

(Convert feet into meters) Write a program that reads a number in feet, converts it
to meters, and displays the result. One foot is 0. 305 meters. Here is a sample run:

Enter a value for feet: 16.5 I‘JEnter
16.5 feet is 5.0325 meters

(Convert pounds into kilograms) Write a program that converts pounds into
kilograms. The program prompts the user to enter a value in pounds, converts it to
kilograms, and displays the result. One pound is 0.454 kilograms. Here is a
sample run:

Enter a value in pounds: 55.5 I»JEnter
55.5 pounds is 25.197 kilograms

(Financial application: calculate tips) Write a program that reads the subtotal and
the gratuity rate and computes the gratuity and total. For example, if the user
enters 10 for the subtotal and 15% for the gratuity rate, the program displays 1.5
as the gratuity and 11.5 as the total. Here is a sample run:

Enter the subtotal and a gratuity rate: 15.69, 15 [-emer
The gratuity is 2.35 and the total is 18.04

(Sum the digits in an integer) Write a program that reads an integer between 0 and
1000 and adds all the digits in the integer. For example, if an integer is 932, the
sum of all its digits is 14. (Hint: Use the % operator to extract digits, and use the //
operator to remove the extracted digit. For instance, 932 % 10 = 2 and 932 //
10 = 93.) Here is a sample run:

Enter a number between 0 and 1000: 999 |~Enter
The sum of the digits is 27

(Find the number of years and days) Write a program that prompts the user to
enter the minutes (e.g., 1 billion), and displays the number of years and days for
the minutes. For simplicity, assume a year has 365 days. Here is a sample run:

Enter the number of minutes: 1000000000 |~Encer
1000000000 minutes is approximately 1902 years and 214 days

2.3
2
2.4
2
*2.5
2
*%*2.6
2
**2.7
=2
2.8

(Science: calculate energy) Write a program that calculates the energy needed to
heat water from an initial temperature to a final temperature. Your program should

Programming Exercises 57

prompt the user to enter the amount of water in kilograms and the initial and final
temperatures of the water. The formula to compute the energy is

Q = M * (finalTemperature - initialTemperature) * 4184

where M is the weight of water in kilograms, temperatures are in degrees Celsius,
and energy 0 is measured in joules. Here is a sample run:

Enter the amount of water in kilograms: 55.5 [Semer E
Enter the initial temperature: 3.5 [|-enter

Enter the final temperature: 10.5 l-JEnter
The energy needed is 1625484.0

*2.9 (Science: wind-chill temperature) How cold is it outside? The temperature alone is
not enough to provide the answer. Other factors including wind speed, relative
humidity, and sunshine play important roles in determining coldness outside. In
2001, the National Weather Service (NWS) implemented the new wind-chill tem-
perature to measure the coldness using temperature and wind speed. The formula
is given as follows:

the = 35.74 + 0.6215t, — 35.75v%1¢ + 0.4275¢,v*16

where ¢, is the outside temperature measured in degrees Fahrenheit and v is the
speed measured in miles per hour. #,,. is the wind-chill temperature. The formula
cannot be used for wind speeds below 2 mph or for temperatures below —58°F or
above 41°F.

Write a program that prompts the user to enter a temperature between —58°F and
41°F and a wind speed greater than or equal to 2 and displays the wind-chill tem-
perature. Here is a sample run:

Enter the temperature in Fahrenheit between -58 and 41: 5.3 I—JEnter g
Enter the wind speed in miles per hour: 6 |~Enter
The wind chill index is -5.56707

*2.10 (Physics: find runway length) Given an airplane’s acceleration a and take-off
speed v, you can compute the minimum runway length needed for an airplane to
take off using the following formula:

VZ

length = —
eng 24

Write a program that prompts the user to enter v in meters/second (m/s) and the
acceleration a in meters/second squared (m/s?), and displays the minimum runway
length. Here is a sample run:

Enter speed and acceleration: 60, 3.5 |uEn:er g

The minimum runway length for this airplane is 514.286 meters

58 Chapter 2

Elementary Programming

2

*2.11

(Financial application: investment amount) Suppose you want to deposit a
certain amount of money into a savings account with a fixed annual interest rate.
What amount do you need to deposit in order to have $5,000 in the account after
three years? The initial deposit amount can be obtained using the following
formula:

finalAccountValue
(1 + monthlylnterestRate)™"eroMonths

initialDepositAmount =

Write a program that prompts the user to enter final account value, annual interest
rate in percent, and the number of years, and displays the initial deposit amount.
Here is a sample run:

Enter final account value: 1000 |=enter

Enter annual interest rate in percent: 4.25 |“emer
Enter number of years: 5 [Cemer

Initial deposit value is 808.8639197424636

2.12

*2.13

(Print a table) Write a program that displays the following table:

a ** b
1

8

81
1024
15625

v WN R
AUV h WNT

(Split digits) Write a program that prompts the user to enter a four-digit integer
and displays the number in reverse order. Here is a sample run:

Enter an integer: 3125 [-emer
3

1
2
5

*2.14

(Geometry: area of a triangle) Write a program that prompts the user to enter the
three points (x1, y1), (x2, y2), and (x3, y3) of a triangle and displays its area.
The formula for computing the area of a triangle is

s = (sidel + side2 + side3)/?2

area = \/s(s — sidel)(s — side2)(s — side3)

Here is a sample run:

Enter three points for a triangle: 1.5, -3.4, 4.6, 5,
9.5, —3.4 luEnter

The area of the triangle is 33.6

Programming Exercises 59

2.15 (Geometry: area of a hexagon) Write a program that prompts the user to enter the
side of a hexagon and displays its area. The formula for computing the area of a

. 3 . . .
hexagon is Area = 5%, where s is the length of a side. Here is a sample run:

Enter the side: 5.5 IAEnter g

The area of the hexagon is 78.5895

2.16 (Physics: acceleration) Average acceleration is defined as the change of velocity
divided by the time taken to make the change, as shown in the following formula:

Vi = Vo
t

a =

Write a program that prompts the user to enter the starting velocity v in
meters/second, the ending velocity v; in meters/second, and the time span ¢ in
seconds, and displays the average acceleration. Here is a sample run:

Enter vO, vl, and t: 5.5, 50.9, 4.5 IaEnter E

The average acceleration is 10.0889

*2.17 (Health application: compute BMI) Body mass index (BMI) is a measure of health
based on weight. It can be calculated by taking your weight in kilograms and
dividing it by the square of your height in meters. Write a program that prompts
the user to enter a weight in pounds and height in inches and displays the BMI.
Note that one pound is 0.45359237 kilograms and one inch is 0.0254 meters.
Here is a sample run:

Enter weight in pounds: 95.5 laemr E

Enter height in inches: 50 I.JEnter
BMI 1is 26.8573

Sections 2.11-2.13

*2.18 (Current time) Listing 2.7, ShowCurrentTime.py, gives a program that displays the
current time in GMT. Revise the program so that it prompts the user to enter the
time zone in hours away from (offset to) GMT and displays the time in the speci-
fied time zone. Here is a sample run:

Enter the time zone offset to GMT: -5 |~Enter g

The current time is 4:50:34

60 Chapter 2

Elementary Programming

*2.19 (Financial application: calculate future investment value) Write a program that
reads in an investment amount, the annual interest rate, and the number of years,
and displays the future investment value using the following formula:

futurelnvestmentValue = investmentAmount X (1 + monthlylnterestRate)" "¢ O/Months
For example, if you enter the amount 1000, an annual interest rate of 4.25%,
and the number of years as 1, the future investment value is 1043 .33. Here is a
sample run:
g Enter investment amount: 1000 |=enter
Enter annual interest rate: 4.25 |aener
Enter number of years: 1 IaEnter
Accumulated value is 1043.33

*2.20 (Financial application: calculate interest) If you know the balance and the annual
percentage interest rate, you can compute the interest on the next monthly pay-
ment using the following formula:
interest = balance * (annualInterestRate / 1200)

Write a program that reads the balance and the annual percentage interest rate
and displays the interest for the next month. Here is a sample run:
g Enter balance and interest rate (e.g., 3 for 3%): 1000, 3.5
The interest is 2.91667
*%2.21 (Financial application: compound value) Suppose you save $100 each month into

a savings account with an annual interest rate of 5%. Therefore, the monthly inter-
est rate is 0.05/12 = 0.00417. After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes
(100 + 100.417) * (1 + 0.00417) = 201.252
After the third month, the value in the account becomes
(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter a monthly saving amount and
displays the account value after the sixth month. Here is a sample run of the
program:

Programming Exercises 61

Enter the monthly saving amount: 100 lusnter g

After the sixth month, the account value is 608.81

2.22 (Population projection) Rewrite Exercise 1.11 to prompt the user to enter the
number of years and displays the population after that many years. Here is a
sample run of the program:

Enter the number of years: 5 luEnter E

The population in 5 years is 325932970

Section 2.14
2.23 (Turtle: draw four circles) Write a program that prompts the user to enter the
radius and draws four circles in the center of the screen, as shown in Figure 2.4a.

2.24 (Turtle: draw four hexagons) Write a program that draws four hexagons in the
center of the screen, as shown in Figure 2.4b.

*%2.25 (Turtle: draw a rectangle) Write a program that prompts the user to enter the
center of a rectangle, width, and height, and displays the rectangle, as shown in
Figure 2.4c.

& Python Turtle Graphics =

hon Turtle Graphics. ==/ |
& Python Turtle Graphics . |

T

(a) (b)

FIGURE 2.4 Four circles are drawn in (a), four hexagons are drawn in (b), and a rectangle is drawn in (c).

*%2.26 (Turtle: draw a circle) Write a program that prompts the user to enter the
center and radius of a circle, and then displays the circle and its area, as shown
in Figure 2.5.

7& Python Turtle Graphics E-@

= J

2 I b

FIGURE 2.5 A circle and its area are displayed.

This page intentionally left blank

MATHEMATICAL
FUNCTIONS,
STRINGS,

AND OBJECTS

To solve mathematics problems by using the functions in the
module (§3.2).

To represent and process strings and characters (§§3.3-3.4).
To encode characters using ASCII and Unicode (§§3.3.1-3.3.2).

To use the function to obtain a numerical code for a character and the
function to convert a numerical code to a character (§3.3.3).

To represent special characters using the escape sequence (§3.3.4).
To invoke the function with the argument (§3.3.5).

To convert numbers to a string using the function (§3.3.6).

To use the + operator to concatenate strings (§3.3.7).

To read strings from the keyboard (§3.3.8).

To introduce objects and methods (§3.5).

To format numbers and strings using the function (§3.6).
To draw various shapes (§3.7).

To draw graphics with colors and fonts (§3.8).

CHAPTER

64 Chapter 3 Mathematical Functions, Strings, and Objects

3.1 Introduction

fKey The focus of this chapter is to introduce functions, strings, and objects, and to use
6 Point them to develop programs.

The preceding chapter introduced fundamental programming techniques and taught you how
to write simple programs to solve basic problems. This chapter introduces Python functions
for performing common mathematical operations. You will learn how to create custom func-
tions in Chapter 6.
Suppose you need to estimate the area enclosed by four cities, given the GPS locations (lat-
itude and longitude) of these cities, as shown in the following diagram. How would you write
problem a program to solve this problem? You will be able to write such a program after completing
this chapter.

Charlotte (35.2270869, —80.8431267)

Atlanta

(33.7489954, -84.3879824) Savannah (32.0835407, -81.0998342)

Orlando (28.5383355, —81.3792365)

Because all data in Python are objects, it is beneficial to introduce objects early so that you
can begin to use them to develop useful programs. This chapter gives a brief introduction to
objects and strings; you will learn more on objects and strings in Chapters 7 and 8.

3.2 Common Python Functions

ng ey Python provides many useful functions for common programming tasks.

Point o function is a group of statements that performs a specific task. Python, as well as other

programming languages, provides a library of functions. You have already used the func-
tions eval, input, print, and int. These are built-in functions and they are always avail-
able in the Python interpreter. You don’t have to import any modules to use these functions.
Additionally, you can use the built-in functions abs, max, min, pow, and round, as shown in
Table 3.1.

function

TABLE 3.1 Simple Python Built-in Functions

Function Description Example
abs (x) Returns the absolute value for x. abs(-2) is 2
max(x1l, x2, ...) Returns the largest among x1, x2, ... max(1l, 5, 2)is5
min(x1l, x2, ...) Returns the smallest among x1, x2, ... min(l, 5, 2)is1l
pow(a, b) Returns a°. Same as a ** b. pow(2, 3)is8
round(x) Returns an integer nearest to x. If x round(5.4) is 5

is equally close to two integers, round(5.5) is 6

the even one is returned. .
round(4.5) is 4

round(x, n) Returns the float value rounded to n round(5.466, 2)is5.47
digits after the decimal point. round(5.463, 2)is5.46

For example,

3.2 Common Python Functions 65

>>>
3
>>>
3.5
>>>
6
>>>
2
>>>
8

>>>

4

3

>>>

abs(-3) # Returns the absolute value

abs(-3.5) # Returns the absolute value

max(2, 3, 4, 6) # Returns the maximum number

min(2, 3, 4) # Returns the minimum number

pow(2, 3) # Same as 2 ** 3

pow(2.5, 3.5) # Same as 2.5 ** 3.5

24.705294220065465
>>> round(3.51) # Rounds to its nearest integer

>>> round(3.4) # Rounds to its nearest integer

>>> round(3.1456, 3) # Rounds to 3 digits after the decimal point
3.146

2

Many programs are created to solve mathematical problems. The Python math module
provides the mathematical functions listed in Table 3.2.
Two mathematical constants, pi and e, are also defined in the math module. They can be
accessed using math.pi and math.e. Listing 3.1 is a program that tests some math func-
tions. Because the program uses the math functions defined in the math module, the math
module is imported in line 1.

TaBLE 3.2 Mathematical Functions

Function Description Example
fabs(x) Returns the absolute value for x as a float. fabs(-2)is 2.0
ceil(x) Rounds x up to its nearest integer and returns that integer. ceil(2.1)is 3
ceil(-2.1)is -2
floor(x) Rounds x down to its nearest integer and returns that integer. floor(2.1) is 2
floor(-2.1) is -3
exp(x) Returns the exponential function of x (). exp(l) is 2.71828
Tog(x) Returns the natural logarithm of x. 1og(2.71828) is 1.0
Tog(x, base) Returns the logarithm of x for the specified base. Tog(100, 10) is 2.0
sqrt(x) Returns the square root of x. sqrt(4.0) is 2
sin(x) Returns the sine of x. x represents an angle in radians. sin(3.14159 / 2)is1
sin(3.14159) is 0
asin(x) Returns the angle in radians for the inverse of sine. asin(1.0) is 1.57
asin(0.5) is 0.523599
cos(x) Returns the cosine of x. x represents an angle in radians. cos(3.14159 / 2)isO0
cos(3.14159) is -1
acos (x) Returns the angle in radians for the inverse of cosine. acos(1.0)is 0
acos(0.5) is 1.0472
tan(x) Returns the tangent of x. x represents an angle in radians. tan(3.14159 / 4)is1
tan(0.0) is 0
degrees (x) Converts angle x from radians to degrees. degrees(1.57) is 90
radians(x) Converts angle x from degrees to radians. radians(90) is 1.57

66 Chapter 3 Mathematical Functions, Strings, and Objects

LisTING 3.1 MathFunctions.py

import math module 1 dmport math # import math module to use the math functions

2

3 # Test algebraic functions
exp 4 print("exp(1l.0) =", math.exp(l))
Tog 5 print("log(2.78) =", math.log(math.e))
Tog10 6 print("loglo(10, 10) =", math.log(10, 10))
sqrt 7 print("sqrt(4.0) =", math.sqrt(4.0))

8

9 # Test trigonometric functions
sin 10 print("sin(PI / 2) =", math.sin(math.pi / 2))
cos 11 print("cos(PI / 2) =", math.cos(math.pi / 2))
tan 12 print("tan(PI / 2) =", math.tan(math.pi / 2))
degrees 13 print("degrees(1.57) =", math.degrees(1.57))
radians 14 print("radians(90) =", math.radians(90))

‘ exp(1.0) = 2.71828182846
g 10g9(2.78) = 1.0

log10(10, 10) = 1.0

sqrt(4.0) = 2.0

sin(PI / 2) = 1.0

cos(PI / 2) = 6.12323399574e-17

tan(PI / 2) = 1.63312393532e+16

degrees(1.57) = 89.9543738355

radians(90) = 1.57079632679

You can use the math functions to solve many computational problems. Given the three
vertices of a triangle, for example, you can compute the angles by using the following formula:

X2, y2 A=acos((a*a-b*b-c*c)/(2*b*c)
B =acos((b*b-a*a-c*c)/ (-2*a*c))
C=acos((c *c-b*b-a*a/ (2%*a*hb))

A
x1, yl

Don’t be intimidated by the mathematic formula. As we discussed early in Listing 2.8,
ComuteLoan.py, you don’t have to know how the mathematical formula is derived in order to
write a program for computing the loan payments. Here in this example, given the length of
three sides, you can use this formula to write a program to compute the angles without having
to know how the formula is derived. In order to compute the lengths of the sides, we need to
know the coordinates of three corner points and compute the distances between the points.

Listing 3.2 is an example of a program that prompts the user to enter the x- and y-coordinates
of the three corner points in a triangle and then displays the figure’s angles.

LisTING 3.2 ComputeAngles.py

import math module 1 dmport math
2

enter three points 3 x1, y1, x2, y2, x3, y3 = eval(input("Enter three points: "))
4

compute edges 5 a = math.sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3))
6 b = math.sqrt((x1 - x3) * (x1 - x3) + (yl - y3) * (yl - y3))
7 ¢ =math.sgrt((x1 - x2) * (x1 - x2) + (yl - y2) * (yl - y2))

8

9 A = math.degrees(math.acos((a
10 B =

11 C = math.degrees(math.acos((c *
12

13 print("The three angles are

14 round(B * 100) / 100.0,

3.3 Strings and Characters 67

*a-b*bh-c*c) * b * c))) compute angles

/ (-2
math.degrees(math.acos((b * b - a *a -c *c) / (-2 * a * c)))
/ (-2

*a * b))

c-b*b-a®*a

round(A * 100) / 100.0, display result

round(C * 100) / 100.0)

Enter three points: 1, 1, 6.5, 1, 6.5, 2.5 I‘JEnter E

The three angles are 15.26 90.0 74.74

The program prompts the user to enter three points (line 3). This prompting message is not
clear. You should give the user explicit instructions on how to enter these points as follows:

input("Enter six coordinates of three points separated by commas\

Tike x1, yl, x2, y2, x3, y3: ")

The program computes the distances between the points (lines 5-7), and applies the for-
mula to compute the angles (lines 9-11). The angles are rounded to display up to two digits

after the decimal point (lines 13-14).

3.1 Evaluate the following functions:

(a) math.sqrt(4)
(b)ymath.sin(2 * math.pi)
(c)math.cos(2 * math.pi)
(dmin(2, 2, 1)

(e) math.log(math.e)

(f) math.exp(1)

(gymax(2, 3, 4)

(h) abs(-2.5)

(i) math.ceil(-2.5)

ﬁheck
Point

(G) math.floor(-2.5)) .
MyProgramminglLab

(k) round(3.5)

(1) round(-2.5)

(m) math.fabs(2.5)

(n) math.ceil(2.5)

(o) math.floor(2.5)

(p) round(-2.5)

(@) round(2.6)

(r) round(math.fabs(-2.5))

3.2 True or false? The argument for trigonometric functions represents an angle in radians.

3.3 Write a statement that converts 47 degrees to radians and assigns the result to a variable.

3.4 Write a statement that converts © / 7 to an angle in degrees and assigns the result to

a variable.

3.3 Strings and Characters

A string (described in Chapter 1) is a sequence of characters. Python treats characters GfKey

and strings the same way.

Point

In addition to processing numeric values, you can process strings in Python. A string is a string
sequence of characters and can include text and numbers. String values must be enclosed in
matching single quotes (") or double quotes (). Python does not have a data type for charac- single quotes or double

ters. A single-character string represents a character. For example, quotes
Tetter = "A" # Same as letter = "A"
numChar = '4' # Same as numChar = "4"
message = "Good morning" # Same as message = 'Good morning'

68 Chapter 3

character encoding

Mathematical Functions, Strings, and Objects

The first statement assigns a string with the character A to the variable Tetter. The sec-
ond statement assigns a string with the digit character 4 to the variable numChar. The third
statement assigns the string Good morning to the variable message.

t— Note

For consistency, this book uses double quotes for a string with more than one character
and single quotes for a string with a single character or an empty string. This convention
is consistent with other programming languages, so it will be easy for you to convert a
Python program to a program written in other languages.

3.3.1 ASCIl Code

Computers use binary numbers internally (see Section 1.2.2). A character is stored in a
computer as a sequence of Os and 1s. Mapping a character to its binary representation is called
character encoding. There are different ways to encode a character. The manner in which
characters are encoded is defined by an encoding scheme. One popular standard is ASCII
(American Standard Code for Information Interchange), a 7-bit encoding scheme for repre-
senting all uppercase and lowercase letters, digits, punctuation marks, and control characters.
ASCII uses numbers 0 through 127 to represent characters. Appendix B, The ASCII Charac-
ter Set, shows the ASCII code for characters.

3.3.2 Unicode Code

Python also supports Unicode. Unicode is an encoding scheme for representing interna-
tional characters. ASCII is a small subset of Unicode. Unicode was established by the
Unicode Consortium to support the interchange, processing, and display of written texts
in the world’s diverse languages. A Unicode starts with \u, followed by four hexadecimal
digits that run from \u0000 to \uFFFF. (For information on hexadecimal numbers, see
Appendix C.) For example, the word “welcome” is translated into Chinese using
two characters, ¥X and jdJ. The Unicode representations of these two characters are
\u6B22\u8FCE.

The program in Listing 3.3 displays two Chinese characters and three Greek letters, as
shown in Figure 3.1.

LisTING 3.3 DisplayUnicode.py

1 import turtle
2
3 turtle.write("\u6B22\u8FCE \u03bl \u03b2 \u03b3")
4

5 turtle.done()

[—'{i Pytl'.\on Turtle Graphics IS

FiGure 3.1 You can use Unicode to display international characters in a Python GUI
program.

If no Chinese font is installed on your system, you will not be able to see the Chinese char-
acters. In this case, delete \u6B22\u8FCE from your program to avoid errors. The Unicode
codes for the Greek letters «, B8, and y are \u03b1, \u03b2, and \u03h3.

3.3 Strings and Characters 69

3.3.3 The ord and chr Functions

Python provides the ord(ch) function for returning the ASCII code for the character ch
and the chr(code) function for returning the character represented by the code. For
example,

>>> ch = 'a' =1

>>> ord(ch) g
97

>>> chr(98)
lb'

>>> ord('A")
65

>>>

The ASCII code for a is 97, which is greater than the code for A (65). The ASCII code for
lowercase letters are consecutive integers starting from the code for a, then for b, c, and so on,
up to the letter z. The same is true for the uppercase letters. The difference between the ASCII
code of any lowercase letter and its corresponding uppercase letter is the same: 32. This is a
useful property for processing characters. For example, you can find the uppercase represen-
tation of any lowercase letter, as shown in the following code:

1 >>> ord('a') - ord('A") 1
2 32 g
3 >>> ord('d') - ord('D")

4 32

5 >>> offset = ord('a'") - ord('A")

6 >>> TowercaselLetter = 'h'

7 >>> uppercaseletter = chr(ord(lowercaselLetter) - offset)

8 >>> uppercaseletter

9 'H'

10 >>>

Line 6 assigns a lowercase letter to variable Towercaseletter. Line 7 obtains its corre-
sponding uppercase letter.

3.3.4 Escape Sequences for Special Characters

Suppose you want to print a message with quotation marks in the output. Can you write a
statement like this?

print("He said, "John's program is easy to read"'")

No, this statement has an error. Python thinks the second quotation mark is the end of the
string and does not know what to do with the rest of the characters.
To overcome this problem, Python uses a special notation to represent special characters,
as shown in Table 3.3. This special notation, which consists of a backslash (\) followed by a backslash (\)
letter or a combination of digits, is called an escape sequence. escape sequence
The \n character is also known as a newline, line break or end-of-line (EOL) character, newline
which signifies the end of a line. The \ f character forces the printer to print from the next line break
page. The \r character is used to move the cursor to the first position on the same line. The \f end-of-line (EOL) character
and \r characters are rarely used in this book.

70 Chapter 3 Mathematical Functions, Strings, and Objects

TABLE 3.3 Python Escape Sequences

Character Escape Sequence Name Numeric Value
\b Backspace 8
\t Tab 9
\n Linefeed 10
\f Formfeed 12
\r Carriage Return 13
\\ Backslash 92
\' Single Quote 39
\" Double Quote 34

Now you can print the quoted message using the following statement:

>>> print("He said, \"John's program is easy to read\"")
E He said, "John's program is easy to read"

Note that the symbols \ and " together represent one character.

3.3.5 Printing without the Newline

When you use the print function, it automatically prints a linefeed (\n) to cause the out-
put to advance to the next line. If you don’t want this to happen after the print function is
finished, you can invoke the print function by passing a special argument end =
"anyendingstring" using the following syntax:

print(item, end = "anyendingstring")

For example, the following code

1 print("AAA", end =

2 print("BBB", end =

3 print("CCC", end =

4 print("DDD", end =
displays

AAA BBBCCC***DDD%* % *

Line 1 prints AAA followed by a space character ' ', line 2 prints BBB, line 3 prints CCC
followed by ###, and line 4 prints DDD followed by “**. Note that ' ' in line 2 means an
empty string. So, nothing is printed for ' *.

You can also use the end argument for printing multiple items using the following syntax:

print(iteml, item2, ..., end = "anyendingstring")
For example,
radius = 3

print("The area 1is", radius radius math.pi, end = " ")
print("and the perimeter 1is", 2 * radius)

* *

displays

The area 1is 28.26 and the perimeter is 6

3.3 Strings and Characters 71

3.3.6 The str Function

The str function can be used to convert a number into a string. For example,

>>> S
>>> S
) 3 4 Al
>>> S
>>> S
1 3]

>>>

str(3.4) # Convert a float to string

str(3) # Convert an integer to string

3.3.7 The String Concatenation Operator

You can use the + operator to add two numbers. The + operator can be used to concatenate
two strings. Here are some examples:

>>> message = "Welcome " + "to " + "Python"
>>> message

'Welcome to Python'

>>> chapterNo = 3
>>> s = "Chapter
>>> S

'Chapter 3'

>>>

+ str(chapterNo)

CoONOYUVI A WN R

Line 1 concatenates three strings into one. In line 5, the str function converts the numeric
value in variable chapterNo to a string. This string is concatenated with "Chapter " to
obtain the new string “Chapter 3".

The augmented assignment += operator can also be used for string concatenation. For

example, the following code concatenates the string in message with the string " and
Python is fun".

>>> message = "Welcome to Python"
>>> message

'Welcome to Python'

>>> message += " and Python is fun"
>>> message

'Welcome to Python and Python 1is fun'
>>>

3.3.8 Reading Strings from the Console

To read a string from the console, use the input function. For example, the following code
reads three strings from the keyboard:

sl = input("Enter a string: ')
s2 input("Enter a string: ")
s3 = input("Enter a string: ")
print("sl is " + s1)
print("s2 is " + s2)
print("s3 is " + s3)

L

2

72 Chapter 3 Mathematical Functions, Strings, and Objects

2

ﬁheck
Point

MyProgramminglab’

minimum number of coins

Enter a string: Welcome

Enter a string: to [-emer

Enter a string: Python [Semer

sl is Welcome

s2 1is to

s3 1is Python

3.5 Use the ord function to find the ASCII code for 1, A, B, a, and b. Use the chr

3.6
3.7
3.8

3.9

3.10

function to find the character for the decimal codes 40, 59, 79, 85, and 90.
How do you display the characters \ and "?
How do you write a character in Unicode?

Suppose you entered A when running the following code. What is the output?

X = input("Enter a character: ")
ch = chr(ord(x) + 3)
print(ch)

Suppose you entered A and Z when running the following code. What is the
output?
input("Enter a character: ")
= input("Enter a character: ")
pr1nt(or‘d(y) - ord(x))

X

What is wrong in the following code? How do you fix it?
title = "Chapter " + 1

Show the result of the following code:
sum = 2 + 3

print(sum)

S =) 2 Al +] 3 T

print(s)

3.4 Case Study: Minimum Number of Coins

Now let’

want to

s look at a sample program that uses the features covered in this section. Suppose you
develop a program that classifies a given amount of money into smaller monetary

units. The program lets the user enter an amount as a floating-point value representing a total
in dollars and cents, and then outputs a report listing the monetary equivalent in dollars, quar-
ters, dimes, nickels, and pennies, as shown in the sample run.

Your

program should report the maximum number of dollars, then the number of quarters,

dimes, nickels, and pennies, in this order, to result in the minimum number of coins.

Here

are the steps in developing the program:

1. Prompt the user to enter the amount as a decimal number, such as 11.56.

2. Convert the amount (11.56) into cents (1156).

3. Divide the cents by 100 to find the number of dollars. Obtain the remaining cents using
the cents remainder % 100.

4. Divide the remaining cents by 25 to find the number of quarters. Obtain the remaining
cents using the remaining cents remainder % 25.

3.4 Case Study: Minimum Number of Coins 73

5. Divide the remaining cents by 10 to find the number of dimes. Obtain the remaining
cents using the remaining cents remainder % 10.

6. Divide the remaining cents by 5 to find the number of nickels. Obtain the remaining
cents using the remaining cents remainder % 5.

7. The remaining cents are the pennies.

8. Display the result.

The complete program is shown in Listing 3.4.

LisTING 3.4 ComputeChange.py

Receive the amount
amount = eval(input("Enter an amount, for example, 11.56: ")) enter input

1
2
3
4 # Convert the amount to cents

5 remainingAmount = int(amount * 100)
6

7

8

9

Find the number of one dollars
numberOfOneDollars = remainingAmount // 100 dollars
remainingAmount = remainingAmount % 100

10
11 # Find the number of quarters in the remaining amount
12 numberOfQuarters = remainingAmount // 25 quarters
13 remainingAmount = remainingAmount % 25
14
15 # Find the number of dimes in the remaining amount
16 numberOfDimes = remainingAmount // 10 dimes
17 remainingAmount = remainingAmount % 10
18
19 # Find the number of nickels in the remaining amount
20 numberOfNickels = remainingAmount // 5 nickels
21 remainingAmount = remainingAmount % 5
22
23 # Find the number of pennies in the remaining amount
24 numberOfPennies = remainingAmount pennies
25
26 # Display the results
27 print("Your amount", amount, "consists of\n", output
28 "\t", numberOfOneDollars, "dollars\n",
29 "\t", numberOfQuarters, "quarters\n",
30 "\t", numberOfDimes, '"dimes\n",
31 "\t", numberOfNickels, "nickels\n",
32 "\t", numberOfPennies, "pennies")
Enter an amount, for example, 11.56: 11.56 |~Enter‘ g
Your amount 11.56 consists of
11 dollars
2 quarters
0 dimes
1 nickels

1 pennies

74 Chapter 3

Mathematical Functions, Strings, and Objects

O

variables

line# 2 5 8 9 12 13 16 17 20 21 24

amount
remainingAmount 1156 56 6 6 1
number0fOneDol1ars 11
numberOfQuarters 2
numberOfDimes

numberOfNickels 1

numberOfPennies 1

11.56

loss of precision

object

K
Gﬁoiz

2

The variable amount stores the amount entered from the console (line 2). This variable is
not changed, because the amount has to be used at the end of the program to display the
results. The program introduces the variable remainingAmount (line 5) to store the chang-
ing remainingAmount

The variable amount is a float representing dollars and cents. It is converted to an integer
variable remainingAmount, which represents all the cents. For instance, if amount is
11.56, then the initial remainingAmount is 1156. 1156 // 100 is 11 (line 8). The
remainder operator obtains the remainder of the division. So, 1156 % 100 is 56 (line 9).

The program extracts the maximum number of quarters from remainingAmount and
obtains a new remainingAmount (lines 12-13). Continuing the same process, the program
finds the maximum number of dimes, nickels, and pennies in the remaining amount.

As shown in the sample run, 0 dimes, 1 nickels, and 1 pennies are displayed in the result.
It would be better not to display 0 dimes, and to display 1 nickel and 1 penny using the sin-
gular forms of the words. You will learn how to use selection statements to modify this pro-
gram in the next chapter (see Exercise 4.7).

t Caution

One serious problem with this example is the possible loss of precision when converting a
float amount to the integer remainingAmount. This could lead to an inaccurate result. If
you try to enter the amount 10.03, 10.03 * 100 might be 1003.9999999999999.
You will find that the program displays 10 dollars and 2 pennies. To fix the problem, enter
the amount as an integer value representing cents (see Exercise 3.8).

3.5 Introduction to Objects and Methods

In Python, all data—including numbers and strings—are actually objects.

In Python, a number is an object, a string is an object, and every datum is an object. Objects
of the same kind have the same type. You can use the id function and type function to get
these pieces of information about an object. For example,

>>>n =3 # n is an integer
>>> id(n)

505408904

>>> type(n)

<class 'int'>

>>> f =3.0 # f is a float

oOUVTA WN

3.5 Introduction to Objects and Methods 75

7 >>> id(f)

8 26647120

9 >>> type(f)

10 <class 'float's>

11 >>> s = "Welcome" # s is a string

12 >>> id(s)

13 36201472

14 >>> type(s)
15 <class 'str's>
16 >>>

The id for the object is automatically assigned a unique integer by Python when the program
is executed. The id for the object will not be changed during the execution of the program.
However, Python may assign a different id every time the program is executed. The type for the
object is determined by Python according to the value of the object. Line 2 displays the id for a
number object n, line 3 shows the id Python has assigned for the object, and its type is dis-
played in line 4.

In Python, an object’s type is defined by a class. For example, the class for string is str
(line 15), for integer is int (line 5), and for float is float (line 10). The term “class” comes
from object-oriented programming, which will be discussed in Chapter 7. In Python, classes
and types are synonymous.

Note
The 1id and type functions are rarely used in programming, but they are good tools for
learning more about objects.

A variable in Python is actually a reference to an object. Figure 3.2 shows the relationship
between the variables and objects for the preceding code.

f=3.0 s = "Welcome"

id: 36201472

S —> The object
for str
"Welcome"

FiGure 3.2 In Python, each variable is actually a reference to an object.

n=3
id: 505408904

N —> The object
for int 3

id: 26647120

f— The object
for float
3.0

The statement n = 3 in line 1 assigns value 3 to n, which actually assigns 3 to an int
object referenced by variable n.

t— Note

Forn = 3, we say nisan integer variable that holds value 3. Strictly speaking, n is a variable
that references an int object for value 3. For simplicity, it is fine to say n is an int variable
with value 3.

You can perform operations on an object. The operations are defined using functions. The
functions for the objects are called methods in Python. Methods can only be invoked from a
specific object. For example, the string type has the methods such as Tower () and upper(),

VideoNote
String operations

id function
type function

objects vs. object reference

variable

methods

76 Chapter 3 Mathematical Functions, Strings, and Objects

which return a new string in lowercase and uppercase. Here are some examples of how to
invoke these methods:

>>> s = "Welcome"

>>> sl = s.lower() # Invoke the lower method
>>> sl

'welcome'

>>> s2 = s.upper() # Invoke the upper method
>>> S2

'WELCOME'

>>>

2

cONOYULT A WN R

Line 2 invokes s . Tower () on object s to return a new string in lowercase and assignsitto s1.
Line 5 invokes s .upper () on object s to return a new string in uppercase and assigns it to s2.

As you can see from the preceding example, the syntax to invoke a method for an object is
object.method().

stripQ Another useful string method is strip(), which can be used to remove (strip) the
whitespace characters from both ends of a string. The characters ' ', \t, \f, \r, and \n are
whitespace characters known as the whitespace characters.

For example,

>>> s = "\t Welcome \n"
E >>> sl = s.strip() # Invoke the strip method
>>> sl

'Welcome'
>>>

T Note

If you use Python on Eclipse, Eclipse automatically appends \r in the string entered from
the input function. Therefore, you should use the strip() method to remove the \r
character as follows:

Python on Eclipse

s = input("Enter a string").strip(Q

More details on processing strings and on object-oriented programming will be discussed
in Chapter 7.

ﬁheck 3.12 What is an object? What is a method?
Point 3.13 How do you find the id for an object? How do you find the type for an object?
MyProgramminglab® 3.14 Which of the following statements is the precise meaning for the statement n = 3?
(a) nis a variable that holds int value 3.
(b) nis a variable that references an object that holds int value 3.
3.15 Suppose s is "\ tGeorgia\n". Whatis s.Tower() and s.upper()?
3.16 Suppose sis" \tGood\tMorning\n". Whatis s.strip()?

3.6 Formatting Numbers and Strings

fK You can use the format function to return a formatted string.
©7 point

Point Often it is desirable to display numbers in a certain format. For example, the following code

computes interest, given the amount and the annual interest rate.

3.6 Formatting Numbers and Strings 77

>>> amount = 12618.98

>>> interestRate = 0.0013

>>> interest = amount * interestRate
>>> print("Interest is", interest)
Interest is 16.404674

>>>

Because the interest amount is currency, it is desirable to display only two digits after the
decimal point. To do this, you can write the code as follows:

>>> amount = 12618.98

>>> interestRate = 0.0013

>>> interest = amount * interestRate

>>> print("Interest is", round(interest, 2))
Interest is 16.4

>>>

However, the format is still not correct. There should be two digits after the decimal point
like 16.40 rather than 16.4. You can fix it by using the format function, like this:

>>> amount = 12618.98
>>> interestRate = 0.0013
>>> interest = amount * interestRate

>>> print("Interest is", format(interest, ".2f"))
Interest is 16.40
>>>

The syntax to invoke this function is

format(item, format-specifier)

where item is a number or a string and format-specifier is a string that specifies how the
item is formatted. The function returns a string.

3.6.1 Formatting Floating-Point Numbers

If the item is a float value, you can use the specifier to give the width and precision of the
format in the form of width. precisionf. Here, width specifies the width of the resulting
string, precision specifies the number of digits after the decimal point, and f is called the
conversion code, which sets the formatting for floating point numbers. For example,

print(format(57.467657, "10.2f"))
print(format(12345678.923, "10.2f"™))

print(format(57-4, "10.2f")) field width conversion code
print(format(57, "10.2f"))

<— format specifier

precision

displays

|<— 10—>|

011 57.47
123456782.92
1T 57.40
1T 57.00

where a square box (1) denotes a blank space. Note that the decimal point is counted as one
space.

2

2

format

2

conversion code

78 Chapter 3

Mathematical Functions, Strings, and Objects

The format("10.2f") function formats the number into a string whose width is 10, includ-
ing a decimal point and two digits after the point. The number is rounded to two decimal places.
Thus there are seven digits allocated before the decimal point. If there are fewer than seven digits
before the decimal point, spaces are inserted before the number. If there are more than seven
digits before the decimal point, the number’s width is automatically increased. For example,
format(12345678.923, "10.2f") returns 12345678.92, which has a width of 11.

You can omit the width specifier. If so, it defaults to 0. In this case, the width is automati-
cally set to the size needed for formatting the number. For example,

print(format(57.467657, "10.2f"))
print(format(57.467657, ".2f"))

displays

|<—10—>|
o111 57.47
57.47

3.6.2 Formatting in Scientific Notation

If you change the conversion code from f to e, the number will be formatted in scientific
notation. For example,

print(format(57.467657, "10.2e"))
print(format(0.0033923, "10.2e"))
print(format(57.4, "10.2e"))
print(format(57, "10.2e"))

displays

— 10—
Mm5.75e+01
M 3.39e-03
Mm5.74e+01
m5.70e+01

The + and - signs are counted as places in the width limit.

3.6.3 Formatting as a Percentage

You can use the conversion code % to format a number as a percentage. For example,

print(format(0.53457, "10.2%"))
print(format(0.0033923, "10.2%"))
print(format(7.4, "10.2%"))
print(format(57, "10.2%"))

displays

[e—10—
OI11] 53.46%
o114 0.34%
T 740.00%
1 5700.00%

The format 10. 2% causes the number to be multiplied by 100 and displayed with a % sign
following it. The total width includes the % sign counted as one space.

3.6 Formatting Numbers and Strings 79

3.6.4 Justifying Format

By default, the format of a number is right justified. You can put the symbol < in the format
specifier to specify that the item be left-justified in the resulting format within the specified
width. For example,

print(format(57.467657, "10.2f"))
print(format(57.467657, "<10.2f"))

displays

f«— 10—
01111 57.47
57.47

3.6.5 Formatting Integers

The conversion codes d, x, o, and b can be used to format an integer in decimal, hexadecimal,
octal, or binary. You can specify a width for the conversion. For example,

print(format(59832, "10d™))
print(format(59832, "<10d"))
print(format(59832, "10x"))
print(format(59832, "<10x'))

displays

[e— 10—
11111 59832
59832

111 e9b8
e9b8

The format specifier 10d specifies that the integer is formatted into a decimal with a width
of ten spaces. The format specifier 10x specifies that the integer is formatted into a hexadeci-
mal integer with a width of ten spaces.

3.6.6 Formatting Strings

You can use the conversion code s to format a string with a specified width. For example,
print(format("Welcome to Python", "20s"))
print(format("Welcome to Python", "<20s"))

print(format("Welcome to Python", ">20s"))
print(format("Welcome to Python and Java", '>20s"))

displays

| 20 |
WeTcome to Python

WeTcome to Python

10 Welcome to Python
Welcome to Python and Java

The format specifier 20s specifies that the string is formatted within a width of 20. By
default, a string is left justified. To right-justify it, put the symbol > in the format specifier. If
the string is longer than the specified width, the width is automatically increased to fit the
string.

Table 3.4 summarizes the format specifiers introduced in this section.

80 Chapter 3 Mathematical Functions, Strings, and Objects

TABLE 3.4 Frequently Used Specifiers

Specifier Format

"10.2f" Format the float item with width 10 and precision 2.

"10.2e" Format the float item in scientific notation with width 10 and precision 2.
"5d" Format the integer item in decimal with width 5.

"5x" Format the integer item in hexadecimal with width 5.

"50" Format the integer item in octal with width 5.

"5b" Format the integer item in binary with width 5.

"10.2%" Format the number in decimal.

"50s" Format the string item with width 50.

"<10.2f” Left-justify the formatted item.
">10.2f" Right-justify the formatted item.

Check 3-17 Whatis the return value from invoking the format function?

Point 3,18 What happens if the size of the actual item is greater than the width in the format
MyProgramminglab’ specifier?
3.19 Show the printout of the following statements:

print(format(57.467657, "9.3f"))
print(format(12345678.923, "9.1f"))
print(format(57.4, ".2f"))
print(format(57.4, "10.2f"))

3.20 Show the printout of the following statements:

print(format(57.467657, "9.3e"))
print(format(12345678.923, "9.1le"))
print(format(57.4, ".2e"))
print(format(57.4, "10.2e"))

3.21 Show the printout of the following statements:

print(format(5789.467657, "9.3f"))
print(format(5789.467657, "<9.3f"))
print(format(5789.4, ".2f"))
print(format(5789.4, "<.2f"))
print(format(5789.4, ">9.2f"))

3.22 Show the printout of the following statements:

print(format(0.457467657, "9.3%"))
print(format(0.457467657, "<9.3%"))

3.23 Show the printout of the following statements:

print(format(45, "5d"))
print(format(45, "<5d"))
print(format(45, "5x'))
print(format(45, "<5x'))

3.24 Show the printout of the following statements:

print(format("Programming is fun", "25s'))
print(format("Programming is fun", "<25s'))
print(format("Programming 1is fun", ">25s"))

3.7 Drawing Various Shapes 81

3.7 Drawing Various Shapes

The Python turtle module contains methods for moving the pen, setting the pen’s
size, lifting, and putting down the pen.

Chapter 1 introduced drawing with the turtle. A turtle is actually an object that is created
when you import the turtle module. You then invoke the turtle object’s methods to perform
operations. This section introduces more methods for the turtle object.

When a turtle object is created, its position is set at (0, 0)—the center of the window—and
its direction is set to go straight to the right. The turtle module uses a pen to draw shapes.
By default, the pen is down (like the tip of an actual pen touching a sheet of paper). When you
move the turtle, it draws a line from the current position to the new position if the pen is down.
Table 3.5 lists the methods for controlling the pen’s drawing state; Table 3.6 lists the methods
for moving the turtle.

TaBLE 3.5 Turtle Pen Drawing State Methods

Method Description

turtle.pendown() Pulls the pen down—drawing when moving.

turtle.penup(Q) Pulls the pen up—no drawing when moving.

turtle.pensize(width) Sets the line thickness to the specified width.

TaBLE 3.6 Turtle Motion Methods

K
Gﬁoifl{

turtle’s position and direction
turtle’s pen

VideoNote
Draw shapes

Method Description

turtle. forward(d)

turtle.backward(d)
headed. The turtle’s direction is not changed.

turtle.right(angle) Turns the turtle right by the specified angle.

turtle.left(angle) Turns the turtle left by the specified angle.

turtle.goto(x, y) Moves the turtle to an absolute position.

turtle.setx(x) Moves the turtle’s x-coordinate to the specified position.

turtle.sety(y) Moves the turtle’s y-coordinate to the specified position.

turtle.setheading(angle)

turtle.home() Moves the turtle to the origin (0, 0) and east direction.

turtle.circle(r, ext, step) Draws a circle with the specified radius, extent, and step.

turtle.dot(diameter, color) Draws a circle with the specified diameter and color.

turtle.undo() Undo (repeatedly) the last turtle action(s).

turtle.speed(s)

All these methods are straightforward. The best way to learn them is to write a test code to
see how each method works.

The circle method has three arguments: The radius is required, and extent and step
are optional. extent is an angle that determines which part of the circle is drawn. step
determines the number of steps to use. If step is 3, 4, 5, 6, ..., the circle method will draw
a maximum regular polygon with three, four, five, six, or more sides enclosed inside the cir-
cle (that is, a triangle, square, pentagon, hexagon, etc.). If step is not specified, the circle
method will draw a circle.

Moves the turtle forward by the specified distance in the direction the turtle is headed.

Moves the turtle backward by the specified distance in the opposite direction the turtle is

Sets the orientation of the turtle to a specified angle. 0-East, 90-North, 180-West, 270-South.

Sets the turtle’s speed to an integer between 1 and 10, with 10 being the fastest.

82 Chapter 3 Mathematical Functions, Strings, and Objects

import turtle module

set pen size
penup

move pen
pendown

draw a triangle

pause

ﬁheck
Point

MyProgramminglLab’

Listing 3.5 shows sample code for drawing a triangle, a square, a pentagon, a hexagon, and
a circle, as shown in Figure 3.3.

0% P thon Turtle Graphics

FIGURE 3.3 The program draws five shapes.

LisTING 3.5 SimpleShapes.py

import turtle

1
2
3 turtle.pensize(3) # Set pen thickness to 3 pixels
4 turtle.penup() # Pull the pen up

5 turtle.goto(-200, -50)

6 turtle.pendown() # Pull the pen down

7 turtle.circle(40, steps = 3) # Draw a triangle

8

9

10

11

turtle.penup()
turtle.goto(-100, -50)
turtle.pendown()

12 turtle.circle(40, steps 4) # Draw a square

14 turtle.penup()

15 turtle.goto(0, -50)

16 turtle.pendown()

17 turtle.circle(40, steps

5) # Draw a pentagon

19 turtle.penup()
20 turtle.goto(100, -50)
21 turtle.pendown()

22 turtle.circle(40, steps 6) # Draw a hexagon

24 turtle.penup()

25 turtle.goto(200, -50)

26 turtle.pendown()

27 turtle.circle(40) # Draw a circle

29 turtle.done()

Line 1 imports the turtle module. Line 3 sets the pen’s thickness to 3 pixels. Line 4 pulls
the pen up so that you can reposition it to (-200, -50) in line 5. Line 6 puts the pen down to
draw a triangle in line 7. In line 7, the turtle object invokes the circle method with a
radius of 40 and 3 steps to draw a triangle. Similarly, the rest of the program draws a square
(line 12), a pentagon (line 17), a hexagon (line 22), and a circle (line 27).

3.25 How do you set the turtle to its original position (0, 0)?

3.26 How do you draw a red dot with diameter 3?

3.27 What figure will the following method draw?
turtle.circle(50, step = 4)

3.8 Drawing with Colors and Fonts 83

3.28 How do you make the turtle move fast?

3.29 How do you undo the turtle’s last action?

3.8 Drawing with Colors and Fonts

A turtle object contains the methods for setting colors and fonts.

The preceding section showed you how to draw shapes with the turtTe module. You learned
how to use the motion methods to move the pen and use the pen methods to raise the pen up,
set it down, and control its thickness. This section introduces more pen control methods and
shows you how to set colors and fonts and write text.

Table 3.7 lists the pen methods for controlling drawing, color, and filling. Listing 3.6 is a
sample program that draws a triangle, a square, a pentagon, a hexagon, and a circle in differ-
ent colors, as shown in Figure 3.4. The program also adds text to the drawing.

TABLE 3.7 Turtle Pen Color, Filling, and Drawing Methods

K
Gﬁoi‘z

Method Description

turtle.color(c) Sets the pen color.

turtle.fillcolor(c) Sets the pen fill color.

turtle.begin_fil11(Q) Calls this method before filling a shape.

turtle.end_fil110) Fills the shapes drawn before the last call to begin_ fil7.
turtle.fillingQ Returns the fill state: True if filling, False if not filling.

turtle.clear(Q) Clears the window. The state and the position of the turtle are not affected.
turtle.reset(Q Clears the window and reset the state and position to the original default value.
turtle.screensize(w, h) Sets the width and height of the canvas.

turtle.hideturtle(Q Makes the turtle invisible.

turtle.showturtle() Makes the turtle visible.

turtle.isvisible(Q) Returns True if the turtle is visible.

turtle.write(s, font=("Arial", Writes the string s on the turtle position. Font is a triple consisting of fontname,
8, "normal')) fontsize, and fonttype.

LisTING 3.6 ColorShapes.py

import turtle

1

2

3 turtle.pensize(3) # Set pen thickness to 3 pixels

4 turtle.penup() # Pull the pen up

5 turtle.goto(-200, -50)

6 turtle.pendown() # Pull the pen down

7 turtle.begin_fil1() # Begin to fill color in a shape
8 turtle.color("red")

9 turtle.circle(40, steps = 3) # Draw a triangle

10 turtle.end_fil1() # Fill the shape

12 turtle.penup()

13 turtle.goto(-100, -50)

14 turtle.pendown()

15 turtle.begin_fi11() # Begin to fill color in a shape
16 turtle.color("blue™)

17 turtle.circle(40, steps = 4) # Draw a square

import turtle module

set pen size
penup

move pen
pendown
begin_fil1l
set a color
draw a triangle
end_fi11

84 Chapter 3 Mathematical Functions, Strings, and Objects

write text

pause

18 turtle.end_fi11() # Fill the shape
19

20 turtle.penup()

21 turtle.goto(0, -50)

22 turtle.pendown()

23 turtle.begin_fi11() # Begin to fill color in a shape

24 turtle.color("green™)

25 turtle.circle(40, steps = 5) # Draw a pentagon

26 turtle.end_fi11() # Fill the shape
27

28 turtle.penup()

29 turtle.goto(100, -50)

30 turtle.pendown()

31 turtle.begin_fill1() # Begin to fill color in a shape

32 turtle.color("yellow™)

33 turtle.circle(40, steps = 6) # Draw a hexagon
34 turtle.end_fi11() # Fill the shape

35

36 turtle.penup()

37 turtle.goto(200, -50)

38 turtle.pendown()

39 turtle.begin_fill1() # Begin to fill color in a shape

40 turtle.color("purple™)

41 turtle.circle(40) # Draw a circle
42 turtle.end_fi11(Q) # Fill the shape
43 turtle.color('green™)

44 turtle.penup()

45 turtle.goto(-100, 50)

46 turtle.pendown()

47 turtle.write("Cool Colorful Shapes",

48 font = ("Times", 18, "bold™))
49 turtle.hideturtle()
50

51 turtle.done()

??7& Pythan Turﬂé Graphics

Cool Colorful Shapes

|

ves O

FIGURE 3.4 The program draws five shapes in different colors.

The program is similar to Listing 3.5. SimpleShapes.py, except that it fills each shape with
a color and writes a string. The turtle object invokes the begin_fi11() method in line 7 to
tell Python to draw shapes filled with color. A triangle is drawn in line 9. Invoking the
end_fi11() method (line 10) completes the color filling for the shape.

The wr1ite method writes a string with the specified font at the current pen position (lines
47-48). Note that drawing takes place when the pen is moved if the pen is down. To avoid
drawing, you need to pull the pen up. Invoking hideturtle() makes the turtle invisible

(line 49) so you will not see the turtle in the window.

Programming Exercises 85

3.30 How do you set the turtle’s color? ﬁh eck

3.31 How do you fill a shape with color? " Point
3.32 How do you make the turtle invisible? MyProgramminglab’
KEey TERMS
backslash (\) 69 methods 75
character encoding 68 newline 69
end-of-line 69 object 74
escape sequence 69 string 67
line break 69 whitespace characters 76

CHAPTER SUMMARY

I. Python provides the mathematical functions abs, max, min, pow, and round in the
interpreter and the functions fabs, ceil, floor, exp, Tog, sqrt, sin, asin, cos,
acos, tan, degrees, and radians in the math module.

2. A string is a sequence of characters. String values can be enclosed in matching single
quotes (") or double quotes ("'). Python does not have a data type for characters; a
single-character string represents a character.

3. Anescape sequence is a special syntax that begins with the character \ followed by a
letter or a combination of digits to represent special characters, such as \ ', \"', \t,
and \n.

4. The characters ' ', \'t, \f, \r, and \n are known as the whitespace characters.

5. All data including numbers and strings are objects in Python. You can invoke
methods to perform operations on the objects.

6. You can use the format function to format a number or a string and return the result
as a string.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

PROGRAMMING EXERCISES MyProgramminglab’

Section 3.2

3.1 (Geometry: area of a pentagon) Write a program that prompts the user to enter the
length from the center of a pentagon to a vertex and computes the area of the pen-
tagon, as shown in the following figure.

www.cs.armstrong.edu/liang/py/test.html

86 Chapter3

Mathematical Functions, Strings, and Objects

s2, where s is

The formula for computing the area of a pentagon is Area =
the length of a side. The side can be computed using the formula s = 2r sin %,

where r is the length from the center of a pentagon to a vertex. Here is a sample
run:

Enter the length from the center to a vertex: 5.5 |uEnter
The area of the pentagon is 108.61

*3.2

(Geometry: great circle distance) The great circle distance is the distance between
two points on the surface of a sphere. Let (x1, y1) and (x2, y2) be the geographical
latitude and longitude of two points. The great circle distance between the two
points can be computed using the following formula:

d = radius X arccos(sin(x;) X sin(x;) + cos(x;) X cos(x,) X cos(y; — y2))

Write a program that prompts the user to enter the latitude and longitude of two
points on the earth in degrees and displays its great circle distance. The average
earth radius is 6,371.01 km. Note that you need to convert the degrees into radians
using the math.radians function since the Python trigonometric functions use
radians. The latitude and longitude degrees in the formula are for north and west.
Use negative to indicate south and east degrees. Here is a sample run:

Enter point 1 (latitude and Tongitude) in degrees:
39-55, -116.25 |~4Enter'

Enter point 2 (latitude and longitude) in degrees:

41.5, 87.37 lAEﬂter

The distance between the two points is 10691.79183231593 km

*3.3

3.4

(Geography: estimate areas) Find the GPS locations for Atlanta, Georgia;
Orlando, Florida; Savannah, Georgia; and Charlotte, North Carolina from
www.gps-data-team.com/map/ and compute the estimated area enclosed by these
four cities. (Hint: Use the formula in Programming Exercise 3.2 to compute the
distance between two cities. Divide the polygon into two triangles and use the for-
mula in Programming Exercise 2.14 to compute the area of a triangle.)

(Geometry: area of a pentagon) The area of a pentagon can be computed using the
following formula (s is the length of a side):

5 X s?

T
4 X tan| —
(T)

Write a program that prompts the user to enter the side of a pentagon and displays
the area. Here is a sample run:

Area =

Enter the side: 5.5 IAEnter'
The area of the pentagon is 53.04444136781625

www.gps-data-team.com/map/

Programming Exercises 87

*3.5 (Geometry: area of a regular polygon) A regular polygon is an n-sided polygon in
which all sides are of the same length and all angles have the same degree (i.e., the
polygon is both equilateral and equiangular). The formula for computing the area
of a regular polygon is

n X s2

T
4 X tan()
n

Here, s is the length of a side. Write a program that prompts the user to enter the
number of sides and their length of a regular polygon and displays its area. Here is
a sample run:

Area =

Enter the number of sides: 5 |~Enter E

Enter the side: 6.5 |usnter
The area of the polygon is 73.69017017488385

Sections 3.3-3.6

*3.6 (Find the character of an ASCII code) Write a program that receives an ASCII
code (an integer between 0 and 127) and displays its character. For example, if the
user enters 97, the program displays the character a. Here is a sample run:

Enter an ASCII code: 69 g

The character 1is E

3.7 (Random character) Write a program that displays a random uppercase letter
using the time. time() function.

*3.8 (Financial application: monetary units) Rewrite Listing 3.4, ComputeChange.py,
to fix the possible loss of accuracy when converting a float value to an int value.
Enter the input as an integer whose last two digits represent the cents. For exam-
ple, the input 1156 represents 11 dollars and 56 cents.

*3.9 (Financial application: payroll) Write a program that reads the following infor-
mation and prints a payroll statement:

Employee’s name (e.g., Smith)

Number of hours worked in a week (e.g., 10)
Hourly pay rate (e.g., 9.75)

Federal tax withholding rate (e.g., 20%)
State tax withholding rate (e.g., 9%)

A sample run is shown below:

Enter employee's name: Smith IdEnter E

Enter number of hours worked in a week: 10 lm
Enter hourly pay rate: 9.75 lm

Enter federal tax withholding rate: 0.20 @
Enter state tax withholding rate: 0.09 @

Employee Name: Smith

88 Chapter 3 Mathematical Functions, Strings, and Objects

Hours Worked: 10.0

Pay Rate: $9.75

Gross Pay: $97.5

Deductions:
Federal Withholding (20.0%): $19.5
State Withholding (9.0%): $8.77
Total Deduction: $28.27

Net Pay: $69.22

*3.10

(Turtle: display Unicodes) Write a program to display Greek letters aByde{n6.
The Unicode of these characters are \u03b1l \u03b2 \u03b3 \u03b4 \u03b5
\u03b6 \u03b7 \u03b3.

(Reverse number) Write a program that prompts the user to enter a four-digit inte-
ger and displays the number in reverse order. Here is a sample run:

Enter an integer: 3125 |-ener
The reversed number is 5213

Sections 3.7-3.8
**3.12 (Turtle: draw a star) Write a program that prompts the user to enter the length of

the star and draw a star, as shown in Figure 3.5a. (Hint: The inner angle of each
point in the star is 36 degrees.)

FiGure 3.5 The program (a) draws a star, (b) displays a STOP sign, and (c) draws an Olympic symbol.

*3.13 (Turtle: display a STOP sign) Write a program that displays a STOP sign, as

shown in Figure 3.5b. The hexagon is in red and the text is in white.

3.14 (Turtle: draw the Olympic symbol) Write a program that prompts the user to

enter the radius of the rings and draws an Olympic symbol of five rings of the
same size with the colors blue, black, red, yellow, and green, as shown in
Figure 3.5c.

*3.15 (Turtle: paint a smiley face) Write a program that paints a smiley face, as shown in

Figure 3.6a.

Programming Exercises 89

Py'thon Turtle Graphlcs @ﬂlﬂ*

Cool Colorful Shapes

AE® © J‘

(b)

FIGURE 3.6 The program paints a smiley face in (a) and draws five shapes with bottom edges parallel to the x-axis in (b).

*%3.16 (Turtle: draw shapes) Write a program that draws a triangle, square, pentagon,
hexagon, and octagon, as shown in Figure 3.6b. Note that the bottom edges of
these shapes are parallel to the x-axis. (Hint: For a triangle with a bottom line
parallel to the x-axis, set the turtle’s heading to 60 degrees.)

*3.17 (Turtle: triangle area) Write a program that prompts the user to enter the three
points pl, p2, and p3 for a triangle and display its area below the triangle, as
shown in Figure 3.7a. The formula for computing the area of a triangle is given
in Exercise 2.14.

& Python Turtle Graphlcs

& Python Turtle Graphics %@M

pl (5RAT)

W//\ys (64.44)

(b) (©)
FiGure 3.7 The program displays (a) the area of the triangle and (b) the angles for the triangle. (c) The program draws
a line.

*3.18 (Turtle: triangle angles) Revise Listing 3.2, ComputeAngles.py, to write a pro-
gram that prompts the user to enter the three points p1, p2, and p3 for a triangle
and display its angles, as shown in Figure 3.7b.

**3.19 (Turtle: draw a line) Write a program that prompts the user to enter two points
and draw a line to connect the points and displays the coordinates of the points,
as shown in Figure 3.7c.

This page intentionally left blank

SELECTIONS

Objectives

B To write Boolean expressions using comparison operators (§4.2).

B To generate random numbers using the random.randint(a, b) or
random. random() functions (§4.3).

B To program with Boolean expressions (AdditionQuiz) (§4.3).

B To implement selection control using one-way 1f statements (§4.4).

B To program with one-way 1 f statements (GuessBirthday) (§4.5).

B To implement selection control using two-way 1if-else statements (§4.6).

® To implement selection control with nested 1f and multi-way
if-elif-else statements (§4.7).

B To avoid common errors in if statements (§4.8).

B To program with selection statements (§§4.9-4.10).

B To combine conditions using logical operators (and, or, and not) (§4.11).

B To use selection statements with combined conditions (LeapYear,
Lottery) (§§4.12-4.13).

B To write expressions that use the conditional
expressions (§4.14).

B To understand the rules governing operator precedence
and associativity (§4.15).

B To detect the location of an object (§4.16).

CHAPTER

92 Chapter 4 Selections

K
Gﬁoiz

problem

selection statements

Boolean expressions

K
fxe

comparison operators

VideoNote
Boolean expressions

==VS. =

Boolean value

4.1 Introduction

A program can decide which statements to execute based on a condition.

If you enter a negative value for radius in Listing 2.2, ComputeAreaWithConsolelnput.py,
the program displays an invalid result. If the radius is negative, the program cannot compute
the area. How can you deal with this situation?

Like all high-level programming languages, Python provides selection statements that let
you choose actions with two or more alternative courses. You can use the following selection
statement to replace line 5 in Listing 2.2:

if radius < O:
print("Incorrect input")

else:
area = radius radius * math.pi
print("Area is", area)

A

Selection statements use conditions, which are Boolean expressions. This chapter introduces
Boolean types, values, comparison operators, and expressions.

4.2 Boolean Types, Values, and Expressions

A Boolean expression is an expression that evaluates to a Boolean value True or
False.

How do you compare two values, such as whether a radius is greater than 0, equal to 0, or less
than 0? Python provides six comparison operators (also known as relational operators),
shown in Table 4.1, which an be used to compare two values (the table assumes that a radius
of 5 is being used).

TABLE 4.1 Comparison Operators

Python Mathematics Example

Operator Symbol Name (radius is 5) Result
< < less than radius < 0 False
<= < less than or equal to radius <= 0 False
> > greater than radius > 0 True
>= > greater than or equal to radius >= 0 True
== = equal to radius == False
= # not equal to radius != 0 True

Caution

The equal to comparison operator is two equal signs (==), not a single equal sign (=).
The latter symbol is for assignment.

The result of the comparison is a Boolean value: True or False. For example, the follow-
ing statement displays the result True:

radius = 1
print(radius > 0)

4.3 Generating Random Numbers 93

A variable that holds a Boolean value is known as a Boolean variable. The Boolean data
type is used to represent Boolean values. A Boolean variable can hold one of the two values:
True or False. For example, the following statement assigns the value True to the variable
TightsOn:

TightsOn = True

True and False are literals, just like a number such as 10. They are reserved words and
cannot be used as identifiers in a program.

Internally, Python uses 1 to represent True and O for False. You can use the int function
to convert a Boolean value to an integer.

For example,

print(int(True))
displays 1 and
print(int(False))

displays 0.

You can also use the bool function to convert a numeric value to a Boolean value. The
function returns False if the value is 0; otherwise, it always returns True.

For example,

print(bool(0))
displays False and

print(bool1(4))
displays True.

4.1 List six comparison operators.

4.2 Can the following conversions be allowed? If so, find the converted result.

i = int(True)
j = int(False)

bl bool(4)
b2 = bool(0)

4.3 Generating Random Numbers

The randint(a, b) function can be used to generate a random integer between a
and b, inclusively.

Suppose you want to develop a program to help a first grader practice addition. The
program randomly generates two single-digit integers, numberl and number2, and dis-
plays to the student a question such as What is 1 + 7, as shown in Listing 4.1. After the
student types the answer, the program displays a message to indicate whether it is true
or false.

To generate a random number, you can use the randint(a, b) function in the random
module. This function returns a random integer i between a and b, inclusively. To obtain a
random integer between 0 and 9, use randint (0, 9).

Boolean variable

Boolean literals

convert Boolean to int

boo1 function

ﬁheck
Point

MyProgramminglab’

K
Gﬁoifl)l’;

94 Chapter 4 Selections

import random module

generate numberl
generate number?2

show question

display result

random module

randrange function

random function

random. random() E

random. random()

random.randint(a, b)

The program may be set up to work as follows:

Step 1: Generate two single-digit integers for numberl (e.g., 4) and number2 (e.g., 5)
Step 2: Prompt the student to answer, "What is 4 + 57"

Step 3: Check whether the student’s answer is correct.

LIsTING 4.1 AdditionQuiz.py

import random

1
2
3 # Generate random numbers

4 numberl = random.randint(0, 9)
5 number2 = random.randint(0, 9)
6

7

8

9

Prompt the user to enter an answer
" + str(numberl) + " +

answer = eval(input("What is
+ str(number2) + "? "))

11 # Display result

12 print(numberl, "+", number2, "=", answer,
13 "is", numberl + number2 == answer)

What is 1 + 7?7 8 [-ener

1+ 7 =8 1is True

What is 4 + 8?7 9 |~4Enter‘
4 + 8 =9 is False

line# numberl number2 answer output
4 4
5 8
8 9
12 4 + 8 =9 1is False

The program uses the randint function defined in the random module. The import
statement imports the module (line 1).

Lines 4-5 generate two numbers, number1 and number?2. Line 8§ obtains an answer from the
user. The answer is graded in line 12 using a Boolean expression numberl + number2 ==
answer.

Python also provides another function, randrange(a, b), for generating a random inte-
ger between a and b - 1, which is equivalent to randint(a, b - 1). For example,
randrange(0, 10) and randint(0, 9) are the same. Since randint is more intuitive, the
book generally uses randint in the examples.

You can also use the random() function to generate a random float r such that 0 <= r <
1.0. For example

1 >>> import random

2 >>> random.random()

3 0.34343

4 >>> random.random()

5 0.20119

6 >>> random.randint(0, 1)

4.4 5f Statements 95

7 0

8 >>> random.randint(0, 1)

9 1

10 >>> random.randrange(0, 1) # This will always be 0 random.randrange(a, b)
11 0

12 >>>

Invoking random. random() (lines 2 and 4) returns a random float number between 0.0 and
1.0 (excluding 1.0). Invoking random.randint(0, 1) (lines 6 and 8) returns O or 1.
Invoking random. randrange(0, 1) (line 10) always returns O.

4.3 How do you generate a random integer i such that 0 = i < 20?

4.4 How do you generate a random integer i such that 10 = i < 20? (@Oeiil:

4.5 How do you generate a random integer i such that 10 = i = 50?

MyProgramminglab’

4.6 How do you generate a random integer 0 or 1?

4.4 4f Statements

A one-way 1f statement executes the statements if the condition is true. GfKey

The preceding program displays a message suchas 6 + 2 = 7 is False. If you wish the Point
messagetobe 6 + 2 = 7 1is 1incorrect, you have to use a selection statement to make
this minor change.

Python has several types of selection statements: one-way 1if statements, two-way if- if statements
el se statements, nested 1 f statements, multi-way 1f-el1if-else statements and conditional
expressions. This section introduces one-way 1 f statements.

A one-way 1 f statement executes an action if and only if the condition is true. The syntax
for a one-way i f statement is: if statement

if boolean-expression:

statement(s) # Note that the statement(s) must be indented

The statement(s) must be indented at least one space to the right of the if keyword
and each statement must be indented using the same number of spaces. For consistency, we
indent it four spaces in this book.

The flowchart in Figure 4.1a illustrates how Python executes the syntax of an if state-
ment. A flowchart is a diagram that describes an algorithm or process, showing the steps as flowchart
boxes of various kinds, and their order by connecting these with arrows. Process operations
are represented in these boxes, and arrows connecting them show flow of control. A diamond
box is used to denote a Boolean condition and a rectangle box is for representing statements.

If the boolean-expression evaluates to true, the statements in the if block are exe- if block
cuted. The 1f block contains the statements indented after the 1f statement. For example:

if radius >= 0:

area = radius * radius * math.pi
print("The area for the circle of radius", radius, "is", area)

The flowchart of the preceding statement is shown in Figure 4.1b. If the value of radius
is greater than or equal to 0, then the area is computed and the result is displayed; otherwise,
these statements in the block are not executed.

The statements in the if block must be indented in the lines after the if line and each
statement must be indented using the same number of spaces. For example, the following
code is wrong, because the print statement in line 3 is not indented using the same number
of spaces as the statement for computing area in line 2.

1 if radius >= 0:
2 area = radius *

* radius * math.pi # Compute area DC()“?‘
3 print("The area for the circle of radius", radius, "is", area) B

96 Chapter 4 Selections

| |

boolean- false radius s= 07 false

expression
true true
Statement(s) area = radius * radius * math.pi
| print("The area for the circle of",
"pradius", radius, "is', area)
O
O
(a) (b)
FIGURE 4.1 An if statement executes statements if the boolean-expression evaluates
to True.

Listing 4.2 is an example of a program that prompts the user to enter an integer. If the num-
ber is a multiple of 5, the program displays the result HiF1ive. If the number is divisible by 2,
the program displays HiEven.

LISTING 4.2 SimpleIfDemo.py

enter input 1 number = eval(input("Enter an integer: "))
2
check 5 3 if number % 5 ==
4 print("HiFive™)
5
check even 6 1if number % 2 ==
7 print("HiEven™)

E Enter an integer: 4 Jemer

HiEven

HiFive
HiEven

g Enter an integer: 30 |~Enter

The program prompts the user to enter an integer (line 1) and displays HiFive if it is divis-
ible by 5 (lines 3—4) and HiEven if it is divisible by 2 (lines 6-7).

. 4.7 Write an 1 f statement that assigns 1 to x if y is greater than 0.
Check g g

Point 4.8 Write an 1if statement that increases pay by 3% if score is greater than 90.

MyProgramminglLab’
4.5 Case Study: Guessing Birthdays

fKey Guessing birthdays is an interesting problem with a simple program solution.
6 Point yoy can find out the date of the month when your friend was born by asking five questions.

Each question asks whether the day is in one of the five sets of numbers.

4.5 Case Study: Guessing Birthdays 97

=19
+
1] 3 5 7| [2]3 6 7 4 5 6 7 8 9 10 11 | [16] 17 18 19
9 11 13 15| 10 11 14 15 12 13 14 15 12 13 14 15 20 21 22 23
17 19 21 23| 18 19 22 23 20 21 22 23 24 25 26 27 | 24 25 26 27
25 27 29 31| 26 27 30 31 28 29 30 31 28 29 30 31 28 29 30 31
Setl Set2 Set3 Set4 Set5

The birthday is the sum of the first numbers in the sets where the date appears. For exam-
ple, if the birthday is 19, it appears in Setl, Set2, and Set5. The first numbers in these three
sets are 1, 2, and 16. Their sum is 19.

Listing 4.3 is a program that prompts the user to answer whether the day is in Setl (lines
4-13), in Set2 (lines 16-25), in Set3 (lines 28-37), in Set4 (lines 40-49), or in Set5 (lines
52-61). If the number is in the set, the program adds the first number in the set to day (lines 13,
25, 37,49, and 61).

LIsTING 4.3 GuessBirthday.py

1 day = 0 # birth day to be determined day to be determined
2
3 # Prompt the user to answer the first question
4 questionl = "Is your birthday in Setl?\n" , \ in question1?
5 "1 3 5 7\n" +\
6 "9 11 13 15\n" + \
7 "17 19 21 23\n" + \
8 25 27 29 31" + \
9 "\nEnter 0 for No and 1 for Yes: "
10 answer = eval(input(questionl))
11
12 if answer == 1:
13 day += 1
14
15 # Prompt the user to answer the second question
16 question2 = "Is your birthday in Set2?\n" , \ in question2?
17 "2 3 6 7\n" +\
18 "10 11 14 15\n" + \
19 "18 19 22 23\n" + \
20 26 27 30 31" + \
21 "\nEnter 0 for No and 1 for Yes: "
22 answer = eval(input(question2))
23
24 if answer == 1:
25 day += 2
26
27 # Prompt the user to answer the third question
28 question3 = "Is your birthday in Set3?\n" + \ in question3?
29 "4 5 6 7\n" +\
30 "12 13 14 15\n" + \
31 20 21 22 23\n" + \
32 28 29 30 31" + \
33 "\nEnter 0 for No and 1 for Yes: "
34 answer = eval(input(question3))
35

36 1if answer ==
37 day += 4

98 Chapter 4 Selections

in question4?

in question5?

38

39 # Prompt the user to answer the fourth question

40 questiond4 = "Is your birthday in Set4?\n" + \

41 "8 9 10 11\n" + \

4?2 "12 13 14 15\n" + \

43 24 25 26 27\n" + \

44 '"28 29 30 31" + \

45 "\nEnter 0 for No and 1 for Yes: "
46 answer = eval(input(question4))

47

48 1if answer ==

49 day += 8

50

51 # Prompt the user to answer the fifth question

52 question5 = "Is your birthday in Set5?\n" + \

53 "16 17 18 19\n"+ \

54 "20 21 22 23\n" + \

55 24 25 26 27\n" + \

56 28 29 30 31" + \

57 "\nEnter 0 for No and 1 for Yes: "
58 answer = eval(input(question5))

59

60 1if answer ==

61 day += 16

62

63 print("\nYour birthday 1is "+ str(day) + "!")

Is your birthday in Setl?

1 3 5 7

9 11 13 15

17 19 21 23

25 27 29 31

Enter 0 for No and 1 for Yes: 1 |~Hm

Is your birthday in Set2?

2 3 6 7

10 11 14 15

18 19 22 23

26 27 30 31

Enter O for No and 1 for Yes: 1

Is your birthday in Set3?

4 5 6 7

12 13 14 15

20 21 22 23

28 29 30 31

Enter 0 for No and 1 for Yes: 0

Is your birthday in Set4?
8 910 11
12 13 14 15
24 25 26 27
28 29 30 31
Enter 0 for No and 1 for Yes: O

4.5 Case Study: Guessing Birthdays 99

Is your birthday in Set57?

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Enter 0 for No and 1 for Yes: 1
Your birthday is 19!

line# day answer output O\
1 0

10 1

13 1

22 1

25 2

34

46

58

61 19

63 Your birthday is 19

The last character \ at the end of lines 4-8 is the line continuation symbol, which tells the
interpreter that the statement is continued on the next line (see Section 2.3).

This game is easy to program. You may wonder how the game was created. The
mathematics behind the game is actually quite simple. The numbers are not grouped mathematics behind the game
together by accident. The way they are placed in the five sets is deliberate. The starting
numbers in the five sets are 1, 2, 4, 8, and 16, which correspond to 1, 10, 100, 1000, and
10000 in binary. A binary number for decimal integers between 1 and 31 has at most
five digits, as shown in Figure 4.2a. Assume this number is bsb,bsb,b,. So,
bsbybsb,by = bs0000 + 000 + b300 + b0 + by, as shown in Figure 4.2b. If a day’s binary
number has a digit 1 in b, the number should appear in Setk. For example, number 19 is
binary 10011, so it appears in Setl, Set2, and Set5. It is binary 1 + 10 + 10000 = 10011
ordecimal 1 + 2 + 16 = 19. Number 31 is binary 11111, so it appears in Setl, Set2, Set3,
Set4, and Set5. Itis binary 1 + 10 + 100 + 1000 + 10000 = 11111 ordecimall + 2
+4 +8 + 16 = 31.

Decimal Binary bs0000 10000
1 00001 by 000 1000
2 00010 b;00 10000 100
3 00011 b, 0 10 10
+ by + 1 + 1
19 10011 _—
bsb,bsbyby 10011 11111
31 11111
19 31

(a) (b)

FIGURE 4.2 (a) A number between 1 and 31 can be represented using a 5-digit binary num-
ber. (b) A 5-digit binary number can be obtained by adding binary numbers 1, 10, 100,
1000, or 10000.

100 Chapter 4 Selections

K
Gﬁoiz

two-way if-else statement

4.6 Two-Way 1if-else Statements

A two-way 1f-else statement decides which statements to execute based on whether
the condition is true or false.

A one-way 1f statement takes an action if the specified condition is True. If the condition is
False, nothing is done. But what if you want to take one or more alternative actions when the
condition is False? You can use a two-way 1if-else statement. The actions that a two-way
if-else statement specifies differ based on whether the condition is True or False.

Here is the syntax for a two-way 1f-else statement:

if boolean-expression:
statement(s)-for-the-true-case

else:
statement(s)-for-the-false-case

The flowchart of the statement is shown in Figure 4.3.

I

true boolean- false
N\ expression d
Statement(s) for the true case | Statement(s) for the false case
O)

l

FIGURE 4.3 An 1f-else statement executes statements for the true case if the Boolean
expression evaluates to True; otherwise, statements for the false case are executed.

If the boolean-expression evaluates to True, the statement(s) for the true case are exe-
cuted; otherwise, the statement(s) for the false case are executed. For example, consider the
following code:

if radius >= 0:

area = radius radius * math.pi

print("The area for the circle of radius"™, radius, "is", area)
else:

print("Negative input')

A

If radius >= 0 is true, area is computed and displayed; if it is false, the message
Negative dinput is displayed.

Here is another example of the if-else statement. This one determines whether a num-
ber is even or odd, as follows:

if number % 2 ==
print(number, "is even.")
else:
print(number, "is odd.")

Suppose you want to develop a program for a first grader to practice subtraction. The pro-
gram randomly generates two single-digit integers, numberl and number2, with numberl
>= number?2 and asks the student a question such as "What 1is 9 - 2?7 " After the student
enters the answer, the program displays a message indicating whether it is correct.

4.6 Two-Way 1if-else Statements

The program may work as follows:
Step 1: Generate two single-digit integers for numberl and number2.
Step 2: If numberl < number2, swap numberl with number?2.
Step 3: Prompt the student to answer, “What is numberl — number2?”
Step 4: Check the student’s answer and display whether the answer is correct.
The complete program is shown in Listing 4.4.
LISTING 4.4 SubtractionQuiz.py
import random
1. Generate two random single-digit integers

numberl = random.randint(0, 9)
number2 = random.randint(0, 9)

if numberl < number2:

1

2

3

4

5

6

7 # 2. If numberl < number2, swap numberl with number2

8

9 numberl, number2 = number2, numberl # Simultaneous assignment
10
11

3. Prompt the student to answer "What is numberl - number2?"

12 answer = eval(input("What 1is "+ str(numberl) + " - " +
13 str(number2) + "? "))

14

15 # 4. Check the answer and display the result

16 1if numberl - number2 == answer:

17 print("You are correct!™)

18 else:

19 print("Your answer 1is wrong.\n", numberl, '-',

20 number?2, "is", numberl - number2, '.')

What is 6 - 6? 0 |~Enter
You are correct!

What is 9 - 2?7 5 [oemer

Your answer 1is wrong.

9 -2 1is 7.
line# numberl number2 answer output
4 2
5 9
9 9 2
12 5
19 Your answer is wrong.

9 - 2 is 7.

If numberl < number2, the program uses simultaneous assignment to swap the two

variables (lines 8-9).

4.9 Write an 1 f statement that increases pay by 3% if score is greater than 90, other-

wise it increases pay by 1%.

import random module

random numbers
swap if necessary
get answer

check the answer

2
2

s

ﬁheck
Point

101

102 Chapter 4 Selections

MyProgramminglab’ 4.10 What is the printout of the code in (a) and (b) if number is 30 and 35, respectively?

if number % 2 == 0: if number % 2 ==
print(number, "is even.') print(number, "is even.")
else
print(number, "is odd.") print(number, "is odd.")
(2) (b)

4.7 Nested if and Multi-Way if-elif-else
Statements

fK One 1if statement can be placed inside another it statement to form a nested i f statement.
€7 point

Point The statement in an 1 or if-else statement can be any legal Python statement, including
another if or if-else statement. The inner i f statement is said to be nested inside the outer
if statement. The inner 1f statement can contain another 1f statement; in fact, there is no

nested if statement limit to the depth of the nesting. For example, the following is a nested 1 f statement:

if i > k:
if j > k:
print("i and j are greater than k')
else:
print("i is less than or equal to k")

The if j > k statement is nested inside the if i > k statement.

The nested 1f statement can be used to implement multiple alternatives. The statement
given in Figure 4.4a, for instance, assigns a letter value to the variable grade according to the
score, with multiple alternatives.

if score >= 90.0: if score >= 90.0:
grade = 'A’' grade = 'A'
else: elif score >= 80.0:
if score >= 80.0: Equivalent grade = 'B'

grade = 'B' —_— elif score >= 70.0:
else: grade = 'C'
if score >= 70.0: elif score >= 60.0:
grade = 'C’ grade = 'D'
else: else:
if score >= 60.0: This is better grade = 'F'
grade = 'D'
else:
grade = 'F'
(@) (b)

FIGURE 4.4 A preferred format for multiple alternatives is shown in (b) using a multi-way
if-elif-else statement.

The execution of how this if statement proceeds is shown in Figure 4.5. The first condi-
tion (score >= 90) is tested. If it is True, the grade becomes A. If it is False, the second
condition (score >= 80) is tested. If the second condition is True, the grade becomes B. If
that condition is False, the third condition and the rest of the conditions (if necessary) are
tested until a condition is met or all of the conditions prove to be False. If all of the condi-
tions are False, the grade becomes F. Note that a condition is tested only when all of the con-
ditions that come before it are False.

T

false

4.7 Nested if and Multi-Way 1if-elif-else Statements

true score >= 80 -Lalse
grade = 'A’ \/
true score »= 70 -l
grade = 'B’ \/
true score >= 60 s
grade = 'C' \/
true
grade = 'D'
grade
O

FIGURE 4.5 You can use a multi-way 1f-el1if-else statement to assign a grade.

103

The 1 f statement in Figure 4.4a is equivalent to the 1 f statement in Figure 4.4b. In fact, Figure
4.4b is the preferred coding style for multiple alternative 1f statements. This style, called multi-

way 1T statements, avoids deep indentation and makes the program easier to read. The multi-way

multi-way if statement

1f statements uses the syntax if-el1if-else; elif (short for else if) is a Python keyword.
Now let’s write a program to find out the Chinese zodiac sign for a given year. The Chinese

zodiac sign is based on a 12-year cycle, and each year in this cycle is represented by an animal—

monkey, rooster, dog, pig, rat, ox, tiger, rabbit, dragon, snake, horse, and sheep—as shown in

Figure 4.6.

rooster

monkey

year % 12:<

monkey
:rooster
dog
pig

rat

0ox
tiger
rabbit
dragon
: snake
10: horse

LRI NRLRY O

FIGURE 4.6 The Chinese zodiac is based on a 12-year cycle.

_ 11: sheep

104 Chapter 4 Selections

enter year
12-year cycle
determine zodiac sign

=2
2

ﬁheck
Point

MyProgramminglLab’

The value of year % 12 determines the zodiac sign. 1900 is the year of the rat since
1900 % 12 is 4. Listing 4.5 shows a program that prompts the user to specify a year, and then
it displays the animal for that year.

LisTING 4.5 ChineseZodiac.py

year = eval(input("Enter a year: "))
zodiacYear = year % 12
if zodiacYear ==

print("monkey")

print("rooster™)

elif zodiacYear ==

1
2
3
4
5 elif zodiacYear ==
6
7
8
9

print("dog")

elif zodiacYear ==

print("pig")

11 elif zodiacYear == 4:

12 print("rat')

13 elif zodiacYear ==
14 print("ox"™)

15 elif zodiacYear == 6:
16 print("tiger™)

17 elif zodiacYear ==

print("rabbit™)

19 elif zodiacYear ==

20 print("dragon")
21 elif zodiacYear == 9:
22 print("snake™)

23 elif zodiacYear == 10:

24 print("horse™)
25 else:
26 print("“sheep™)

Enter a year: 1963 [“ener
rabbit

Enter a year: 1877 |~Enter

0Xx
4.11 Suppose x = 3 andy = 2;show the output, if any, of the following code. What is
the outputif x = 3 andy = 4? Whatis the outputif x = 2andy = 2?7 Draw a flow-
chart for the code.
if x > 2:
ify > 2:
Z=X+Yy
print("z 1is", z)
else:
print("x is", x)
4.12 Suppose x = 2andy = 4. Show the output, if any, of the following code. What is

the outputif x = 3andy = 2? Whatis the outputif x = 3 andy = 3? (Hint: Indent

the statement correctly first.)

if x > 2:
ify > 2:
Z=X+Y
print("z 1is", z)
else:
print("x 1is", x)

4.13 What is wrong in the following code?

if score >= 60.0:

grade = 'D'
elif score >= 70.0:
grade = 'C'
elif score >= 80.0:
grade = 'B'
elif score >= 90.0:
grade = "A’

else:
grade = 'F'

4.8 Common Errors in Selection Statements

4.8 Common Errors in Selection Statements

Most common errors in selection statements are caused by incorrect indentation.

Consider the following code in (a) and (b).

radius = -20

if radius >= 0:
area = radius * radius *
print("The area 1is", area)

math.pi

radius = -20

if radius >= 0:
area = radius radius * math.pi
print("The area 1is", area)

* *

(a) Wrong

In (a), the print statement is not in the 1if block. To place it in the i f block, you have to

indent it, as shown in (b).

Consider another example in the following code in (a) and (b). The code in (a) below has
two 1f clauses and one else clause. Which 1 f clause is matched by the else clause? The
indentation indicates that the el se clause matches the first 1 f clause in (a) and the second if

clause in (b).

i=1
j=2
k=3

if i > j:
if i > k:
print('A")
else:
print('B")

(a)

Since (i > j) is false, the code in (a) displays B, but nothing is displayed from the state-

ment in (b).

(b) Correct

i=1
j=2
k =3
if i > j:
if i > k:
print('A")
else:
print('B")
(b)

K
Gﬁoifl);

105

106 Chapter 4 Selections

Tip
Often new programmers write the code that assigns a test condition to a Boolean

ign Bool iabl
assiglt Boolean vaiable variable, like the code in (a):

if number % 2 == 0: Equivalent even = number % 2 ==
even = True _

else:
even = False

(a) (b)

This is shorter 7

The code can be simplified by assigning the test value directly to the variable, as shown in (b).

ﬁheck 4.14 Which of the following statements are equivalent? Which ones are correctly

Point indented?
MyProgramminglab’
if i > 0: if i > 0: if i > 0: if i > 0:
x =0 x =0 x =10 X =0
y=1 y=1 y=1 y =1
else: else: else: else:
y =0 y =0 y=0 y =0
z=0 z=0 z=0 z=0
(a) (b) (©) (d)

4.15 Rewrite the following statement using a Boolean expression:

if count % 10 ==
newLine = True
else:
newLine = False

4.16 Are the following statements correct? Which one is better?

if age < 16: if age < 16:
print("Cannot get a driver's Tlicense") print("Cannot get a driver's Tlicense")
if age >= 16: else:
print("Can get a driver's Ticense") print("Can get a driver's Ticense")
(@) (b)

4.17 What is the output of the following code if number is 14, 15, and 30?

if number % 2 == 0: if number % 2 == 0:
print(number, "is even" print(number, "is even"
if number % 5 == 0: elif number % 5 ==
print(number, "is multiple of 5") print(number, "is multiple of 5")

(a) (b)

4.9 Case Study: Computing Body Mass Index

4.9 Case Study: Computing Body Mass Index

You can use nested if statements to write a program that interprets body mass index. fKey
Body mass index (BMI) is a measure of health based on weight. It can be calculated by taking 6 Point
your weight in kilograms and dividing it by the square of your height in meters. The interpre-
tation of BMI for people 16 years and older is as follows:
BMI Interpretation
Below 18.5 Underweight
18.5-24.9 Normal
25.0-29.9 Overweight
Above 30.0 Obese
Write a program that prompts the user to enter a weight in pounds and height in inches and
then displays the BMI. Note that one pound is 0.45359237 kilograms and one inch is
0.0254 meters. Listing 4.6 gives the program.
LISTING 4.6 ComputeBMI.py
1 # Prompt the user to enter weight in pounds
2 weight = eval(input("Enter weight in pounds: ")) input weight
3
4 # Prompt the user to enter height in inches
5 height = eval(input("Enter height in 1inches: ")) input height
6
7 KILOGRAMS_PER_POUND = 0.45359237 # Constant
8 METERS_PER_INCH = 0.0254 # Constant
9
10 # Compute BMI
11 weightInKilograms = weight * KILOGRAMS_PER_POUND
12 heightInMeters = height * METERS_PER_INCH
13 bmi = weightInKilograms / (heightInMeters * heightInMeters) compute bmi
14
15 # Display result
16 print("BMI is", format(bmi, ".2f")) display output
17 4if bmi < 18.5:
18 print("Underweight™)
19 elif bmi < 25:
20 print("Normal™)
21 elif bmi < 30:
22 print("Overweight™)
23 else:
24 print("Obese")
Enter weight in pounds: 146 |dEnter g
Enter height in inches: 70 |~Enter
BMI is 20.95
Normal

107

108 Chapter 4 Selections

O\ line# weight height weightInKilograms heightInMeters bm-i output

2 146
5 70
11 66.22448602
12 1.778
13 20.9486
16 BMI is 20.95
22 Normal

named constants The two named constants, KILOGRAMS PER_POUND and METERS PER_INCH, are defined
in lines 7-8. Named constants were introduced in Section 2.6. Using named constants here
makes programs easy to read. Unfortunately, there is no special syntax for defining named
constants in Python. Named constants are treated just like variables in Python. This book uses
the format of writing constants in all uppercase letters to distinguish them from variables, and
separates the words in constants with an underscore ().

4.10 Case Study: Computing Taxes

6 fKey You can use nested if statements to write a program for computing taxes.

Point The United States federal personal income tax is calculated based on filing status and taxable
income. There are four filing statuses: single filers, married filing jointly, married filing sepa-
rately, and head of household. The tax rates vary every year. Table 4.2 shows the rates for
2009. If you are, say, single with a taxable income of $10,000, the first $8,350 is taxed at 10%
and the other $1,650 is taxed at 15%. So, your tax is $1,082.50.

TABLE 4.2 2009 U.S. Federal Personal Tax Rates

Marginal

Tax Rate Single Married Filing Jointly Married Filing Separately Head of Household
10% $0 - $8,350 $0 - $16,700 $0 - $8,350 $0 - $11,950
15% $8,351 — $33,950 $16,701 — $67,900 $8,351 — $33,950 $11,951 — $45,500
25% $33,951 — $82,250 $67,901 - $137,050 $33,951 — $68,525 $45,501 — $117,450
28% $82,251 - $171,550 $137,051 — $208,850 $68,526 — $104,425 $117,451 — $190,200
33% $171,551 — $372,950 $208,851 — $372,950 $104,426 — $186,475 $190,201 — $372,950
35% $372,951+ $372,951+ $186,476+ $372,951+

You are to write a program to compute personal income tax. Your program should prompt
the user to enter the filing status and taxable income and then compute the tax. Enter O for
single filers, 1 for married filing jointly, 2 for married filing separately, and 3 for head of
household.

Your program computes the tax for the taxable income based on the filing status. The filing
status can be determined using 1 f statements outlined as follows:

if status == 0:

Compute tax for single filers
elif status ==

Compute tax for married filing jointly
elif status ==

Compute tax for married filing separately
elif status ==

Compute tax for head of household
else:

Display wrong status

4.10 Case Study: Computing Taxes 109

For each filing status there are six tax rates. Each rate is applied to a certain amount of

taxable income. For example, of a taxable income of $400,000 for single filers, $8,350 is
taxed at 10%, (33,950 — 8,350) at 15%, (82,250 — 33,950) at 25%, (171,550 — 82,250) at 28%,
(372,950 — 171,550) at 33%, and (400,000 — 372,950) at 35%.

left as Programming Exercise 4.13 at the end of this chapter.

LisTING 4.7 ComputeTax.py

import sys

Prompt the user to enter filing status

status = eval (input(
"(0-single filer, l-married jointly,\n" +
"2-married separately, 3-head of household)\n"
"Enter the filing status: "))

Prompt the user to enter taxable income
income = eval(input("Enter the taxable income: "))

Compute tax
tax = 0

if status == 0: # Compute tax for single filers
if income <= 8350:
tax = income * 0.10
elif income <= 33950:
tax = 8350 * 0.10 + (income - 8350) * 0.15
elif income <= 82250:

Listing 4.7 gives the solution to compute taxes for single filers. The complete solution is

import sys module

input status

+

input income

compute tax

tax = 8350 * 0.10 + (33950 - 8350) * 0.15 + \

(income - 33950) * 0.25
elif income <= 171550:

tax = 8350 * 0.10 + (33950 - 8350) * 0.15 + \
(82250 - 33950) * 0.25 + (income - 82250) * 0.28

elif income <= 372950:

tax = 8350 * 0.10 + (33950 - 8350) * 0.15 + \
(82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 + \

(income - 171550) * 0.33
else:

tax = 8350 * 0.10 + (33950 - 8350) * 0.15 + \
(82250 - 33950) * 0.25 + (171550 - 82250) * 0.28 + \
(372950 - 171550) * 0.33 + (income - 372950) * 0.35;

elif status == 1: # Compute tax for married file jointly
print("Left as exercise")

elif status == 2: # Compute tax for married separately
print("Left as exercise')

elif status == 3: # Compute tax for head of household
print("Left as exercise")

else:
print("Error: dinvalid status')
sys.exit()

Display the result
print("Tax 1is", format(tax, ".2f"))

exit program

display output

110 Chapter 4 Selections

2

sys.exit()

test all cases

incremental development and
testing

ﬁheck
Point

MyProgramminglLab’

K
Gﬁoi?;;

(0-single filer, 1-married jointly,
2-married separately, 3-head of household)
Enter the filing status: 0O |~Enter

Enter the taxable income: 400000
Tax is 117683.50

line# status income tax output
4 0
10 400000
13 0
17 117683.5
45 Tax is 117683.50

The program receives the filing status and taxable income. The multiple alternative if
statements (lines 15, 34, 36, 38, and 40) check the filing status and compute the tax based on
the filing status.

sys.exit() (line 42) is defined in the sys module. Invoking this function terminates the
program.

To test a program, you need to provide input that covers all cases. For this program, your
input should cover all statuses (0, 1, 2, and 3). For each status, test the tax for each of the six
brackets. So, there are a total of 24 cases.

T Tip

For all programs, you should write a small amount of code and test it before moving on
to add more code. This is called incremental development and testing. This approach
makes debugging easier, because the errors are likely in the new code you just added.

4.18 Are the following two statements equivalent?

if income <= 10000: if income <= 10000:
tax = income * 0.1 tax = income * 0.1
elif income <= 20000: elif income > 10000 and
tax = 1000 + \ income <= 20000:
(income - 10000) * 0.15 tax = 1000 + \
(income - 10000) * 0.15

4.19 What is wrong in the following code?

4.1

income = 232323

if income <= 10000:
tax = income * 0.1

elif income > 10000 and income <= 20000:
tax = 1000 + (income - 10000) * 0.15

print(tax)

| Logical Operators

The logical operators not, and, and or can be used to create a composite condition.

Sometimes, a combination of several conditions determines whether a statement is executed.

You

can use logical operators to combine these conditions to form a compound expression.

4.11 Logical Operators 111

Logical operators, also known as Boolean operators, operate on Boolean values to create a
new Boolean value. Table 4.3 lists the Boolean operators. Table 4.4 defines the not operator,
which negates True to False and False to True. Table 4.5 defines the and operator. The
and of two Boolean operands is true if and only if both operands are true. Table 4.6 defines
the or operator. The or of two Boolean operands is true if at least one of the operands is true.

TaABLE 4.3 Boolean Operators

Operator Description

not logical negation
and logical conjunction
or logical disjunction

TABLE 4.4 Truth Table for Operator not

p not p Example (assume age = 24, gender = 'F')
True False not (age > 18) is False, because (age > 18) is True.
False True not (gender == 'M') is True, because (gender == 'M') is False.

TABLE 4.5 Truth Table for Operator and

P1 P2 p1 and p; Example (assume age = 24, gender = 'F')

False False False (age > 18) and (gender == 'F') is True, because
(age > 18) and (gender == 'F') are both True.

False True False

True False False (age > 18) and (gender !'= 'F') is False, because
(gender !'= 'F') is False.

True True True

TABLE 4.6 Truth Table for Operator or

P1 P2 p: and p; Example (assume age = 24, gender = 'F')

False False False (age > 34) or (gender == 'F') is True, because
(gender == 'F') is True.

False True True

True False True (age > 34) or (gender == 'M'") is False, because
(age > 34) and (gender == 'M') are both False.

True True True

The program in Listing 4.8 checks whether a number is divisible by 2 and 3, by 2 or 3, and
by 2 or 3 but not both.

LISTING 4.8 TestBooleanOperators.py

1 # Receive an input

2 number = eval(input("Enter an integer: ")) input
3

4 if number % 2 == 0 and number % 3 == 0: and
5

print(number, "is divisible by 2 and 3")

112 Chapter 4 Selections

or

De Morgan’s law

if

10 if

number % 2 == 0 or number % 3 ==
print(number, "is divisible by 2 or 3")

(number % 2 == 0 or number % 3 == 0) and \

not (number % 2 == 0 and number % 3 == 0):

print(number, "is divisible by 2 or 3, but not both"™)

Enter
18 is
18 is

an integer: 18

divisible by 2 and 3
divisible by 2 or 3

Enter
15 s
15 s

an integer: 15 [-ener
divisible by 2 or 3

divisible by 2 or 3, but not both

In line 4, number % 2 == 0 and number % 3 == 0 checks whether the number is

divisible by 2 and 4. number % 2 == 0 or number % 3 == 0 (line 7) checks whether
the number is divisible by 2 or 4. The Boolean expression in lines 10-11

(number % 2 == 0 and number % 3 == 0) and
not (number % 2 == 0 and number % 3 == 0)

checks whether the number is divisible by 2 or 3 but not both.

t—_ Note

De Morgan’s law, named after Indian-born British mathematician and logician Augustus De
Morgan (1806-1871), can be used to simplify Boolean expressions. The law states that:

not (conditionl and condition2) isthe same as
not conditionl or not condition2

not (conditionl or condition2) isthe same as
not conditionl and not condition2

So, line I'l in the preceding example,
not (number % 2 == 0 and number % 3 == 0)
can be simplified by using an equivalent expression:
(number % 2 !'= 0 or number % 3 != 0)
As another example,
not (number == 2 or number == 3)
is better written as

number != 2 and number != 3

If one of the operands of an and operator is False, the expression is False; if one of

the operands of an or operator is True, the expression is True. Python uses these proper-
ties to improve the performance of these operators. When evaluating p1 and p2, Python
first evaluates pl and then, if p1 is True, evaluates p2; if pl is False, it does not evalu-
ate p2. When evaluating pl1 or p2, Python first evaluates p1l and then, if p1 is False,

4.12 Case Study: Determining Leap Years 113

evaluates p2; if pl is True, it does not evaluate p2. Therefore, and is referred to as the
conditional or short-circuit AND operator, and or is referred to as the conditional or conditional operator
short-circuit OR operator. short-circuit evaluation

4.20 Assuming that x is 1, show the result of the following Boolean expressions. ﬁh "
ecC

True and (3 > 4) /" Point
not (x > 0) and (x > 0) . "
(x > 0) or (x < 0) MyProgramminglab

(x !'=0) or (x == 0)
(x >=0) or (x < 0)
(x !'= 1) == not (x == 1)
4.21 Write a Boolean expression that evaluates to True if variable num is between 1 and
100.

4.22 Write a Boolean expression that evaluates to True if variable num is between 1 and
100 or the number is negative.

4.23 Assumingx = 4andy = 5, show the result of the following Boolean expressions:
X >y >0
X <=y >= 0
X =y ==
(x '=0) or (x == 0)

4.24 Are the following expressions equivalent?
(a) (x >= 1) and (x < 10)
(b) (1 <= x < 10)

4.25 What is the value of the expression ch >= 'A" and ch <= 'Z'ifchis 'A", "p",
'"E',or '5"?

4.26 Suppose, when you run the following program, you enter input 2, 3, 6 from the
console. What is the output?

X, ¥, z = eval(Cinput("Enter three numbers: "))

print("(x <y and y < z) is", x <y and y < z)
print("(x < yory <z is", x <y ory< z)
print("not (x < y) 1is", not (x < vy))
print("(x <y < z) is", x <y < 2)
print("not(x <y < z) is", not (x <y < 2))
4.27 Write a Boolean expression that evaluates true if age is greater than 13 and less
than 18.

4.28 Write a Boolean expression that evaluates true if weight is greater than 50 or
height is greater than 160.

4.29 Write a Boolean expression that evaluates true if weight is greater than 50 and
height is greater than 160.

4.30 Write a Boolean expression that evaluates true if either weight is greater than 50 or
height is greater than 160, but not both.

4.12 Case Study: Determining Leap Years

A year is a leap year if it is divisible by 4 but not by 100 or if it is divisible by 400. GfKey

You can use the following Boolean expressions to determine whether a year is a leap year: Point

A Teap year 1is divisible by 4

isLeapYear = (year % 4 == 0)

A Teap year 1is divisible by 4 but not by 100
isLeapYear = islLeapYear and (year % 100 != 0)

114 Chapter 4 Selections

A Teap year 1is divisible by 4 but not by 100 or divisible by 400
isLeapYear = islLeapYear or (year % 400 == 0)
or you can combine all these expressions into one, like this:
isLeapYear = (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0)
Listing 4.9 is an example of a program that lets the user enter a year and then determines

whether it is a leap year.

LISTING 4.9 LeapYear.py

input year = eval(input("Enter a year: "))
Check if the year is a Teap year
leap year? isLeapYear = (year % 4 == 0 and year % 100 != 0) or \

(year % 400 == 0)

Display the result
print(year, "is a leap year?", islLeapYear)

cONOYUVI A WN R

display result

E Enter a year: 2008

2008 is a leap year? True

Enter a year: 1900 |dEnter
1900 is a Teap year? False

W

E Enter a year: 2002 [-ener

2002 is a leap year? False

4.13 Case Study: Lottery

Key The lottery program in this case study involves generating random numbers,
6 Point comparing digits, and using Boolean operators.

Suppose you want to develop a program to play a lottery. The program randomly generates a
two-digit number, prompts the user to enter a two-digit number, and determines whether the
user wins according to the following rules:

1. If the user’s input matches the lottery in the exact order, the award is $10,000.

2. If all the digits in the user’s input match all the digits in the lottery number, the award is
$3,000.

3. If one digit in the user’s input matches a digit in the lottery number, the award is $1,000.

The complete program is shown in Listing 4.10.

LISTING 4.10 Lottery.py

import random

Generate a Tlottery number
generate a lottery lottery = random.randint(0, 99)

Prompt the user to enter a guess

guess = eval(input("Enter your lottery pick (two digits): "))

NOoO VI WN R

enter a guess

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Get digits from lottery
lotteryDigitl = lottery // 10

lotteryDigit2 = lottery % 10
Get digits from guess
guessDigitl = guess // 10
guessDigit2 = guess % 10

print("The Tottery number is', Tottery)

Check the guess
if guess == lottery:
print("Exact match: you win $10,000")
elif (qguessDigit2 == lotteryDigitl and \
guessDigitl == lotteryDigit2):
print("Match all digits: you win $3,000")
elif (guessDigitl == lotteryDigitl
or guessDigitl == lotteryDigit2
or guessDigit2 == lotteryDigitl
or guessDigit2 == lotteryDigit2):
print("Match one digit: you win $1,000™)
else:
print("Sorry, no match')

4.13 Case Study: Lottery

Enter your lottery pick (two digits): 45
The lottery number is 12
Sorry, no match

Enter your lottery pick (two digits): 23 ldEnter
The lottery number is 34
Match one digit: you win $1,000

line# 4 7 10 11 14 15

variable

29

lottery 34

guess 23

TotteryDigitl 3

lotteryDigit2 4

guessDigitl 2
guessDigit2 3

output

Match one digit:

you win $1,000

The program generates a lottery number using the random.randint(0, 99) function
(line 4) and prompts the user to enter a guess (line 7). Note that guess % 10 obtains the last
digit from guess and guess // 10 obtains the first digit from guess, since guess is a two-

digit number (lines 14-15).

exact match?

match all digits?

match one digit?

115

116 Chapter4 Selections

K
Gﬁoi?l’:

conditional expression

/3heck
Point

MyProgramminglab’

The program checks the guess against the lottery number in this order:

1. First check whether the guess matches the lottery number exactly (line 20).

2. If not, check whether the reversal of the guess matches the lottery number (lines 22-23).
3. If not, check whether one digit is in the lottery number (lines 25-28).

4. If not, nothing matches and display Sorry, no match (lines 30-31).

4.14 Conditional Expressions

A conditional expression evaluates an expression based on a condition.

You might want to assign a value to a variable that is restricted by certain conditions. For
example, the following statement assigns 1 to y if x is greater than 0, and -1 to y if x is less
than or equal to 0.
if x > 0:
y =1
else:
y = -1

Alternatively, as in this next example, you can use a conditional expression to achieve the
same result.

y =11if x > 0 else -1
Conditional expressions are in a completely different style. The syntax is:
expressionl if boolean-expression else expression2

The result of this conditional expression is expressionl if boolean-expression is
true; otherwise, the result is expression2.

Suppose you want to assign the larger number of variables number1l and number?2 to max.
You can simply write a statement using the conditional expression:

max = numberl if numberl > number2 else number2

For another example, the following statement displays the message number 1is even if
number is even, and otherwise displays number 1is odd.

print(""number is even" if number % 2 == 0 else "number is odd")

4.31 Suppose that when you run the following program you enter the input 2, 3, 6 from
the console. What is the output?

X, ¥, z = eval(input("Enter three numbers: "))
print("sorted” if x <y and y < z else "not sorted")

4.32 Rewrite the following 1 f statements using a conditional expression:

if ages >= 16: if count % 10 == 0:
ticketPrice = 20 print(count)

else: else:
ticketPrice = 10 print(count, end = " ')

4.33 Rewrite the following conditional expressions using if/else statements:

(a) score = 3 * scale if x > 10 else 4 * scale
(b) tax = income * 0.2 if income > 10000 else income * 0.17 + 1000
(¢) print(i if number % 3 == 0 else j)

4.15 Operator Precedence and Associativity

4.15 Operator Precedence and Associativity

Operator precedence and associativity determine the order in which operators are fKey
evaluated. 6 Point

Operator precedence and operator associativity determine the order in which Python evalu- operator precedence
ates operators. Suppose that you have this expression: operator associativity

3+4*4>5% 4+3) -1

What is its value? What is the execution order of the operators?
Arithmetically, the expression in the parentheses is evaluated first. (Parentheses can be
nested, in which case the expression in the inner parentheses is executed first.) When evaluat-
ing an expression without parentheses, the operators are applied according to the precedence
rule and the associativity rule.
The precedence rule defines precedence for operators. Table 4.7 contains the operators you precedence
have learned so far, with the operators listed in decreasing order of precedence from top to
bottom. The logical operators have lower precedence than the relational operators and the
relational operators have lower precedence than the arithmetic operators. Operators with the
same precedence appear in the same group.

TABLE 4.7 Operator Precedence Chart

Precedence Operator

+, = (Unary plus and minus)

not

*,/,//, % (Multiplication, division, integer division, and remainder)
+, - (Binary addition and subtraction)

<, <=, >, >= (Comparison)

==, I= (Equality)

and

\ =, +=, -=, ¥=, /=, //=, %= (Assignment operators)

If operators with the same precedence are next to each other, their associativity determines associativity
the order of evaluation. All binary operators are left-associative. For example, since + and -
are of the same precedence and are left-associative, the expression

is equivalent to

a-b+c-d —/mmmm—— ((a-b) +) -d

Note
Python has its own way to evaluate an expression internally. The result of a Python eval-

. behind the scenes
uation is the same as that of its corresponding arithmetic evaluation.

4.34 List the precedence order of the Boolean operators. Evaluate the following expressions:

True or True and False ﬁhe‘ck
True and True or False Point

4.35 True or false? All the binary operators except = are left-associative.

117

MyProgramminglab’

118 Chapter 4 Selections

K
ke

4.36 Evaluate the following expressions:
2%2-3>2and4-2>75
2 *2-3>20r4-2>15

4.37 Is(x > 0 and x < 10) thesameas ((x > 0) and (x < 10))?Is (x > 0 or
x < 10) thesame as ((x > 0) or (x < 10))?Is(x > 0 or x < 10 and y
< 0) thesameas (x > 0 or (x < 10 and y < 0))?

4.16 Detecting the Location of an Object

Detecting whether an object is inside another object is a common task in game
programming.

In game programming, often you need to determine whether an object is inside another
object. This section gives an example of testing whether a point is inside a circle. The pro-
gram prompts the user to enter the center of a circle, the radius, and a point. The program then
displays the circle and the point along with a message indicating whether the point is inside or
outside the circle, as shown in Figure 4.7a-b.

. % Python Turtle Graphics |

| %% Python Turtle Gra.;)h'lcs

|2

The point is inside the circle

(x2,y2)

The point is outside the circle

=
i

()

(b) (©

FIGURE 4.7 The program displays a circle, a point, and a message indicating whether the point is inside or outside the

circle.

import turtle

enter input

draw a circle

A point is in the circle if its distance to the center of the circle is less than or equal to the
radius of the circle, as shown in Figure 4.7c. The formula for computing the distance is
\/(x2 — x1)? 4+ (y, — yp)? Listing 4.11 gives the program.

LIsTING 4.11 PointInCircle.py

import turtle

1

2

3 x1, yl eval (input("Enter the center of a circle x, y: "))
4 radius eval (input("Enter the radius of the circle: "))

5 x2, y2 = eval(input("Enter a point x, y: "))
6

7

8

9

Draw the circle
turtle.penup(Q) # Pull the pen up
turtle.goto(x1l, yl - radius)
10 turtle.pendown() # Pull the pen down
11 turtle.circle(radius)
12 # Draw the point

Chapter Summary 119

13 turtle.penup() # Pull the pen up
14 turtle.goto(x2, y2)
15 turtle.pendown() # Pull the pen down

16 turtle.begin_fil1() # Begin to fill color in a shape
17 turtle.color('"red")
18 turtle.circle(3)

19 turtle.end_fil10 # Fi11 the shape draw a point
20

21 # Display the status

22 turtle.penup() # Pull the pen up

23 turtle.goto(xl - 70, yl - radius - 20)
24 turtle.pendown()

25

26 d = ((x2 - x1) * (x2 - x1) + (y2 - yl) * (y2 - yl)) ** 0.5 compute distance
27 1if d <= radius:

28 turtle.write("The point 1is inside the circle") in the circle

29 else:

30 turtle.write("The point is outside the circle") not in the circle
31

32 turtle.hideturtle()

33

34 turtle.done() pause

The program obtains the circle’s center location and radius (lines 3—4) and the location of
a point (line 5). It displays the circle (lines 8-11) and the point (lines 13—19). The program
computes the distance between the center of the circle and the point (line 26) and determines
whether the point is inside or outside the circle.

The code in lines 16—19 draws a dot, which can be simplified using the dot method, pre-
sented in Table 3.6, as follows:

turtle.dot(6, "red")

This method draws a red dot with diameter 6.

KEY TERMS

Boolean expressions 92 random module 94
Boolean value 92 selection statements 92
operator associativity 117 short-circuit evaluation 113

operator precedence 117

CHAPTER SUMMARY

I. A Boolean type variable can store a True or False value.

2. The relational operators (<, <=, ==, !=, >, >=), which work with numbers and charac-
ters, yield a Boolean value.

3. The Boolean operators and, or, and not operate with Boolean values and variables.

4. When evaluating p1 and p2, Python first evaluates p1 and then evaluates p2 if p1 is
True; if pl is False, it does not evaluate p2. When evaluating p1 or p2, Python
first evaluates p1 and then evaluates p2 if plis False; if plis True, it does not eval-
uate p2. Therefore, and is referred to as the conditional or short-circuit AND
operator, and or is referred to as the conditional or short-circuit OR operator.

120 Chapter 4 Selections

MyProgramminglab’

think before coding

learn from mistakes

5.

Selection statements are used for programming with alternative courses. There are
several types of selection statements: if statements, if-else statements, nested
if-elif-else statements, and conditional expressions.

The various 1f statements all make control decisions based on a Boolean expression.
Based on the True or False evaluation of the expression, these statements take one

of two possible courses.

The operators in arithmetic expressions are evaluated in the order determined by the
rules of parentheses, operator precedence, and operator associativity.

Parentheses can be used to force the order of evaluation to occur in any sequence.

Operators with higher precedence are evaluated earlier. For operators of the same
precedence, their associativity determines the order of evaluation.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

PROGRAMMING EXERCISES

Pedagogical Note
For each exercise, you should carefully analyze the problem requirements and design
strategies for solving the problem before coding.

Debugging Tip

Before you ask for help, read and explain the program to yourself, and trace it using
several representative inputs by hand or using an IDE debugger. You learn how to pro-
gram by debugging your own mistakes.

Section 4.2

*4.1

(Algebra: solve quadratic equations) The two roots of a quadratic equation, for
example, ax> + bx + ¢ = 0, can be obtained using the following formula:

_ —b+ Vb2 — 4ac —b — Vb? — dac

d =
2a e n 2a

r

b? — 4ac is called the discriminant of the quadratic equation. If it is positive, the
equation has two real roots. If it is zero, the equation has one root. If it is negative,
the equation has no real roots.

Write a program that prompts the user to enter values for a, b, and ¢ and displays
the result based on the discriminant. If the discriminant is positive, display two
roots. If the discriminant is 0, display one root. Otherwise, display The equa-
tion has no real roots. Here are some sample runs.

www.cs.armstrong.edu/liang/py/test.html

Programming Exercises

Enter a, b, c: 1.0, 3, 1 [“ener
The roots are -0.381966 and -2.61803

Enter a, b, C: 1, 2_0, 1 luEnter
The root is -1

Enter a, b, C: 1, 2, 3 IuEnter
The equation has no real roots

*4.2

(Game: add three numbers) The program in Listing 4.1 generates two integers and
prompts the user to enter the sum of these two integers. Revise the program to gen-
erate three single-digit integers and prompt the user to enter the sum of these three
integers.

Sections 4.3-4.8

*4.3

(Algebra: solve 2 X 2 linear equations) You can use Cramer’s rule to solve the
following 2 X 2 system of linear equation:

ax + by = e _ed —bf _af —ec
cx+dy=f * ad — bc Y ad — bc

Write a program that prompts the user to enter a, b, c, d, e, and f and display the
result. If ad — bc is 0, report that The equation has no solution.

Enter a, b, ¢, d, e, f: 9.0, 4.0, 3.0, -5.0, -6.0, -21.0 |uEnter
X is -2.0 and y 1is 3.0

Enter a, b, ¢, d, e, f: 1.0, 2.0, 2.0, 4.0, 4.0, 5.0 I~Enter
The equation has no solution

**4.4

*4.5

(Game: learn addition) Write a program that generates two integers under 100 and
prompts the user to enter the sum of these two integers. The program then reports
true if the answer is correct, false otherwise. The program is similar to Listing 4.1.

(Find future dates) Write a program that prompts the user to enter an integer for
today’s day of the week (Sunday is 0, Monday is 1, ..., and Saturday is 6). Also
prompt the user to enter the number of days after today for a future day and dis-
play the future day of the week. Here is a sample run:

Enter today's day: 1 [“emer
Enter the number of days elapsed since today: 3 [“emer
Today is Monday and the future day is Thursday

L
2

W

121

122 Chapter 4 Selections

B

2

Enter today's day: 0 [“emer
Enter the number of days elapsed since today: 31 [-emer
Today is Sunday and the future day is Wednesday

*4.6

(Health application: BMI') Revise Listing 4.6, ComputeBMI.py, to let users enter
their weight in pounds and their height in feet and inches. For example, if a person
is 5 feet and 10 inches, you will enter 5 for feet and 10 for inches. Here is a sam-
ple run:

Enter weight in pounds: 140 [
Enter feet: 5 I~E"ter

Enter inches: 10 |~Enter

BMI is 20.087702275404553

You are Normal

4.7

*4.8

*4.9

(Financial application: monetary units) Modify Listing 3.4, ComputeChange.py,
to display the nonzero denominations only, using singular words for single units
such as 1 dollar and 1 penny, and plural words for more than one unit such as 2
dollars and 3 pennies.

(Sort three integers) Write a program that prompts the user to enter three integers
and displays them in increasing order.

(Financial: compare costs) Suppose you shop for rice and find it in two different-
sized packages. You would like to write a program to compare the costs of the
packages. The program prompts the user to enter the weight and price of each
package and then displays the one with the better price. Here is a sample run:

Enter weight and price for package 1: 50, 24.59 [Enter
Enter weight and price for package 2: 25, 11.99 |~Enter
Package 1 has the better price.

4.10

(Game: multiplication quiz) Listing 4.4, SubtractionQuiz.py, randomly generates
a subtraction question. Revise the program to randomly generate a multiplication
question with two integers less than 100.

Sections 4.9-4.16

*4.11

4.12

(Find the number of days in a month) Write a program that prompts the user to
enter the month and year and displays the number of days in the month. For exam-
ple, if the user entered month 2 and year 2000, the program should display that
February 2000 has 29 days. If the user entered month 3 and year 2005, the pro-
gram should display that March 2005 has 31 days.

(Check a number) Write a program that prompts the user to enter an integer and
checks whether the number is divisible by both 5 and 6, divisible by 5 or 6, or just
one of them (but not both). Here is a sample run:

Enter an integer: 10 |~Enter

Is 10 divisible by 5 and 6?7 False

Is 10 divisible by 5 or 6?7 True

Is 10 divisible by 5 or 6, but not both? True

*4.13

4.14

**4.15

4.16
*4.17

Programming Exercises

(Financial application: compute taxes) Listing 4.7, ComputeTax.py, gives the
source code to compute taxes for single filers. Complete Listing 4.7 to give the
complete source code for the other filing statuses.

(Game: heads or tails) Write a program that lets the user guess whether a flipped
coin displays the head or the tail. The program randomly generates an integer O or
1, which represents head or tail. The program prompts the user to enter a guess
and reports whether the guess is correct or incorrect.

(Game: lottery) Revise Listing 4.10, Lottery.py, to generate a three-digit lottery
number. The program prompts the user to enter a three-digit number and deter-
mines whether the user wins according to the following rules:

1. If the user input matches the lottery number in the exact order, the award is
$10,000.

2. If all the digits in the user input match all the digits in the lottery number, the
award is $3,000.

3. If one digit in the user input matches a digit in the lottery number, the award is
$1,000.

(Random character) Write a program that displays a random uppercase letter.

(Game: scissor, rock, paper) Write a program that plays the popular scissor-rock-
paper game. (A scissor can cut a paper, a rock can knock a scissor, and a paper can
wrap a rock.) The program randomly generates a number 0, 1, or 2 representing
scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or
2 and displays a message indicating whether the user or the computer wins, loses,
or draws. Here are sample runs:

scissor (0), rock (1), paper (2): 1 |~Enter
The computer 1is scissor. You are rock. You won.

scissor (0), rock (1), paper (2): 2 luEnter
The computer 1is paper. You are paper too. It is a draw.

*4.18

(Financials: currency exchange) Write a program that prompts the user to enter
the currency exchange rate between U.S. dollars and Chinese Renminbi (RMB).
Prompt the user to enter 0 to convert from U.S. dollars to Chinese RMB and 1 for
vice versa. Prompt the user to enter the amount in U.S. dollars or Chinese RMB to
convert it to Chinese RMB or U.S. dollars, respectively. Here are some sample
runs:

Enter the exchange rate from dollars to RMB: 6.81 IdEnter
Enter 0 to convert dollars to RMB and 1 vice versa: 0 ldEnter
Enter the dollar amount: 100 |~Enter

$100.0 is 681.0 yuan

Enter the exchange rate from dollars to RMB: 6.81 lm
Enter 0 to convert dollars to RMB and 1 vice versa: 1 lm
Enter the RMB amount: 10000 |dEnter,

10000.0 yuan is $1468.43

VideoNote
Coffee price

L

2

123

124 Chapter 4 Selections

2

Enter the exchange rate from dollars to RMB: 6.81 IdEnter
Enter O to convert dollars to RMB and 1 vice versa: 5 IdEnter
Incorrect input

**4.19

(Compute the perimeter of a triangle) Write a program that reads three edges for a
triangle and computes the perimeter if the input is valid. Otherwise, display that
the input is invalid. The input is valid if the sum of every pair of two edges is
greater than the remaining edge. Here is a sample run:

Enter three edges: 1, 1, 1 |aEnter,
The perimeter 1is 3

Enter three edges: 1, 3, 1 [-emer
The input is invalid

*4.20

(Science: wind-chill temperature) Exercise 2.9 gives a formula to compute the
wind-chill temperature. The formula is valid for temperatures in the range
between —58°F and 41°F and for wind speed greater than or equal to 2. Write a
program that prompts the user to enter a temperature and a wind speed. The pro-
gram displays the wind-chill temperature if the input is valid; otherwise, it dis-
plays a message indicating whether the temperature and/or wind speed is invalid.

Comprehensive

**4.21

(Science: day of the week) Zeller’s congruence is an algorithm developed by
Christian Zeller to calculate the day of the week. The formula is

h= <q+ L%("H I)J +k+ VJnL L]J +5j>%7
10 4 4

Hm h is the day of the week (0: Saturday, 1: Sunday, 2: Monday, 3: Tuesday,
4: Wednesday, 5: Thursday, 6: Friday).

H q is the day of the month.

B mis the month (3: March, 4: April, ..., 12: December). January and February are
counted as months 13 and 14 of the previous year.

where

B § is the century (ie..| er |)
J1s € cen l]ry 1.€., 100 .

B k is the year of the century (i.e., year % 100).

Write a program that prompts the user to enter a year, month, and day of the
month, and then it displays the name of the day of the week. Here are some sam-
ple runs:

Enter year: (e.g., 2008): 2013 |~Enter
Enter month: 1-12: 1 |~Enter

Enter the day of the month: 1-31: 25 [-emer
Day of the week is Friday

Programming Exercises

Enter year: (e.g., 2008): 2012 [-emer
Enter month: 1-12: 5 [-enter|

Enter the day of the month: 1-31: 12 |-emer
Day of the week is Saturday

*%4.22

(Hint: | n] = n//1 for a positive n. January and February are counted as 13 and 14
in the formula, so you need to convert the user input 1 to 13 and 2 to 14 for the
month and change the year to the previous year.)

(Geometry: point in a circle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the circle centered at (0, 0) with
radius 10. For example, (4, 5) is inside the circle and (9, 9) is outside the circle, as
shown in Figure 4.8a.

y-axis y-axis
9.9)
[]
4,5) (6,4)
° 2,2) | ®
o(?
(0,0) X-axis (0,0) X-axis
(a) (b)
FIGURE 4.8 (a) Points inside and outside of the circle; (b) points inside and outside of the
rectangle.
(Hint: A point is in the circle if its distance to (0, 0) is less than or equal to 10. The
formula for computing the distance is V(x, — x1)* + (v, — y;)>. Test your
program to cover all cases.) Two sample runs are shown next.
Enter a point with two coordinates: 4, 5 IdEnter
Point (4.0, 5.0) is in the circle
Enter a point with two coordinates: 9, 9 IdEnter
Point (9.0, 9.0) is not in the circle
**4.23 (Geometry: point in a rectangle ?) Write a program that prompts the user to enter

a point (x, y) and checks whether the point is within the rectangle centered at
(0, 0) with width 10 and height 5. For example, (2, 2) is inside the rectangle and
(6, 4) is outside the rectangle, as shown in Figure 4.8b. (Hint: A point is in the
rectangle if its horizontal distance to (0, 0) is less than or equal to 10 / 2 and
its vertical distance to (0, 0) is less than or equal to 5.0 / 2. Test your program
to cover all cases.) Here are two sample runs:

Enter a point with two coordinates: 2, 2 |~Enter
Point (2.0, 2.0) is in the rectangle

2

2
=2

125

126 Chapter 4 Selections

2

Enter a point with two coordinates: 6, 4 I~Enter
Point (6.0, 4.0) is not in the rectangle

*%4.24

(Game: pick a card) Write a program that simulates picking a card from a deck of
52 cards. Your program should display the rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King) and suit (Clubs, Diamonds, Hearts, Spades) of the card.
Here is a sample run of the program:

The card you picked is the Jack of Hearts

*4.25

(Geometry: intersecting point) Two points on line 1 are given as (x1, y1) and (x2,
y2) and on line 2 as (x3, y3) and (x4, y4), as shown in Figure 4.9a-b.

(x2,y2) (x2,y2) (x2,y2) (x3,y3)
(x3,¥3)
\
N\ (3, 53)
(x4, y4) \
(x1,y1) (x1,y1) (x4,y4) (x1,y1) (x4, y4)
(a) (b) (©)

FIGURE 4.9 Two lines intersect in (a—b) and two lines are parallel in (c).

The intersecting point of the two lines can be found by solving the following lin-
ear equation:

O = y)x — (xp —x)y = (1 — y)x; — (x1 — X2
(3 = yax — (x3 = x4)y = (y3 = ya)x3z — (X3 — x4)y3

This linear equation can be solved using Cramer’s rule (see Exercise 4.3). If the
equation has no solutions, the two lines are parallel (Figure 4.9c). Write a program
that prompts the user to enter four points and displays the intersecting point. Here
are sample runs:

Enter x1, yl, x2, y2, x3, y3, x4, y4:
2! 2! 51 _1, 4, 2, —1, —2 I.JEnter
The intersecting point is at (2.88889, 1.1111)

Enter x1, yl, x2, y2, x3, y3, x4, y4:
2’ 2! 7! 6y 4; 2, —1, —2 IuEnter
The two Tines are parallel

4.26

(Palindrome number) Write a program that prompts the user to enter a three-digit
integer and determines whether it is a palindrome number. A number is a palindrome

Programming Exercises 127

if it reads the same from right to left and from left to right. Here is a sample run of
this program:

Enter a three-digit integer: 121 [“ener E

121 is a palindrome

Enter a three-digit integer: 123 [“emer g

123 1is not a palindrome

**%4.27 (Geometry: points in triangle?) Suppose a right triangle is placed in a plane as
shown below. The right-angle point is at (0, 0), and the other two points are at
(200, 0), and (0, 100). Write a program that prompts the user to enter a point with
x- and y-coordinates and determines whether the point is inside the triangle. Here
are some sample runs:

(0, 100)
op2
opl
[(0.0) (200, 0)
Enter a point's x- and y-coordinates: 100.5, 25.5 |~Enter E
The point is in the triangle

Enter a point's x- and y-coordinates: 100.5, 50.5 g

The point is not in the triangle

*%4.28 (Geometry: two rectangles) Write a program that prompts the user to enter the
center Xx-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as shown
in Figure 4.10. Test your program to cover all cases.

wl wl
w2
w2
M| e * (x1,y1) h1 * (x1,y1)
(x2,y2) h2 °
(x2,y2)
T
(a) (b)

FIGURE 4.10 (a) A rectangle is inside another one. (b) A rectangle overlaps another one.

128 Chapter 4 Selections

Here are some sample runs:

2

Enter rl's center x-, y-coordinates, width, and height:
2.5, 4, 2.5, 43 |-Enter

Enter r2's center x-, y-coordinates, width, and height:
1.5, 5, 0.5, 3 |~Enter

r2 is inside ril

Enter rl's center x-, y-coordinates, width, and height:
1, 2, 3, 5.5 |~Enter

Enter r2's center x-, y-coordinates, width, and height:
3, 4, 4.5, 5 IdEnter

r2 overlaps ril

2

Enter rl's center x-, y-coordinates, width, and height:
1, 2, 3, 3 [oemer

Enter r2's center x-, y-coordinates, width, and height:
40, 45, 3, 2 |vener

r2 does not overlap rl

*%4.29

(Geometry: two circles) Write a program that prompts the user to enter the center
coordinates and radii of two circles and determines whether the second circle is
inside the first or overlaps with the first, as shown in Figure 4.11. (Hint: circle2 is
inside circlel if the distance between the two centers <= | r1 - r2| and circle2
overlaps circlel if the distance between the two centers <= rl + r2. Test your
program to cover all cases.)

rl

(x1,y1)

(a) (b)

FIGUre 4.11 (a) A circle is inside another circle. (b) A circle overlaps another circle.

Here are some Sample runs:

Enter circlel's center x-, y-coordinates, and radius:
0.5, 5.1, 13 [-ener
Enter circle2's center x-, y-coordinates, and radius:

1, 1.7, 4.5 [oemer

circle2 1is inside circlel

2

Enter circlel's center x-, y-coordinates, and radius:
4.4, 5.7, 5.5 IuEnter

Enter circle2's center x-, y-coordinates, and radius:
6.7, 3.5, 3 |dEnter

circle2 overlaps circlel

Programming Exercises

Enter circlel's center x-, y-coordinates, and radius:
4.4, 5.5, 1 |-ener g
Enter circle2's center x-, y-coordinates, and radius:

5.5, 7.2, 1 |~Enter

circle2 does not overlap circlel

*4.30 (Current time) Revise Programming Exercise 2.18 to display the hour using a 12-
hour clock. Here is a sample run:

Enter the time zone offset to GMT: -5 |dEnter g

The current time 1is 4:50:34 AM

*4.31 (Geometry: point position) Given a directed line from point p0(x0, y0) to p1(x1,
yl), you can use the following condition to decide whether a point p2(x2, y2) is
on the left side of the line, on the right side of the line, or on the same line (see
Figure 4.12):

>0 p2is on the left side of the line
x1 = x0)*(y2 — y0) — (x2 — x0)*(yl — y0) { =0 p2is on the same line
<0 p2is on the right side of the line

1 1 1
2 p p p
[J
p2 p2
[
pO p0 p0
(a) (b) ©

FIGURE 4.12 (a) p2 is on the left side of the line. (b) p2 is on the right side of the line. (c) p2
is on the same line.

Write a program that prompts the user to enter the x- and y-coordinates for the
three points p0, pl, and p2 and displays whether p2 is on the left side of the line
from pO to p1, on the right side, or on the same line. Here are some sample runs:

Enter coordinates for the three points p0, pl, and p2: |
3.4, 2, 6.5, 9.5, -5, 4 [semer E
p2 is on the left side of the 1line from p0 to pl

Enter coordinates for the three points p0O, pl, and p2: a3
1, 1, 5, 5’ 2, 2 luEnter E
p2 is on the same Tine from p0 to pl

Enter coordinates for the three points p0, pl, and p2: |
3.4, 2, 6.5, 9.5, 5, 2.5 E
p2 is on the right side of the 1line from p0 to pl

129

130 Chapter 4 Selections

o

L

*4.32 (Geometry: point on line segment) Exercise 4.31 shows how to test whether a point
is on an unbounded line. Revise Exercise 4.31 to test whether a point is on a line
segment. Write a program that prompts the user to enter the x- and y-coordinates
for the three points p0, pl, and p2 and displays whether p2 is on the line segment
from p0 to pl. Here are some sample runs:

Enter coordinates for the three points p0, pl, and p2:
1, 1, 2.5, 2.5, 1.5, 1.5 IdEnter
(1.5, 1.5) is on the 1line segment from (1.0, 1.0) to (2.5, 2.5)
Enter coordinates for the three points p0, pl, and p2:
1, 1, 2, 2, 3.5, 3.5 |-emer
(3.5, 3.5) is not on the line segment from (1.0, 1.0) to
(2.0, 2.0)

*4.33 (Decimal to hex) Write a program that prompts the user to enter an integer
between 0 and 15 and displays its corresponding hex number. Here are some sam-
ple runs:

Enter a decimal value (0 to 15): 11 |~Enter
The hex value is B
Enter a decimal value (0 to 15): 5 [“emer
The hex value is 5
Enter a decimal value (0 to 15): 31 [-emer
Invalid input
*4.34 (Hex to decimal) Write a program that prompts the user to enter a hex character

and displays its corresponding decimal integer. Here are some sample runs:

Enter a hex character: A |~Enter
The decimal value is 10

Enter a hex character: a |-enter
The decimal value is 10

Enter a hex character: 5

The decimal value is 5

Programming Exercises 131

Enter a hex character: G g

Invalid input

*4.35 (Turtle: point position) Write a program that prompts the user to enter the x- and
y-coordinates for the three points p0O, pl, and p2, and displays a message to
indicate whether p2 is on the left side, the right side, or on the line from p0 to pl1,
as shown in Figure 4.13. See Exercise 4.31 for determining the point position.

: | .
4 -
g =0
O (100, 40} wm_—) p2 (50, 50)
pZ s on the left skle of e In Y —_— _p2{00,20)
//
/
7
ymu/o._soju .
p2 ia on the right side of the inc
=}
K D —— N I K | o
(a) (b) (©

FIGURE 4.13 The program displays the point position graphically.

*%4.36 (Turtle: point in a circle?) Modify Listing 4.11 to let the program randomly gen-
erate a point within the square whose center is the same as the circle center and
whose side is the diameter of the circle. Draw the circle and the point. Display a
message to indicate whether the point is inside the circle.

**4.37 (Turtle: point in a rectangle?) Write a program that prompts the user to enter a
point (x, y) and checks whether the point is within the rectangle centered at (0,
0) with width 100 and height 50. Display the point, the rectangle, and a message
indicating whether the point is inside the rectangle in the window, as shown in
Figure 4.14.

& Python Turtle Graphics %Iﬂlﬂlg*

T T

The point iz inside the rectangle

[

(a) (b)

FIGURE 4.14 The program displays the rectangle, a point, and a message whether a point is
in or outside of the rectangle.

*4.38 (Geometry: two rectangles) Write a program that prompts the user to enter the
center x-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as shown
in Figure 4.15.

132 Chapter 4 Selections

12 does not overlap r1

] |—|m

(a) | (b)

FIGURE 4.15 The program checks whether a rectangle is inside another one, overlaps another one, or does not overlap.

*4.39 (Turtle: two circles) Write a program that prompts the user to enter the center
coordinates and radii of two circles and determines whether the second circle is
inside the first or overlaps with the first, as shown in Figure 4.16.

cle is inside circlel

(®)

FIGURE 4.16 The program displays two circles and a status message.

LooPS

Objectives

To write programs for executing statements repeatedly by using
awhileloop (§5.2).

To develop loops following the loop design strategy (§§5.2.1-5.2.3).
To control a loop with the user’s confirmation (§5.2.4).
To control a loop with a sentinel value (§5.2.5).

To obtain a large amount of input from a file by using input redirection
instead of typing from the keyboard and to save output to a file by using
output redirection (§5.2.6).

To use for loops to implement counter-controlled loops (§5.3).
To write nested loops (§5.4).
To learn the techniques for minimizing numerical errors (§5.5).

To learn loops from a variety of examples (GCD, FutureTuition,
MonteCarloSimulation, PrimeNumber) (§§5.6, 5.8).

To implement program control with break and continue (§5.7).

B To use a loop to simulate a random walk (§5.9).

CHAPTER

134 Chapter5 Loops

K
Gﬁoi?;;

problem
why loop?
loop

loop body

condition-controlled loop
count-controlled loop

K
ke

wh1iTe loop

iteration

Toop-continuation-
condition

VideoNote
while loop

5.1 Introduction

A loop can be used to tell a program to execute statements repeatedly.

Suppose that you need to display a string (e.g., Programming is fun!) 100 times. It would
be tedious to type the statement 100 times:

print("Programming is fun!'")

100 times print("Programming is fun!'")

print("Programming is fun!'")

So, how do you solve this problem?

Python provides a powerful construct called a loop, which controls how many times in suc-
cession an operation (or a sequence of operations) is performed. By using a loop statement,
you don’t have to code the print statement a hundred times; you simply tell the computer to
display a string that number of times. The loop statement can be written as follows:

count = 0

while count < 100:
print("Programming is fun!'")
count = count + 1

The variable count is initially 0. The loop checks whether count < 100 is true. If so, it
executes the loop body—the part of the loop that contains the statements to be repeated—to
display the message Programming is fun! and increments count by 1. It repeatedly exe-
cutes the loop body until count < 100 becomes false (i.e., when count reaches 100). At
this point the loop terminates and the next statement after the loop statement is executed.

A loop is a construct that controls the repeated execution of a block of statements. The con-
cept of looping is fundamental to programming. Python provides two types of loop state-
ments: while loops and for loops. The while loop is a condition-controlled loop; it is
controlled by a true/false condition. The for loop is a count-controlled loop that repeats a
specified number of times.

5.2 Thewhile Loop

A while loop executes statements repeatedly as long as a condition remains true.

The syntax for the while loop is:

while loop-continuation-condition:
Loop body
Statement(s)

Figure 5.1a shows the while-loop flowchart. A single execution of a loop body is called an
iteration (or repetition) of the loop. Each loop contains a Toop-continuation-condition, a
Boolean expression that controls the body’s execution. It is evaluated each time to determine if the
loop body should be executed. If its evaluation is True, the loop body is executed; otherwise, the
entire loop terminates and the program control turns to the statement that follows the while loop.

The loop that displays Programming is fun! 100 times is an example of a whi1e loop.
Its flowchart is shown in Figure 5.1b. The Toop-continuation-condition is count <
100 and the loop body contains two statements:

loop-continuation-condition

count = 0

while count < 100:

print("Programming is fun!™)

} loop body
count = count + 1

5.2 The while Loop

i count = OI

loop-
continuation-
condition?

false count < 1007 false

true
Statement(s) | print("Programming is fun!™)
(loop body) count = count + 1

(a) A while loop (b) A while loop example

FiGure 5.1 The while loop repeatedly executes the statements in the loop body as long as
the Toop-continuation-condition evaluates to True.

Here is another example illustrating how a loop works:

sum = 0
i=1
while i < 10:
sum = sum + i
i=1+1
print("sum is", sum) # sum is 45

If i < 10is true, the program adds 1 to sum. The variable 1 is initially set to 1, then incre-
mented to 2, 3, and so on, up to 10. When 1 is 10, i < 10 is false, and the loop exits. So sum
isl+2+3+ ... +9 =45,

Suppose the loop is mistakenly written as follows:

sum = 0

i=1

while i < 10:
sum = sum + i

i=1+1

Note that the entire loop body must be indented inside the loop. Here the statement i = i + 1
is not in the loop body. This loop is infinite, because 1 is always 1 and i < 10 will always be true.

T Note

Make sure that the Toop-continuation-condition eventually becomes false so
that the loop will terminate. A common programming error involves infinite loops (i.e.,
the loop runs forever). If your program takes an unusual long time to run and does not
stop, it may have an infinite loop. If you run the program from the command window,
press CTRL+C to stop it.

T Caution

Programmers often mistakenly execute a loop one time more or less than intended. This
kind of mistake is commonly known as the off-by-one error. For example, the following
loop displays Programming is fun 101 times rather than 100 times. The error lies
in the condition, which should be count < 100 rather than count <= 100.

count = 0

while count <= 100 :
print("Programming is fun!')
count = count + 1

AV Cooﬁ

infinite loop

off-by-one error

135

136 Chapter5 Loops

random numberl
random number2

swap numbers

enter answer

check answer
enter answer again

intelligent guess

Recall that Listing 4.4, SubtractionQuiz.py, gives a program that prompts the user to enter
an answer for a question on subtraction. Using a loop, you can now rewrite the program to let
the user enter a new answer until it is correct, as shown in Listing 5.1.

LIsTING 5.1 RepeatSubtractionQuiz.py

import random

1

2

3 # 1. Generate two random single-digit integers
4 numberl = random.randint(0, 9)

5 number2 = random.randint(0, 9)
6

7

8

9

2. If numberl < number2, swap numberl with number?2
if numberl < number2:
numberl, number2 = number2, numberl

11 # 3. Prompt the student to answer "What is numberl - number2?"
12 answer = eval(input("What is " + str(numberl) + " - "

13 + str(number2) + "7 "))

14

15 # 4. Repeatedly ask the question until the answer 1is correct
16 while numberl - number2 != answer:

17 answer = eval(input("Wrong answer. Try again. What is "
18 + str(numberl) + " - " + str(number2) + "7 "))

19

20 print("You got it!")

What is 4 - 3? 4 [-emer

Wrong answer. Try again. What is 4 - 3?7 5
Wrong answer. Try again. What is 4 - 3?7 1
You got it!

The loop in lines 1618 repeatedly prompts the user to enter an answer when numberl -
number2 != answer is true. Once numberl - number2 != answer is false, the loop exits.

5.2.1 Case Study: Guessing Numbers

The problem is to guess what number a computer has in mind. You will write a program that
randomly generates an integer between 0 and 100, inclusive. The program prompts the user to
enter numbers continuously until it matches the randomly generated number. For each user
input, the program reports whether it is too low or too high, so the user can choose the next
input intelligently. Here is a sample run:

Guess a magic number between 0 and 100
Enter your guess: 50 I~Enter

Your guess 1is too high

Enter your guess: 25 |uEnter

Your guess 1is too Tlow

Enter your guess: 42

Your guess 1is too high

Enter your guess: 39 |uEnter

Yes, the number is 39

The magic number is between 0 and 100. To minimize the number of guesses, enter 50
first. If your guess is too high, the magic number is between 0 and 49. If your guess is too low,

5.2 The while Loop 137

the magic number is between 51 and 100. So, after one guess, you can eliminate half the
numbers from further consideration.
How do you write this program? Do you immediately begin coding? No. It is important to
think before coding. Think about how you would solve the problem without writing a pro- think before coding
gram. You need to first generate a random number between 0 and 100, inclusive, then prompt
the user to enter a guess, and then compare the guess with the random number.
It is a good practice to code incrementally—that is, one step at a time. For programs code incrementally
involving loops, if you don’t know how to write a loop right away, you might first write the
program so it executes the code once, and then figure out how to execute it repeatedly in a
loop. For this program, you can create an initial draft, as shown in Listing 5.2.

LISTING 5.2 GuessNumberOneTime.py

1 import random

2

3 # Generate a random number to be guessed

4 number = random.randint(0, 100) generate a number
5

6 print("Guess a magic number between 0 and 100")

7

8 # Prompt the user to guess the number

9 guess = eval(input("Enter your guess: ")) enter a guess
10

11 if guess == number:

12 print("Yes, the number 1is", number) correct guess?
13 elif guess > number:

14 print("Your guess is too high") too high?

15 else:

16 print("Your guess 1is too Tow'") too low?

When this program runs, it prompts the user to enter a guess only once. To let the user
enter a guess repeatedly, you can change the code in lines 11-16 to create a loop, as follows:

1 while True:

2 # Prompt the user to guess the number

3 guess = eval(input("Enter your guess: "))
4

5 if guess == number:

6 print("Yes, the number is", number)

7 elif guess > number:

8 print("Your guess is too high")

9 else:
10 print("Your guess 1is too Tow'")

This loop repeatedly prompts the user to enter a guess. However, the loop still needs to ter-
minate; when guess matches number, the loop should end. So, revise the loop as follows:

1 while guess != number:

2 # Prompt the user to guess the number

3 guess = eval(input("Enter your guess: "))
4

5 if guess == number:

6 print("Yes, the number 1is", number)

7 elif guess > number:

8 print("Your guess 1is too high')

9 else:
10 print("Your guess is too low")

The complete code is given in Listing 5.3.

138 Chapter 5 Loops

generate a number

enter a guess

too high?

too low?

LISTING 5.3 GuessNumber.py

1 import random
2
3 # Generate a random number to be guessed
4 number = random.randint(0, 100)
5
6 print("Guess a magic number between 0 and 100")
7
8§ guess = -1
9 while guess != number:
10 # Prompt the user to guess the number
11 guess = eval (input("Enter your guess: "))
12
13 if guess == number:
14 print("Yes, the number is", number)
15 elif guess > number:
16 print("Your guess is too high")
17 else:
18 print("Your guess is too low")
line# number guess output
4 39
8 -1
iteration | i 20
16 Your guess is too high
iteration 2 i 25
18 Your guess is too low
iteration 3 i we
16 Your guess is too high
iteration 4 i 39
14 Yes, the number is 39

The program generates the magic number in line 4 and prompts the user to enter a guess
continuously in a loop (lines 9-18). For each guess, the program determines whether
the user’s number is correct, too high, or too low (lines 13—18). When the guess is correct,
the program exits the loop (line 9). Note that guess is initialized to -1. This is to avoid
initializing it to a value between 0 and 100, because that could be the number to be
guessed.

5.2.2 Loop Design Strategies

Writing a loop that works correctly is not an easy task for novice programmers. Consider the
three steps involved when writing a loop:

Step 1: Identify the statements that need to be repeated.
Step 2: Wrap these statements in a loop like this:

while True:
Statements

5.2 The while Loop 139

Step 3: Code the loop-continuation-condition and add appropriate statements for
controlling the loop.

while loop-continuation-condition:
Statements
Additional statements for controlling the loop

5.2.3 Case Study: Multiple Subtraction Quiz

The subtraction quiz program in Listing 4.4, SubtractionQuiz.py, generates just one question
for each run. You can use a loop to generate questions repeatedly. How do you write the code
to generate five questions? Follow the loop design strategy. First, identify the statements that
need to be repeated. These are the statements for obtaining two random numbers, prompting
the user with a subtraction question, and grading the question. Second, wrap the statements in
a loop. Third, add a loop-control variable and the loop-continuation-condition to execute the
loop five times.

Listing 5.4 is a program that generates five questions and, after a student answers all of
them, reports the number of correct answers. The program also displays the time spent on the
test, as shown in the sample run.

LISTING 5.4 SubtractionQuizLoop.py

1 import random

2 import time

3

4 correctCount = 0 # Count the number of correct answers correct count

5 count =0 # Count the number of questions total count

6 NUMBER_OF_QUESTIONS = 5 # Constant

7

8 startTime = time.time() # Get start time get start time

9
10 while count < NUMBER_OF_QUESTIONS: loop
11 # Generate two random single-digit integers
12 numberl = random.randint(0, 9)
13 number2 = random.randint(0, 9)
14
15 # If numberl < number2, swap numberl with number2
16 if numberl < number2:
17 numberl, number2 = number2, numberl
18
19 # Prompt the student to answer "What is numberl - number2?"
20 answer = eval(input("What 1is " + str(numberl) + " - " + display a question
21 str(number2) + "? "))
22
23 # Grade the answer and display the result
24 if numberl - number2 == answer: grade an answer
25 print("You are correct!')
26 correctCount += 1 increase correct count
27 else:
28 print("Your answer 1is wrong.\n'", numberl, "-",
29 number2, "1is", numberl - number2)
30
31 # Increase the count
32 count += 1 increase control variable
33
34 endTime = time.time() # Get end time get end time
35 testTime = int(endTime - startTime) # Get test time test time
36 print("Correct count 1is", correctCount, "out of", display result

37 NUMBER_OF_QUESTIONS, "\nTest time 1is'", testTime, "seconds')

140 Chapter 5 Loops

2

confirmation

sentinel value

sentinel-controlled loop

What is 1 - 1? 0 luEnter
You are correct!

What is 7 - 27 5 [oemer]
You are correct!

What is 9 - 3?7 4 l‘—‘Enter
Your answer is wrong.
9 -31is6

What is 6 - 67 0 ldEnter
You are correct!

What is 9 - 67 2 [“emer

Your answer is wrong.
9 - 6 1is 3

Correct count is 3 out of 5
Test time is 10 seconds

The program uses the control variable count to control the execution of the loop. count
is initially O (line 5) and is increased by 1 in each iteration (line 32). A subtraction question is
displayed and processed in each iteration. The program obtains the time before the test starts
in line 8 and the time after the test ends in line 34, and computes the test time in seconds in
line 35. The program displays the correct count and test time after all the quizzes have been
taken (lines 36-37).

5.2.4 Controlling a Loop with User Confirmation

The preceding example executes the loop five times. If you want the user to decide whether to
take another question, you can offer a user confirmation. The template of the program can be
coded as follows:

continuelLoop = 'Y’
while continuelLoop == "Y' :
Execute the Toop body once

Prompt the user for confirmation
continuelLoop = input("Enter Y to continue and N to quit: ")

You can rewrite Listing 5.4 with user confirmation to let the user decide whether to
advance to the next question.

5.2.5 Controlling a Loop with a Sentinel Value

Another common technique for controlling a loop is to designate a special input value, known
as a sentinel value, which signifies the end of the input. A loop that uses a sentinel value in
this way is called a sentinel-controlled loop.

The program in Listing 5.5 reads and calculates the sum of an unspecified number of inte-
gers. The input O signifies the end of the input. You don’t need to use a new variable for each
input value. Instead, use a variable named data (line 1) to store the input value and use a vari-
able named sum (line 5) to store the total. Whenever a value is read, assign it to data (line 9)
and add it to sum (line 7) if it is not zero.

5.2 The while Loop

LISTING 5.5 SentinelValue.py

data = eval(input("Enter an integer (the input ends " + input data
"if qit dis 0): "))

Keep reading data until the input is 0

while data != 0: loop
sum += data

1
2
3
4
5 sum =0
6
7
8
9

data = eval(input("Enter an 1integer (the input ends +

10 "if it is 0): "))
11
12 print("The sum is", sum) output result
Enter an integer (the input ends if it is 0): 2 IuEnter E
Enter an integer (the input ends if it is 0): 3 IdEnter
Enter an integer (the input ends if it is 0): 4 I~Enter
Enter an integer (the input ends if it is 0): O |~Enter
The sum is 9
line# data sum output O\
1 2
5 0
iteration | 7
9 3
iteration 2 i 2
9 4
iteration 3 7 9
9 0
12 The sum is 9

If data is not 0, it is added to the sum (line 7) and the next item of input data is read (lines
9-10). If data is 0, the loop body is no longer executed and the whi1e loop terminates. The
input value 0 is the sentinel value for this loop. Note that if the first input read is 0, the loop
body never executes, and the resulting sum is 0.

T Caution

Don't use floating-point values for equality checking in a loop control. Since those values are

approximated, they could lead to imprecise counter values. This example uses int value for numeric error
data. Consider the following code for computingl + 0.9 + 0.8 + ... + 0.1
item = 1
sum = 0
while item != 0: # No guarantee item will be 0
sum += item
item -= 0.1

print(sum)

141

142 Chapter 5 Loops
The variable item starts with 1 and is reduced by 0. 1 every time the loop body is
executed. The loop should terminate when item becomes 0. However, there is no guar-
antee that item will be exactly 0, because the floating-point arithmetic is approximated.
This loop seems okay on the surface, but it is actually an infinite loop.
5.2.6 Input and Output Redirections

input redirection

output redirection

/Iheck
Point

MyProgramminglLab’

In Listing 5.5, if you have a lot of data to enter, it would be cumbersome to type all the entries
from the keyboard. You can store the data in a text file (named input.txt, for example) and run
the program by using the following command:

python SentinelValue.py < input.txt

This command is called input redirection. Instead of having the user type the data from the
keyboard at runtime, the program takes the input from the file input.txt. Suppose the file con-
tains the following numbers, one number per line:

O~ wWN

The program should get sum to be 9.
Similarly, output redirection can send the output to a file instead of displaying it on the
screen. The command for output redirection is:

python Script.py > output.txt

Input and output redirection can be used in the same command. For example, the following
command gets input from input.txt and sends output to output.txt:

python SentinelValue.py < input.txt > output.txt
Run the program and see what contents show up in output.txt.

5.1 Analyze the following code. Is count < 100 always True, always False, or some-
times True or sometimes False at Point A, Point B, and Point C?

count = 0

while count < 100:
Point A
print("Programming is fun!'")
count += 1
Point B

Point C

5.2 What is wrong if guess is initialized to 0 in line 8 in Listing 5.3?

5.3 How many times are the following loop bodies repeated? What is the printout of each

loop?
i=1 i=1 i=1
while i < 10: while i < 10: while i < 10:
if 1% 2 == if 1% 2 == if 1% 2 ==
print(i) print(i) print(i)
i+=1 i+=1

()

(b)

©

5.4 Show the errors in the following code:

5.3 The for Loop 143

count = 0
while count < 100:
print(count)

count = 0
while count < 100:
print(count)

count = 0
while count < 100:
count += 1

count -= 1

(a) (b) ()

5.5 Suppose the inputis 2 3 4 5 0 (one number per line). What is the output of the fol-
lowing code?

number = eval(input("Enter an integer: "))
max = number

while number != 0:
number = eval(input("Enter an integer: "))
if number > max:
max = number

print("max is", max)
print("number", number)

5.3 The for Loop

A Python for loop iterates through each value in a sequence.

K
ke

Often you know exactly how many times the loop body needs to be executed, so a control
variable can be used to count the executions. A loop of this type is called a counter-controlled counter-controlled loop
loop. In general, the loop can be written as follows:

i = initialValue # Initialize loop-control variable
while i < endvalue:

Loop body

i +4= 1 # Adjust Toop-control variable

A for loop can be used to simplify the preceding loop:

for i in range(initialValue, endvalue):
Loop body

In general, the syntax of a for loop is:

for var 1in sequence:
Loop body

A sequence holds multiple items of data, stored one after the other. Later in the book, we

VideoNote
for loop

for loop

will introduce strings, lists, and tuples. They are sequence-type objects in Python. The vari-
able var takes on each successive value in the sequence, and the statements in the body of the
loop are executed once for each value.

The function range(a, b) returns the sequence of integers a,a + 1,...b -

1. For example,

2,and b -

range(a, b) function

144 Chapter5 Loops

=

range (a) function
range(a, b, k) function
step value

=

count backward

ﬁheck
Point

MyProgramminglab’

>>> for v in range(4, 8):
print(v)

NOoO v A -

>>>

The range function has two more versions. You can also use range(a) or range(a, b,
k). range(a) is the same as range (0, a). kisused as step value in range(a, b, k). The
first number in the sequence is a. Each successive number in the sequence will increase by the
step value k. b is the limit. The last number in the sequence must be less than b. For example,

>>> for v in range(3, 9, 2):
print(v)

N U W o

>>>

The step value in range (3, 9, 2) is 2, and the limit is 9. So, the sequence is 3, 5, and 7.

The range(a, b, k) function can count backward if k is negative. In this case, the
sequence is still a, a + k, a + 2k, and so on for a negative k. The last number in the
sequence must be greater than b. For example,

>>> for v in range(5, 1, -1):
print(v)

N WA U

>>>

t— Note

The numbers in the range function must be integers. For example, range(1.5,
8.5), range(8.5),orrange(1.5, 8.5, 1) would be wrong.

5.6 Suppose the inputis 2 3 4 5 0 (one number per line). What is the output of the fol-
lowing code?

number = 0
sum = 0

for count 1in range(5):
number = eval(input("Enter an integer: "))
sum += number

print("sum is", sum)
print("count is", count)

5.7 Canyou convert any for loop to awhile loop? List the advantages of using for loops.

5.4 Nested Loops 145

5.8 Convert the following for loop statement to a while loop:

sum = 0
for i 1in range(1001):
sum = sum + i

5.9 Can you always convert any while loop into a for loop? Convert the following
whiTle loop into a for loop.

i =
Su

=

0

E

while sum < 10000:
sum = sum + 1
i+=1

5.10 Count the number of iterations in the following loops:

count = 0 for count in range(n):
while count < n: print(count)
count += 1
(a) (b)
count = 5 count = 5
while count < n: while count < n:
count += 1 count = count + 3

© (d)

5.4 Nested Loops

A loop can be nested inside another loop. GfKey

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is Point
repeated, the inner loops are reentered and started anew. nested loops

Listing 5.6 presents a program that uses nested for loops to display a multiplication table.

LISTING 5.6 MultiplicationTable.py

1 print(” Multiplication Table") table title

2 # Display the number title

3 print(" |", end = '")

4 for j 1in range(l, 10):

5 print("™ ", j, end = '")

6 print() # Jump to the new Tine

7 print(")

8

9 # Display table body

10 for i 1in range(l, 10): table body
11 print(i, "|", end = "")

12 for j in range(l, 10): nested loop
13 # Display the product and align properly

14 print(format(i * j, "4d"), end = "")

15 print() # Jump to the new line display a line

146 Chapter5 Loops

=

end =

ﬁheck
Point

MyProgramminglab’

Multiplication Table

1 2 3 4 5 6 7 8 9
1| 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3| 3 6 9 12 15 18 21 24 27
4 | 4 8§ 12 16 20 24 28 32 36
5| 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

The program displays a title (line 1) on the first line in the output. The first for loop
(lines 4-5) displays the numbers 1 through 9 on the second line. A line of dashes (-) is dis-
played on the third line (line 7).

The next loop (lines 10-15) is a nested for loop with the control variable 1 in the outer
loop and j in the inner loop. For each 1, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, ..., 9.

To align the numbers properly, the program formats i * j using format(i * j, "4d")
(line 14). Recall that "4d" specifies a decimal integer format with width 4.

Normally, the print function automatically jumps to the next line. Invoking
print(item, end = '") (lines 3, 5, 11, and 14) prints the item without advancing to the
next line. Note that the print function with the end argument was introduced in Section 3.3.5.

T Note

Be aware that a nested loop may take a long time to run. Consider the following loop
nested in three levels:
for i 1in range(1000):
for j 1in range(1000):
for k in range(1000):
Perform an action

The action is performed 1,000,000,000 times. If it takes | millisecond to perform the
action, the total time to run the loop would be more than 277 hours.

5.11 Show the output of the following programs. (Hint: Draw a table and list the variables
in the columns to trace these programs.)

for i in range(l, 5): i=0
j=20 while i < 5:
while j < 1i: for j in range(i, 1, -1):
print(j, end = " ") print(j, end = "
j+=1 print('eEEE)
i+=1
(@) (b)
i=5 i=1
while i >= 1: while i <= 5:
num = 1 num = 1
for j in range(l, i + 1): for j in range(l, i + 1):
print(num, end = "xxx") print(num, end = "G")
num *= 2 num += 2
print() print(Q)
i =1 i +=1

© (d)

5.5 Minimizing Numerical Errors

5.5 Minimizing Numerical Errors

Using floating-point numbers in the loop-continuation-condition may cause numeric errors.
Numerical errors involving floating-point numbers are inevitable. This section provides an
example showing you how to minimize such errors.

The program in Listing 5.7 sums a series that starts with 0.01 and ends with 1.0. The
numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.

LISTING 5.7 TestSum.py

1 # Initialize sum

2 sum =0

3

4 # Add 0.01, 0.02, ..., 0.99, 1 to sum
5 i=0.01

6 while i <= 1.0:

7 sum += i

8 i=1+ 0.01

9
10 # Display result
11 print("The sum 1is", sum)

The sum is 49.5

The result displayed is 49. 5, but the correct result is actually 50.5. What went wrong? For
each iteration in the loop, 1 is incremented by 0.01. When the loop ends, the 1 value is slightly
larger than 1 (not exactly 1). This causes the last i value not to be added into sum. The funda-
mental problem is that the floating-point numbers are represented by approximation.

To fix the problem, use an integer count to ensure that all the numbers are added to sum.
Here is the new loop:

Initialize sum

sum = 0
Add 0.01, 0.02, ..., 0.99, 1 to sum
count = 0
i=0.01
while count < 100:
sum += 1
i=1 + 0.01

count += 1 # Increase count

Display result
print("The sum 1is", sum)

Or, use a for loop as follows:

Initialize sum
sum = 0

Add 0.01, 0.02, ..., 0.99, 1 to sum
i=0.01
for count in range(100):

sum += i

i=1+ 0.01

Display result
print("The sum 1is", sum)

After this loop, sumis 50.5.

K
Gﬁoi;)t,

loop

2

numeric error

147

148 Chapter5 Loops

K
Gﬁoi?;

GCD

input
input

gcd

output

think before you type

=2

5.6 Case Studies

Loops are fundamental in programming. The ability to write loops is essential in
learning programming.

If you can write programs using loops, you know how to program! For this reason, this section
presents three additional examples of solving problems using loops.

5.6.1 Problem: Finding the Greatest Common Divisor

The greatest common divisor (GCD) of the two integers 4 and 2 is 2. The greatest common
divisor of the two integers 16 and 24 is 8. How do you find the greatest common divisor? Let
the two input integers be n1 and n2. You know that number 1 is a common divisor, but it may
not be the greatest common divisor. So you can check whether k (for k = 2, 3, 4, and so on)
is a common divisor for n1 and n2, until k is greater than n1 or n2. Store the common divisor
in a variable named gcd. Initially, gcd is 1. Whenever a new common divisor is found, it
becomes the new gcd. When you have checked all the possible common divisors from 2 up to
nl or n2, the value in the variable gcd is the greatest common divisor. The idea can be trans-
lated into the following loop:

gcd = 1 # Initial gcd is 1
int k = 2 # Possible gcd
while k <= nl and k <= n2:
if nl % k == 0 and n2 % k == 0:
gcd = k
k += 1 # Next possible gcd

After the Toop, gcd is the greatest common divisor for nl and n2

Listing 5.8 presents a program that prompts the user to enter two positive integers and
finds their greatest common divisor.

LISTING 5.8 GreatestCommonDivisor.py

Prompt the user to enter two integers
nl = eval(input("Enter first integer: "))
n2 eval (input("Enter second integer: "))

k =2
while k <= nl and k <= n2:

1

2

3

4

5 gad =1
6

7

8 if n1 % k == 0 and n2 % k == 0:
9

gcd = k
10 k += 1
11
12 print("The greatest common divisor for",
13 nl, "and", n2, "is", gcd)

Enter first integer: 125 [-emer

Enter second integer: 2525 IdEnter
The greatest common divisor for 125 and 2525 1is 25

How would you approach writing this program? Would you immediately begin to write the
code? No. It is important to think before you type. Thinking enables you to generate a logical

solution for the problem without wondering how to write the code. Once you have a logical
solution, type the code to translate the solution into a program.

A problem often has multiple solutions. The GCD problem can be solved in many ways.
Exercise 5.16 at the end of this chapter suggests another solution. A more efficient solution is
to use the classic Euclidean algorithm. See www.cut-the-knot.org/blue/Euclid.shtml for more
information.

5.12 If you think that a divisor for a number nl cannot be greater than n1 / 2, you might
attempt to improve the program using the following loop:

k =2
while k <=nl / 2 and k <= n2 / 2:
if n1 % k == 0 and n2 % k == 0:
gcd = k
k += 1

This revision is wrong. Can you find the reason?

5.6.2 Problem: Predicting the Future Tuition

Suppose that the tuition for a university is $10,000 this year and increases 7% every year. In
how many years will the tuition have doubled?

Before you attempt to write a program, first consider how to solve this problem by hand.
The tuition for the second year is the tuition for the first year * 1.07. The tuition for a future
year is the tuition of its preceding year * 1.07. So, the tuition for each year can be computed
as follows:

year = 0 # Year O
tuition = 10000

year += 1 # Year 1
tuition = tuition * 1.07

year += 1 # Year 2
tuition = tuition * 1.07

year += 1 # Year 3
tuition = tuition * 1.07

Keep computing tuition for a new year until it is at least 20000. By then you will know
how many years it will take for the tuition to be doubled. You can now translate the logic into
the following loop:

year = 0 # Year O
tuition = 10000
while tuition < 20000:
year += 1
tuition = tuition * 1.07

The complete program is shown in Listing 5.9.

LISTING 5.9 FutureTuition.py

1 year =0 # Year O

2 tuition = 10000 # Year 1
3

4 while tuition < 20000:

5.6 Case Studies 149

multiple solutions

ﬁheck
Point

MyProgramminglab’

erroneous solutions

loop

www.cut-the-knot.org/blue/Euclid.shtml

150 Chapter5 Loops

next year’s tuition

generate random points

check inside circle

estimate pi

5 year += 1

6 tuition = tuition * 1.07

7

8 print("Tuition will be doubled in", year, "years')
9 print("Tuition will be $" + format(tuition, ".2f"),
10 "in", year, '"years')

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

The whiTe loop (lines 4-6) is used to repeatedly compute the tuition for a new year. The
loop terminates when tuition is greater than or equal to 20000.

5.6.3 Problem: Monte Carlo Simulation

A Monte Carlo simulation uses random numbers and probability to solve problems. It has a
wide range of applications in computational mathematics, physics, chemistry, and finance.
We now look at an example of using a Monte Carlo simulation for estimating .

First, draw a circle with its bounding square.

y
1

-1 1

-1

Assume the radius of the circle is 1. So, the circle area is 7 and the square area is 4. Ran-
domly generate a point in the square. The probability that the point falls in the circle is
circleArea / squareArea = n / 4.

Write a program that randomly generates 1000000 points that fall in the square and let
numberOfHits denote the number of points that fall in the circle. So, numberOfH1its is
approximately 1000000 * (n / 4). 7 can be approximated as 4 * numberOfHits /
1000000. The complete program is shown in Listing 5.10.

LISTING 5.10 MonteCarloSimulation.py

1 import random

2

3 NUMBER_OF_TRIALS = 1000000 # Constant
4 numberOfHits = 0

5

6 for i 1in range(NUMBER_OF_TRIALS):

7 x = random.random() * 2 - 1

8 y = random.random() * 2 - 1

9
10 if x *x+y*y<=1:
11 numberOfHits += 1
12
13 pi = 4 * numberOfHits / NUMBER_OF_TRIALS
14

15 print("PI 1is", pi)

PI is 3.14124

5.7 Keywords break and continue

The program repeatedly generates a random point (x, y) in the square in lines 7-8:

X = random.random() * 2 - 1
y = random.random() * 2 - 1

Recall that random () returns a random float r such that 0 <= r < 1.0.
If x> + y? = 1, the point is inside the circle and numberOfHits is incremented by 1. 7
is approximately 4 * numberOfHits / NUMBER _OF TRIALS (line 13).

5.7 Keywords break and continue

The break and continue keywords provide additional controls to a loop.

T Pedagogical Note

Two keywords, break and continue, can be used in loop statements to provide addi-
tional controls. Using break and continue can simplify programming in some cases.
Overusing or improperly using them, however, can make programs difficult to read and
debug. (Note to readers: You may skip this section without affecting your understanding
of the rest of the book.)

You can use the keyword break in a loop to immediately terminate a loop. Listing 5.11
presents a program to demonstrate the effect of using break in a loop.

LISTING 5.1 1 TestBreak.py

sum = 0
number = 0

1

2

3

4 while number < 20:
5 number += 1

6 sum += number
7 if sum >= 100:
8

9

0

1

C\ break

print("The number is", number)

1
1 print("The sum 1is'", sum)

The number is 14
The sum 1is 105

The program adds integers from 1 to 20 in this order to sum until sum is greater than or
equal to 100. Without lines 7-8, this program would calculate the sum of the numbers from 1
to 20. But with lines 7-8, the loop terminates when sum becomes greater than or equal to 100.
Without lines 7-8, the output would be:

The number is 20
The sum is 210

You can also use the continue keyword in a loop. When it is encountered, it ends the cur-
rent iteration and program control goes to the end of the loop body. In other words, continue
breaks out of an iteration, while the break keyword breaks out of a loop. The program in
Listing 5.12 shows the effect of using continue in a loop.

K
Gﬁoii{

break keyword

break out of the loop

2

2

continue statement

151

152 Chapter5 Loops

jump to the end of the
iteration

=

LIsTING 5.12 TestContinue.py

sum = 0
number = 0

1
2
3
4 while number < 20:

5 number += 1

6 if number == 10 or number == 11:
7

8

9

0

continue
sum += number

1 print("The sum 1is", sum)

The sum is 189

The program adds all the integers from 1 to 20 except 10 and 11 to sum. The continue
statement is executed when number becomes 10 or 11. The continue statement ends the
current iteration so that the rest of the statement in the loop body is not executed; therefore,
number is not added to sum when it is 10 or 11.

Without lines 6 and 7, the output would be as follows:

The sum is 210

In this case, all the numbers are added to sum, even when number is 10 or 11. Therefore,
the result is 210.

You can always write a program without using break or continue in a loop (see Check-
point Question 5.15). In general, it is appropriate to use break and continue if their use
simplifies coding and makes programs easy to read.

Suppose you need to write a program to find the smallest factor other than 1 for an integer
n (assume n >= 2). You can write a simple and intuitive code using the break statement as
follows:

n = evalCinput("Enter an integer >= 2: "))
factor = 2
while factor <= n:
if n % factor ==
break
factor += 1
print("The smallest factor other than 1 for", n, "is", factor)

You may rewrite the code without using break as follows:

n = evalCinput("Enter an integer >= 2: "))
found = False
factor = 2
while factor <= n and not found:
if n % factor ==
found = True
else:
factor += 1
print("The smallest factor other than 1 for", n,

is'", factor)

Obviously, the break statement makes the program simpler and easier to read in this
example. However, you should use break and continue with caution. Too many break

5.7 Keywords break and continue

and continue statements will produce a loop with many exit points and make the pro-

gram difficult to read.

T Note

Some programming languages have a goto statement. The goto statement indiscrimi-

goto

nately transfers control to any statement in the program and executes it. This makes
your program vulnerable to errors. The break and continue statements in Python are
different from goto statements. They operate only in a loop statement. The break
statement breaks out of the loop, and the continue statement breaks out of the cur-

rent iteration in the loop.

5.13 What is the keyword break for? What is the keyword continue for? Will the fol-

lowing program terminate? If so, give the output.

/éiwck
Point

baTlance = 1000
while True:
if balance < 9:
break
balance = balance - 9

print("Balance is", balance)

balance = 1000
while True:

continue

if balance < 9:
balance = balance - 9

print("Balance is", balance)

(a)

(b)

5.14 The for loop on the left is converted into the while loop on the right. What is
wrong? Correct it.
for i 1in range(4): i=0
if i % 3 == Converted _ |while i < 4:
continue - if 1 % 3 ==
. Wrong .
sum += 1 . continue
conversion .
sum += i
i+=1
5.15 Rewrite the programs TestBreak and TestContinue in Listings 5.11 and 5.12
without using break and continue statements.
5.16 After the break statement in (a) is executed in the following loop, which statement is

executed? Show the output. After the continue statement in (b) is executed in the
following loop, which statement is executed? Show the output.

for i 1in range(l, 4):
for j 1in range(l1, 4):
if i % j > 2:
break

print(i * j)

print(i)

for i 1in range(1, 4):
for j in range(l, 4):
if i
print(i * j)

print(i)

* j > 2:
continue

(@

(b)

153

MyProgramminglLab’

154 Chapter5 Loops

5.8 Case Study: Displaying Prime Numbers

Key This section presents a program that displays the first fifty prime numbers in five lines,
6 Point each containing ten numbers.

An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.
The problem can be broken into the following tasks:

B Determine whether a given number is prime.
B For number = 2,3,4,5,6, ..., test whether the number is prime.
H Count the prime numbers.

B Display each prime number, and display ten numbers per line.

Obviously, you need to write a loop and repeatedly test whether a new number is prime. If
the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50, the
loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be displayed as
a constant NUMBER_OF_PRIMES

Use count to track the number of prime numbers and
set an initial count to 0O

Set an initial number to 2

while count < NUMBER_OF_PRIMES:
Test if number is prime

if number is prime:
Display the prime number and increase count

Increment number by 1

To test whether a number is prime, check whether it is divisible by 2, 3, 4, ..., up to
number /2. If a divisor is found, the number is not a prime. The algorithm can be described as
follows:

Use a Boolean variable isPrime to denote whether
the number is prime; Set isPrime to True initially

for divisor 1in range(2, number / 2 + 1):
if number % divisor == 0:
Set isPrime to False
Exit the Toop

The complete program is given in Listing 5.13.

LISTING 5.13 PrimeNumber. py

NUMBER_OF_PRIMES = 50 # Number of primes to display
NUMBER_OF_PRIMES_PER_LINE = 10 # Display 10 per Tine
count = 0 # Count the number of prime numbers

1
2
count prime numbers 3
4 number = 2 # A number to be tested for primeness
5
6
7
8

print("The first 50 prime numbers are")

Repeatedly find prime numbers

5.8 Case Study: Displaying Prime Numbers

9 while count < NUMBER_OF_PRIMES:

10 # Assume the number is prime

11 isPrime = True # Is the current number prime?
12

13 # Test if number is prime

14 divisor = 2

15 while divisor <= number / 2:

16 if number % divisor ==

17 # If true, the number is not prime

18 isPrime = False # Set isPrime to false
19 break # Exit the for Toop

20 divisor += 1

21

22 # Display the prime number and increase the count
23 if isPrime:

24 count += 1 # Increase the count

25

26 print(format(number, "5d"), end = '")

27 if count % NUMBER_OF_PRIMES_PER_LINE == 0:
28 # Display the number and advance to the new line
29 print() # Jump to the new Tline

30

31 # Check if the next number 1is prime

32 number += 1

The first 50 prime numbers are

2 3 5 7 1 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

This is a complex example for novice programmers. The key to developing a program-
matic solution for this problem—and for many other problems—is to break it into sub-
problems and develop solutions for each of them in turn. Do not attempt to develop a
complete solution in the first trial. Instead, begin by writing the code to determine whether
a given number is prime, and then expand the program to test whether other numbers are
prime in a loop.

To determine whether a number is prime, check whether it is divisible by a number
between 2 and number/2 inclusive. If so, it is not a prime number; otherwise, it is a prime
number. For a prime number, display it. If the count is divisible by 10, advance to a new line.
The program ends when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the num-
ber is found to be a nonprime. You can rewrite the loop (lines 15-20) without using the break
statement as follows:

while divisor <= number / 2 and isPrime:
if number % divisor ==
If True, the number 1is not prime
isPrime = False # Set isPrime to False
divisor += 1

However, using the break statement makes the program simpler and easier to read in
this case.

check primeness

exit loop

display if prime

2

155

156 Chapter5 Loops

5.9 Case Study: Random Walk

6 fKey You can use Turtle graphics to simulate a random walk.

Point 1) this section, we will write a Turtle program that simulates a random walk in a lattice (e.g.,

like walking around a garden and turning to look at certain flowers) that starts from the center
and ends at a point on the boundary, as shown in Figure 5.2. Listing 5.14 gives the program.

Python Turtle Graphics“

FIGURE 5.2 The program simulates random walks in a lattice.

LISTING 5.14 RandomWalk.py

import turtle 1 dmport turtle
import randint 2 from random import randint
3
set turtle speed 4 turtle.speed(l) # Set turtle speed to slowest
5
6 # Draw 16-by-16 Tlattice
set color 7 turtle.color('gray'") # Color for Tattice
8 x = -80
draw horizontal lines 9 for y 1in range(-80, 80 + 1, 10):
10 turtle.penup()
11 turtle.goto(x, y) # Draw a horizontal Tine
12 turtle.pendown()
13 turtle.forward(160)
14
15 y = 80
draw vertical lines 16 turtle.right(90)
17 for x 1in range(-80, 80 + 1, 10):
18 turtle.penup()
19 turtle.goto(x, y) # Draw a vertical Tine
20 turtle.pendown()
21 turtle.forward(160)
22

23 turtle.pensize(3)
24 turtle.color("red")

25

26 turtle.penup()
move to center 27 turtle.goto(0, 0) # Go to the center

28 turtle.pendown()

29
current position 30 x =y =0 # Current pen Tocation at the center of lattice
check boundaries 31 while abs(x) < 80 and abs(y) < 80:

32 r = randint(0, 3)

33 if r == 0:

walk east 34 x += 10 # Walk right

35 turtle.setheading(0)
36 turtle.forward(10)

37 elif r == 1:

38 y -= 10 # Walk down

39 turtle.setheading(270)
40 turtle.forward(10)

41 elif r ==

42 x -= 10 # Walk Teft

43 turtle.setheading(180)
44 turtle.forward(10)

45 elif r ==

46 y += 10 # Walk up

47 turtle.setheading(90)
48 turtle.forward(10)

49

50 turtle.done()

Assume the size of the lattice is 16 by 16 and the distance between two lines in the lattice
is 10 pixels (lines 6-21). The program first draws the lattice in a gray color. It sets the color to
gray (line 7), uses the for loop (lines 9-13) to draw the horizontal lines, and the for loop
(lines 17-21) to draw the vertical lines.

The program moves the pen to the center (line 27), and starts to simulate a random walk
in awhile loop (lines 31-48). The variables x and y are used to track the current position in
the lattice. Initially, it is at (0, 0) (line 30). A random number from O to 3 is generated in line
32. These four numbers each correspond to a direction: east, south, west, and north. Con-
sider four cases:

B If a walk is to the east, x is increased by 10 (line 34) and the pen is moved to the right
(lines 35-36).

W If a walk is to the south, y is decreased by 10 (line 38) and the pen is moved down-
ward (lines 39—40).

B If a walk is to the west, x is decreased by 10 (line 42) and the pen is moved to the left
(lines 43-44).

B If a walk is to the north, y is increased by 10 (line 46) and the pen is moved upward
(lines 47-48).

The walk stops when abs (x) or abs(y) is 80 (i.e., the walk reaches the boundary of the
lattice).

A more interesting walk is called a self-avoiding walk. It is a random walk in a lattice that
does not visit the same point twice. You will learn how to write a program to simulate a self-
avoiding walk later in the book.

KEY TERMS

break keyword 151
condition-controlled loop 134
continue keyword 151
count-controlled loop 134
infinite loop 135

input redirection 142
iteration 134

loop 134

loop body 134
Toop-continuation-
condition 134

nested loop 145
oft-by-one error 135
output redirection 142
sentinel value 140

Key Terms

walk south

walk west

walk north

pause

157

158 Chapter5 Loops

MyProgramminglLab’

read and think before coding

explore solutions

CHAPTER SUMMARY

. There are two types of repetition statements: the while loop and the for loop.

The part of the loop that contains the statements to be repeated is called the loop
body.

. A one-time execution of a loop body is referred to as an iteration of the loop.

An infinite loop is a loop statement that executes infinitely.

5. In designing loops, you need to consider both the loop-control structure and the loop

10.
1.

body.

The whiTe loop checks the Toop-continuation-condition first. If the condi-
tion is true, the loop body is executed; otherwise, the loop terminates.

A sentinel value is a special value that signifies the end of the input.

The for loop is a count-controlled loop and is used to execute a loop body a pre-
dictable number of times.

. Two keywords, break and continue, can be used in a loop.

The break keyword immediately ends the innermost loop, which contains the break.

The continue keyword ends only the current iteration.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

PROGRAMMING EXERCISES

T Pedagogical Note

For each problem, read it several times until you understand it. Think how to solve
the problem before coding. Translate your logic into a program.

A problem often can be solved in many different ways. You should explore various
solutions.

Sections 5.2-5.7

*5.1

(Count positive and negative numbers and compute the average of numbers)
Write a program that reads an unspecified number of integers, determines
how many positive and negative values have been read, and computes the total
and average of the input values (not counting zeros). Your program ends with the
input 0. Display the average as a floating-point number. Here is a sample run:

Enter an integer, the input ends if it is 0: 1
Enter an integer, the input ends if it is 0: 2 [emer
Enter an integer, the input ends if it is 0: -1 [m
Enter an integer, the input ends if it is 0: 3

www.cs.armstrong.edu/liang/py/test.html

Programming Exercises

Enter an integer, the input ends if it is 0: O |~Enter

The
The

The

number of positives 1is 3
number of negatives is 1
The total 1is 5

average is 1.25

Enter an integer, the input ends if it is 0: O lﬂEnter g

You didn't enter any number

5.2

5.3

5.4

*5.5

*5.6

(Repeat additions) Listing 5.4, SubtractionQuizLoop.py, generates five random
subtraction questions. Revise the program to generate ten random addition ques-
tions for two integers between 1 and 15. Display the correct count and test time.

(Conversion from kilograms to pounds) Write a program that displays the follow-
ing table (note that 1 kilogram is 2.2 pounds):

Kilograms Pounds
1 2.2
3 6.6
197 433.4
199 437.8

(Conversion from miles to kilometers) Write a program that displays the following
table (note that 1 mile is 1.609 kilometers):

Miles Kilometers
1 1.609

2 3.218

9 15.481

10 16.090

(Conversion from kilograms to pounds and pounds to kilograms) Write a program
that displays the following two tables side by side (note that 1 kilogram is 2.2
pounds and that 1 pound is .45 kilograms):

Kilograms Pounds | Pounds Kilograms
1 2.2 | 20 9.09

3 6.6 | 25 11.36

197 433.4 | 510 231.82
199 437.8 | 515 235.09

(Conversion from miles to kilometers and kilometers to miles) Write a program
that displays the following two tables side by side (note that 1 mile is 1.609 kilo-
meters and that 1 kilometer is .621 mile):

Miles Kilometers | KiTlometers Miles

1 1.609 | 20 12.430
2 3.218 | 25 15.538
9 15.481 | 60 37.290

10 16.090 | 65 40.398

159

160 Chapter 5

Loops

5.7 (Use trigonometric functions) Print the following table to display the sin value
and cos value of degrees from 0 to 360 with increments of 10 degrees. Round the
value to keep four digits after the decimal point.

Degree Sin Cos

0 0.0000 1.0000
10 0.1736 0.9848
350 -0.1736 0.9848
360 0.0000 1.0000

5.8 (Use the math.sqrt function) Write a program that prints the following table
using the sqrt function in the math module.
Number Square Root
0 0.0000
2 1.4142
18 5.2426
20 5.4721

*%5.9 (Financial application: compute future tuition) Suppose that the tuition for a uni-
versity is $10,000 this year and increases 5% every year. Write a program that
computes the tuition in ten years and the total cost of four years’ worth of tuition
starting ten years from now.

5.10 (Find the highest score) Write a program that prompts the user to enter the number
of students and each student’s score, and displays the highest score. Assume that
the input is stored in a file named score.txt, and the program obtains the input from
the file.

*5.11 (Find the two highest scores) Write a program that prompts the user to enter the
number of students and each student’s score, and displays the highest and second-
highest scores.

5.12 (Find numbers divisible by 5 and 6) Write a program that displays, ten numbers
per line, all the numbers from 100 to 1,000 that are divisible by 5 and 6. The num-
bers are separated by exactly one space.

5.13 (Find numbers divisible by 5 or 6, but not both) Write a program that displays, ten
numbers per line, all the numbers from 100 to 200 that are divisible by 5 or 6, but
not both. The numbers are separated by exactly one space.

5.14 (Find the smallest n such that n* > 12,000) Use a while loop to find the smallest
integer n such that n? is greater than 12,000.

5.15 (Find the largest n such that n* < 12,000) Use a while loop to find the largest
integer n such that n® is less than 12,000.

*5.16 (Compute the greatest common divisor) For Listing 5.8, another solution to find
the greatest common divisor of two integers n1 and n2 is as follows: First find d to
be the minimum of nl and n2, and then check whetherd,d - 1,d - 2, ..., 2, or
1 is a divisor for both n1 and n2 in this order. The first such common divisor is the
greatest common divisor for nl and n2.

Section 5.8

*5.17 (Display the ASCII character table) Write a program that displays the characters

in the ASCII character table from ! to ~. Display ten characters per line. The char-
acters are separated by exactly one space.

Programming Exercises

*%5.18 (Find the factors of an integer) Write a program that reads an integer and displays
all its smallest factors, also known as prime factors. For example, if the input inte-
ger is 120, the output should be as follows:

2, 2, 2, 3,5

**5.19 (Display a pyramid) Write a program that prompts the user to enter an integer
from 1 to 15 and displays a pyramid, as shown in the following sample run:

Enter the number of Tines: 7 |~Enter
1
2 1 2
3 2 1 2 3
4 3 2 1 2 3 4
5 4 3 2 1 2 3 4 5
6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 1 2 3 4 5 6 7

*5.20 (Display four patterns using loops) Use nested loops that display the following
patterns in four separate programs:

Pattern A Pattern B Pattern C Pattern D

56 56
5 5

[R e N
NNDNNN
w www
INNNNIN
PR RERRER
NNDNDNN
w w ww
INGENEN
ENNNNIN
w w ww
NNNNN
RFRRRRR
[R N N
NNDNNN
w w ww
INGENN

5 5
56 65

**5.21 (Display numbers in a pyramid pattern) Write a nested for loop that displays the
following output:

1
1 2 1
1 2 4 2 1
1 2 4 8 4 2 1
1 2 4 8 16 8 4 2 1
1 2 4 8 16 32 16 8 4 2 1
1 2 4 8 16 32 64 32 16 8 4 2 1
1 2 4 8 16 32 64128 64 32 16 8 4 2 1

*5.22 (Display prime numbers between 2 and 1,000) Modify Listing 5.13 to display all
the prime numbers between 2 and 1,000, inclusive. Display eight prime numbers
per line.

Comprehensive

*%5.23 (Financial application: compare loans with various interest rates) Write a pro-
gram that lets the user enter the loan amount and loan period in number of years
and displays the monthly and total payments for each interest rate starting from
5% to 8%, with an increment of 1/8. Here is a sample run:

161

162 Chapter 5

Loops

=

Loan Amount: 10000 |~Enter

Number of Years: 5 [“ener
Interest Rate

5.000%
5.125%
5.250%
7.875%
8.000%

188.71
189.28
189.85

202.17
202.76

Monthly Payment

Total Payment

11322.74
11357.13
11391.59

12129.97
12165.83

**5.24

For the formula to compute monthly payment, see Listing 2.8, ComputeLoan.py.

(Financial application: loan amortization schedule) The monthly payment for a
given loan pays the principal and the interest. The monthly interest is computed by
multiplying the monthly interest rate and the balance (the remaining principal).
The principal paid for the month is therefore the monthly payment minus the
monthly interest. Write a program that lets the user enter the loan amount, number
of years, and interest rate, and then displays the amortization schedule for the loan.

Here is a sample run:

Loan Amount: 10000 |~Enter

Number of Years: 1 |~Enter

Annual Interest Rate: 7 |~E"ter

Monthly Payment: 865.26
Total Payment: 10383.21

Payment# Interest Principal Balance
1 58.33 806.93 9193.07
2 53.62 811.64 8381.43
11 10.00 855.26 860.27
12 5.01 860.25 0.01
K4 Note
The balance after the last payment may not be zero. If so, the last payment should be
the normal monthly payment plus the final balance.
> Hint

Write a loop to display the table. Since the monthly payment is the same for each
month, it should be computed before the loop. The balance is initially the loan
amount. For each iteration in the loop, compute the interest and principal and update

the balance. The loop may look like this:

for i 1in range(l, numberOfYears

%

12 + 1):

interest = monthlyInterestRate * balance
principal = monthlyPayment - interest
balance = balance - principal

print(i, "\t\t", interest, "\t\t", principal, "\t\t",

balance)

*5.25

*5.26

**5.27

**5.28

5.29

**5.30

**5.31

Programming Exercises

(Demonstrate cancellation errors) A cancellation error occurs when you are
manipulating a very large number with a very small number. The large number
may cancel out the smaller number. For example, the result of 100000000.0 +
0.000000001 is equal to 100000000. 0. To avoid cancellation errors and obtain
more accurate results, carefully select the order of computation. For example, in
computing the following series, you will obtain more accurate results by comput-
ing from right to left rather than from left to right:

1 1 1
l+-+=+ ... +-—
2 3 n

Write a program that compares the results of the summation of the preceding
series, computing both from left to right and from right to left with n = 50000.

(Sum a series) Write a program to sum the following series:

1 3.5 7. 9 11 95 97
e =+
35 7 9 11 13 97 99

(Compute) You can approximate 7 by using the following series:

1 1 1 1 1 (=Dt
TE=Ml -+ — L+
35 7 9 11 2i — 1
Write a program that displays the 7 value for i = 10000, 20000, . . ., and

100000.

(Compute e) You can approximate e by using the following series:

1 1 1
e=1+—+_—-+—+—+ +
o2t 3t 4l i
Write a program that displays the e value for i = 10000, 20000, . . ., and
1 1
100000. (Hint: Since i! =i X (i — 1) X ... X 2 X 1, then — is

il i — DY
Initialize e and 1item to be 1 and keep adding a new 1item to e. The new item is
the previous item divided by i for i = 2,3,4,....)

(Display leap years) Write a program that displays, ten per line, all the leap years
in the twenty-first century (from year 2001 to 2100). The years are separated by
exactly one space.

(Display the first days of each month) Write a program that prompts the user
to enter the year and first day of the year, and displays the first day of each month
in the year on the console. For example, if the user entered year 2013, and 2 for
Tuesday, January 1, 2013, your program should display the following output:

January 1, 2013 is Tuesday

December 1, 2013 is Sunday

(Display calendars) Write a program that prompts the user to enter the year
and first day of the year, and displays on the console the calendar table for the
year. For example, if the user entered year 2005, and 6 for Saturday, January 1,

163

164 Chapter 5 Loops

*5.32

*5.33

2005, your program should display the calendar for each month in the year, as
follows:

January 2005

Sun Mon Tue Wed Thu Fri Sat

2 3 4 5 6 7 8

9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

December 2005

Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

(Financial application: compound value) Suppose you save $100 each month into
a savings account with the annual interest rate 5%. So, the monthly interest rate is
0.05/12 = 0.00417. After the first month, the value in the account becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter an amount (e.g., 100), the annual
interest rate (e.g., 5), and the number of months (e.g., 6), and displays the amount
in the savings account after the given month.

(Financial application: compute CD value) Suppose you put $10,000 into a CD
with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.91

After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06
After three months, the CD is worth
10096.06 + 10096.06 * 5.75 / 1200 = 10145.43

and so on.

Write a program that prompts the user to enter an amount (e.g., 10,000), the
annual percentage yield (e.g., 5.75), and the number of months (e.g., 18), and dis-
plays a table as shown in the sample run.

Programming Exercises

Enter the initial deposit amount: 10000 |~Enter
Enter annual percentage yield: 5.75 |uEnter
Enter maturity period (number of months): 18 ldEnter

Month CD Value
1 10047.91
2 10096.06

17 10846.56
18 10898.54

*%5.34 (Game: lottery) Revise Listing 4.10, Lottery.py, to generate a lottery of a two-digit
number. The two digits in the number are distinct. (Hint: Generate the first digit.
Use a loop to continuously generate the second digit until it is different from the
first digit.)

*%5.35 (Perfect number) A positive integer is called a perfect number if it is equal to the
sum of all of its positive divisors, excluding itself. For example, 6 is the first per-
fect number, because 6 = 3 + 2 + 1. The nextis 28 = 14 + 7 +4 + 2 + 1.
There are four perfect numbers less than 10,000. Write a program to find these
four numbers.

**%5.36 (Game: scissor, rock, paper) Programming Exercise 4.17 gives a program that
plays the scissor, rock, paper game. Revise the program to let the user play contin-
uously until either the user or the computer wins more than two times.

*5.37 (Summation) Write a program that computes the following summation:

1 1 1 1

+ + + .t
1+V2 V2+V3 V3+ V4 V624 + V625

*5.38 (Simulation: clock countdown) You can use the time.sleep(seconds) function
in the time module to let the program pause for the specified seconds. Write a
program that prompts the user to enter the number of seconds, displays a message
at every second, and terminates when the time expires. Here is a sample run:

Enter the number of seconds: 3 |~Enter
2 seconds remaining

1 second remaining

Stopped

*5.39 (Financial application: find the sales amount) You have just started a sales job in a
department store. Your pay consists of a base salary plus a commission. The base
salary is $5,000. The following scheme shows how to determine the commission rate:

Sales Amount Commission Rate
$0.01-$5,000 8 percent
$5,000.01-%$10,000 10 percent
$10,000.01 and above 12 percent

Your goal is to earn $30,000 a year. Write a program that finds out the minimum
amount of sales you have to generate in order to make $30,000.

2

165

166 Chapter 5

Loops

2

5.40

**5.41

(Simulation: heads or tails) Write a program that simulates flipping a coin one
million times and displays the number of heads and tails.

(Occurrence of max numbers) Write a program that reads integers, finds the
largest of them, and counts its occurrences. Assume that the input ends with num-
ber 0. Suppose that you entered 3 5 2 5 5 5 0; the program finds that the
largest number is 5 and the occurrence count for 5 is 4. (Hint: Maintain two vari-
ables, max and count. The variable max stores the current maximum number, and
count stores its occurrences. Initially, assign the first number to max and 1 to
count. Compare each subsequent number with max. If the number is greater than
max, assign it to max and reset count to 1. If the number is equal to max, incre-
ment count by 1.)

I Enter

Enter
Enter
Enter

a number (0: for end of input): 3

a 5

a 2
Enter a number (0: for end of input): 5 |-Enter
a 5

a 5

0

number (0: for end of input):

~ Enter
number (0: for end of input): ~ Enter
Enter number (0: for end of input): ~ Enter
Enter number (0: for end of input):

Enter a number (0: for end of input):

— Enter

- Enter

HEHHEEE

The largest number is 5
The occurrence count of the largest number is 4

**5.42

*5.43

(Monte Carlo simulation) A square is divided into four smaller regions as shown in
(a). If you throw a dart into the square one million times, what is the probability for
the dart to fall into an odd-numbered region? Write a program to simulate the
process and display the result. (Hint: Place the center of the square in the center of
a coordinate system, as shown in (b). Randomly generate a point in the square and
count the number of times for a point to fall in an odd-numbered region.)

(a) (b)

(Math: combinations) Write a program that displays all possible combinations for
picking two numbers from integers 1 to 7. Also display the total number of com-
binations.

=
w N

The total number of all combinations 1is 21

**5 44

(Decimal to binary) Write a program that prompts the user to enter a decimal inte-
ger and displays its corresponding binary value.

Programming Exercises 167

*%5.45 (Decimal to hex) Write a program that prompts the user to enter a decimal integer
and displays its corresponding hexadecimal value.

*%5.46 (Statistics: compute mean and standard deviation) In business applications, you
are often asked to compute the mean and standard deviation of data. The mean is
simply the average of the numbers. The standard deviation is a statistic that tells
you how tightly all the various data are clustered around the mean in a set of data.
For example, what is the average age of the students in a class? How close are the
ages? If all the students are the same age, the deviation is 0. Write a program that
prompts the user to enter ten numbers, and displays the mean and standard devia-
tions of these numbers using the following formula:

()

n n X

PR S\
i=1

i=1 X1 + X2 + ... +x L.
mean = = deviation = 1
n n n—1

Here is a sample run:

Enter ten numbers: 1 IAEnter E

— Enter

— Enter

HH

- Enter

.5
.6 I Enter

-~ Enter

-~ Enter

2
3
5
5
6 —Enter
7
8
9

~ Enter

]HH]WHH

10 — Enter
The mean is 5.61
The standard deviation is 2.99794

**5.47 (Turtle: draw random balls) Write a program that displays 10 random balls in
a rectangle with width 120 and height 100, centered at (0, 0), as shown in
Figure 5.3a.

% Python Turtle Graph[cs 1

f/:j
<A>
—
|

(b)
FIGURE 5.3 The program draws 10 random balls in (a), and 10 circles in (b).

(¢ Python Turtle Graphics Lo o]

d
2

168 Chapter 5 Loops

**5.48 (Turtle: draw circles) Write a program that draws 10 circles with centers (0, 0), as
shown in Figure 5.3b.

*%5.49 (Turtle: display a multiplication table) Write a program that displays a multiplica-
tion table, as shown in Figure 5.4a.

*%5.50 (Turtle: display numbers in a triangular pattern) Write a program that displays
numbers in a triangular pattern, as shown in Figure 5.4b.

4 hon Turtle Graphics 3

ok k. k. k. ek ek ek ek ek ek
I 1 I 1 1 1 1 1 1
LIS FVLIN] FYLIN] FYLIN N
i e e e e
hahaLaLa

[= 3= = Y Y,

et I B B |

SOSOC0

oD

FIGURE 5.4 (a) The program displays a multiplication table. (b) The program displays numbers in a triangular pattern.
(c) The program displays an 18-by-18 lattice.

**5.51 (Turtle: display a lattice) Write a program that displays an 18-by-18 lattice, as
shown in Figure 5.4c.

*%5.52 (Turtle: plot the sine function) Write a program that plots the sine function, as
shown in Figure 5.5a.

= Hint
The Unicode for 77 is \u03c0. To display —277, use turtle.write("-2\u03c0").
For a trigonometric function like sin(x), x is in radians. Use the following loop to plot
the sine function:

for x 1in range(-175, 176):
turtle.goto(x, 50 * math.sin((x / 100) * 2 * math.pi))

-2 is displayed at (=100, —15), the center of the axis is at (0, 0), and 27 is
displayed at (100, -15).

Programming Exercises 169

%% Python Turtle Graphl_s J

\g\%A
\/ \ /N7

(&

(a) (b)

FIGURE 5.5 (a) The program plots a sine function. (b) The program plots sine function in blue and cosine function in red.

*%5.53 (Turtle: plot the sine and cosine functions) Write a program that plots the sine
function in red and cosine in blue, as shown in Figure 5.5b.

*%5.54 (Turtle: plot the square function) Write a program that draws a diagram for the
function fix) = x? (see Figure 5.6a).

4 Python Turtle Graphics [P

(®)

FIGURE 5.6 (a) The program plots a diagram for function f{x) = x°. (b) The program draws a chessboard.

*%5.55 (Turtle: chessboard) Write a program to draw a chessboard, as shown in
Figure 5.6b.

This page intentionally left blank

FUNCTIONS

Objectives

To define functions with formal parameters (§6.2).
To invoke functions with actual parameters (i.e., arguments) (§6.3).

To distinguish between functions that return and do not return a
value (§6.4).

To invoke a function using positional arguments or keyword
arguments (§6.5).

To pass arguments by passing their reference values (§6.6).

To develop reusable code that is modular and is easy to read, debug,
and maintain (§6.7).

To create modules for reusing functions (§§6.7-6.8).

To determine the scope of variables (§6.9).

To define functions with default arguments (§6.10).

To define a function that returns multiple values (§6.11).

To apply the concept of function abstraction in software
development (§6.12).

To design and implement functions using stepwise refinement (§6.13).

To simplify drawing programs with reusable functions (§6.14).

CHAPTER

172 Chapter 6 Functions

K
Gﬁoi?;

problem

why functions?

define sum function

define main function

invoke sum
functions
'S fo
Point
VideoNote

Use functions

6.1 Introduction

Functions can be used to define reusable code and organize and simplify code.

Suppose that you need to find the sum of integers from 1 to 10, 20 to 37, and 35 to 49. If you
create a program to add these three sets of numbers, your code might look like this:

sum = 0
for i 1in range(l, 11):
sum += i

print("Sum from 1 to 10 1is", sum)

sum = 0
for i 1in range(20, 38):
sum += i

print("Sum from 20 to 37 1is", sum)

sum = 0
for i in range(35, 50):
sum += 1

print("Sum from 35 to 49 1is'", sum)

You may have observed that the code for computing these sums is very similar, except that
the starting and ending integers are different. Wouldn’t it be nice to be able to write com-
monly used code once and then reuse it? You can do this by defining a function, which
enables you to create reusable code. For example, the preceding code can be simplified by
using functions, as follows:

1 def sum(il, i2):

2 result = 0

3 for i 1in range(il, 1i2 + 1):

4 result += i

5

6 return result

7

8 def main():

9 print("Sum from 1 to 10 is", sum(l, 10))
10 print("Sum from 20 to 37 1is", sum(20, 37))
11 print("Sum from 35 to 49 1is", sum(35, 49))
12

13 main() # Call the main function

Lines 1-6 define the function named sum with the two parameters 11 and 2. Lines 8—11
define the main function that invokes sum(1, 10) to compute the sum from 1 to 10, sum(20,
37) to compute the sum from 20 to 37, and sum(35, 49) to compute the sum from 35 to 49.

A function is a collection of statements grouped together that performs an operation. In
earlier chapters, you learned about such functions as eval("numericString") and
random.randint(a, b). When you call the random.randint(a, b) function, for
example, the system actually executes the statements in the function and returns the result. In
this chapter, you will learn how to define and use functions and apply function abstraction to
solve complex problems.

6.2 Defining a Function

A function definition consists of the function’s name, parameters, and body.
The syntax for defining a function is as follows:

def functionName(list of parameters)
Function body

6.3 Calling a Function

Let’s look at a function created to find which of two numbers is bigger. This function,
named max, has two parameters, numl and num2, the larger of which is returned by the func-
tion. Figure 6.1 illustrates the components of this function.

Define a function Invoke a function

function name formal
parameters
funCtl0"44>|def max (numl, num2):| z = max(x, y)
header
functi if numl > num2: T T
unction
body result = numl actual parameters
(arguments)
else:
result = num2
return result
- return value

FIGURE 6.1 You can define a function and invoke it with arguments.

A function contains a header and body. The header begins with the def keyword, followed
by the function’s name and parameters, and ends with a colon.

The variables in the function header are known as formal parameters or simply parameters.
A parameter is like a placeholder: When a function is invoked, you pass a value to the para-
meter. This value is referred to as an actual parameter or argument. Parameters are optional;
that is, a function may not have any parameters. For example, the random. random () function
has no parameters.

Some functions return a value, while other functions perform desired operations without
returning a value. If a function returns a value, it is called a value-returning function.

The function body contains a collection of statements that define what the function does.
For example, the function body of the max function uses an 1f statement to determine which
number is larger and return the value of that number. A return statement using the keyword
return is required for a value-returning function to return a result. The function terminates
when a return statement is executed.

6.3 Calling a Function

Calling a function executes the code in the function.
In a function’s definition, you define what it is to do. To use a function, you have to call or
invoke it. The program that calls the function is called a caller. There are two ways to call a
function, depending on whether or not it returns a value.

If the function returns a value, a call to that function is usually treated as a value. For

example,
larger = max(3, 4)

calls max(3, 4) and assigns the result of the function to the variable Targer.
Another example of a call that is treated as a value is

print(max(3, 4))

which prints the return value of the function call max(3, 4).

function header

formal parameters
parameters

actual parameter
argument

value-returning function

K
ke

caller

return value

173

174 Chapter 6

define max function

main function

invoke max

main function

execution

Functions

If a function does not return a value, the call to the function must be a statement. For example,
the print function does not return a value. The following call is a statement:

print("Programming is fun!'")

Note
A value-returning function also can be invoked as a statement. In this case, the return value
is ignored. This is rare but is permissible if the caller is not interested in the return value.

When a program calls a function, program control is transferred to the called function. A
called function returns control to the caller when its return statement is executed or the func-
tion is finished.

Listing 6.1 shows a complete program that is used to test the max function.

LISTING 6.1 TestMax.py

1 # Return the max of two numbers
2 def max(numl, num2):

3 if numl > num2:

4 result = numl

5 else:

6 result = num2

7

8 return result

9
10 def main(Q) :
11 i=5
12 j=2
13 k = max(i, j) # Call the max function
14 print("The l1arger number of", i, "and", j, "is", k)
15

16 main() # Call the main function

The larger number of 5 and 2 is 5

Line# i j k numl num?2 result

11 5

12 2

2 5 2

4 5
13 5

Invoke max

This program contains the max and main functions. The program script invokes the main
function in line 16. By convention, programs often define a function named main that con-
tains the main functionality for a program.

How is this program executed? The interpreter reads the script in the file line by line starting
from line 1. Since line 1 is a comment, it is ignored. When it reads the function header in line 2,
it stores the function with its body (lines 2—8) in the memory. Remember that a function’s defini-
tion defines the function, but it does not cause the function to execute. The interpreter then reads
the definition of the main function (lines 10-14) to the memory. Finally, the interpreter reads the
statement in line 16, which invokes the main function and causes the main function to be
executed. The control is now transferred to the ma+in function, as shown in Figure 6.2.

6.3 Calling a Function

passint 5
pass int 2
Y \
////,def main(): | s+ def max(numl, num2):
main() i=5 if numl > num2:
~ j=2 result = numl
k = max(i, 3) else:
result = num2
print("The Wa;;;;\;;;BEF\ﬁri}
i, "and", j, "is", k) return result

FIGURE 6.2 When a function is invoked, the control is transferred to the function. When the
function is finished, the control is returned to where the function was called.

The execution of the main function begins in line 11. It assigns 5 to i and 2 to j (lines
11-12) and then invokes max (i, 3j) (line 13).

When the max function is invoked (line 13), variable i’s value is passed to numl and vari-
able j’s value is passed to num2. The control is transferred to the max function, and the max
function is executed. When the return statement in the max function is executed, the max
function returns the control to its caller (in this case the caller is the main function).

After the max function is finished, the returned value from the max function is assigned to
I (line 13). The main function prints the result (line 14). The main function is now finished,
and it returns the control to its caller (line 16). The program is now finished.

T Note

Here main is defined after max. In Python, functions can be defined in any order in a
script file as long as the function is in the memory when it is called. You can also define
main before max.

6.3.1 Call Stacks

Each time a function is invoked, the system creates an activation record that stores its argu-
ments and variables for the function and places the activation record in an area of memory
known as a call stack. A call stack is also known as an execution stack, runtime stack, or
machine stack, and is often shortened to just “the stack.” When a function calls another
function, the caller’s activation record is kept intact and a new activation record is created for
the new function call. When a function finishes its work and returns control to its caller, its
activation record is removed from the call stack.

A call stack stores the activation records in a last-in, first-out fashion. The activation record
for the function that is invoked last is removed first from the stack. Suppose function m1 calls
function m2, and then m3. The runtime system pushes m1’s activation record into the stack,
then m2’s, and then m3’s. After m3 is finished, its activation record is removed from the stack.
After m2 is finished, its activation record is removed from the stack. After m1 is finished, its
activation record is removed from the stack.

Understanding call stacks helps us comprehend how functions are invoked. When the
ma‘in function is invoked, an activation record is created to store variables i and j, as shown
in Figure 6.3a. Remember that all data in Python are objects. Python creates and stores
objects in a separate memory space called heap. Variables i and j actually contain reference
values to int objects 5 and 2, as shown in Figure 6.3a.

Invoking max (i, 7j) passes the values i and j to parameters numl and num2 in the max
function. So now numl and num?2 reference int objects 5 and 2, as shown in Figure 6.3b. The
max function finds the maximum number and assigns it to result, so result now
references int object 5, as shown in Figure 6.3c. The result is returned to the main function

max function

order of functions

activation record

stack

heap

175

to k.

K
Gﬁoint

void function

printGrade function

ey

176 Chapter 6 Functions
stack stack stack
. Space required for
Space required for the max function
the max function jmm result:
int object numiz ~[=™~ 77| int object i numz:
) numl:=+==y 2 H numl:
o IFE 4 1
i H Lo ls ired f
. 1 . 1 1 pace required for
Space r_equlred_for : Space r_equ1red.f0r : : H the madn function
the main function H the main function) 1 .
j:=|===+ ||int object j: =f=—1 | int object ! 3
Jimpm———t 5 i = ———r 5 '
(a) The main function This is the heap (b) The max function This is the heap (c) The max function
is invoked. for storing is invoked. for storing is being executed.
objects. objects.
stack stack
int object
Space required for 1 2
; ; 1
the main function 1 Stack is
e i now empty
j:2-+--¢l|int object
iS5 = ===t 5
] FIGURe 6.3 When a function is invoked, an
(d) The max function This is the heap () The main activation record is created to store variables in
is finished and the for storing function is finished.
return value is sent objects. the function. The activation record is released

after the function is finished.

and assigned to variable k. Now k references int object 5, as shown in Figure 6.3d. After the
ma‘in function is finished, the stack is empty, as shown in Figure 6.3e. The objects in the heap
are automatically destroyed by the Python interpreter when they are no longer needed.

6.4 Functions with/without Return Values

A function does not have to return a value.

The preceding section gives an example of a value-returning function. This section shows
how to define and invoke a function that does not return a value. Such a function is commonly
known as a void function in programming terminology.

The program in Listing 6.2 defines a function named printGrade and invokes it to print
the grade for a given score.

LISTING 6.2 PrintGradeFunction.py

1 # Print grade for the score
2 def printGrade(score):

elif score >= 70.0:

3 if score >= 90.0:
4 print('A")

5 elif score >= 80.0:
6 print('B")

7

8

print('C")

6.4 Functions with/without Return Values

9 elif score >= 60.0:

10 print('D")

11 else:

12 print('F")

13

14 def main(Q) :

15 score = eval(input("Enter a score: "))
16 print("The grade is ", end = " ")

17 printGrade(score)

18

19 main() # Call the main function

Enter a score: 78.5 IdEnter
The grade is C

The printGrade function does not return any value. So, it is invoked as a statement in
line 17 in the main function.

To see the differences between a function that does not return a value and a function that
returns a value, let’s redesign the printGrade function to return a value. We call the new
function that returns the grade, getGrade, as shown in Listing 6.3.

LISTING 6.3 ReturnGradeFunction.py

1 # Return the grade for the score
2 def getGrade(score):

3 if score >= 90.0:

4 return 'A’

5 elif score >= 80.0:

6 return 'B'

7 elif score >= 70.0:

8 return 'C’

9 elif score >= 60.0:
10 return 'D'
11 else:
12 return 'F'
13
14 def main(Q):
15 score = eval(input("Enter a score: "))
16 print("The grade 1is", getGrade(score))
17

18 main() # Call the main function

Enter a score: 78.5 |~Enter
The grade is C

The getGrade function defined in lines 2—12 returns a character grade based on the
numeric score value. It is invoked in line 16.

The getGrade function returns a character, and it can be invoked and used just like a
character. The printGrade function does not return a value, and it must be invoked as a
statement.

main function

invoke printGrade

2

getGrade function

main function

invoke getGrade

2

177

178 Chapter 6 Functions

None function

return in None function

ﬁheck
Point

MyProgramminglab’

-~

-~

Note

Technically, every function in Python returns a value whether you use return or not. If
a function does not return a value, by default, it returns a special value None. For this
reason, a function that does not return a value is also called a None function. The None
value can be assigned to a variable to indicate that the variable does not reference any
object. For example, if you run the following program:

def sum(numberl, number2):
total = numberl + number2

print(sum(l, 2))

you will see the output is None, because the sum function does not have a return state-
ment. By default, it returns None.

Note
A return statement is not needed for a None function, but it can be used for ter-
minating the function and returning control to the function’s caller. The syntax is
simply

return

or

return None

This is rarely used, but it is sometimes useful for circumventing the normal flow of con-
trol in a function that does not return any value. For example, the following code has a
return statement to terminate the function when the score is invalid.

Print grade for the score
def printGrade(score):
if score < 0 or score > 100:
print("Invalid score™)
return # Same as return None

if score >= 90.0:
print('A")
elif score >= 80.0:
print('B")
elif score >= 70.0:
print('C")
elif score >= 60.0:
print('D")

else:
print('F")

6.1 What are the benefits of using a function?

6.2 How do you define a function? How do you invoke a function?

6.3 Can you simplify the max function in Listing 6.1 by using a conditional
expression?

6.4 True or false? A call to a None function is always a statement itself, but a call to a
value-returning function is always a component of an expression.

6.5 Can you have a return statement in a None function? Does the return statement in
the following function cause syntax errors?

def xFunction(x, y):

print(x + y)
return

6.5 Positional and Keyword Arguments

6.6 Define the terms function header, parameter, and argument.

6.7 Write function headers for the following functions (and indicate whether the function
returns a value):

Computing a sales commission, given the sales amount and the commission rate.
Printing the calendar for a month, given the month and year.

Computing a square root.

Testing whether a number is even, and returning true if it is.

Printing a message a specified number of times.

Computing the monthly payment, given the loan amount, number of years, and
annual interest rate.

Finding the corresponding uppercase letter, given a lowercase letter.

6.8 Identify and correct the errors in the following program:

1

N

O ooNO VI~ W

10
11
12

def functionl(n, m):
function2(3.4)

def function2(n):
if n > 0:
return 1
elif n ==
return 0
elif n < 0:
return -1

functionl(2, 3)

6.9 Show the output of the following code:

1
2

3
4
5
6
7
8
9

def main(Q:
print(min(5, 6))

def min(nl, n2):
smallest = nl
if n2 < smallest:
smallest = n2

main() # Call the main function

6.10 What error will occur when you run the following code?
def main(Q:

print(min(min(5, 6), (51, 6)))

def min(nl, n2):

smallest = nl
if n2 < smallest:
smallest = n2

main() # Call the main function

6.5 Positional and Keyword Arguments

A function’

The power

s arguments can be passed as positional arguments or keyword arguments. fKey
of a function is its ability to work with parameters. When calling a function, you 6 Point

need to pass arguments to parameters. There are two kinds of arguments: positional arguments positional arguments
and keyword arguments. Using positional arguments requires that the arguments be passed in

179

180 Chapter 6

keyword arguments

mixing keyword and
positional arguments

ﬁheck
Point

MyProgramminglLab’

pass-by-value

K
fokes

Functions

the same order as their respective parameters in the function header. For example, the follow-
ing function prints a message n times:

def nPrintin(message, n):
for i 1in range(n):
print(message)

You can use nPrintln('a', 3) to print a three times. The nPrintIn('a’', 3)
statement passes a to message, passes 3 to n, and prints a three times. However, the state-
ment nPrintin(3, 'a') has a different meaning. It passes 3 to message and a to n.
When we call a function like this, it is said to use positional arguments. The arguments
must match the parameters in order, number, and compatible type, as defined in the func-
tion header.

You can also call a function using keyword arguments, passing each argument in the

form name = value. For example, nPrintln(n = 5, message = "good") passes 5
to n and "good" to message. The arguments can appear in any order using keyword
arguments.

It is possible to mix positional arguments with keyword arguments, but the positional argu-
ments cannot appear after any keyword arguments. Suppose a function header is

def f(pl, p2, p3):
You can invoke it by using
(30, p2 = 4, p3 = 10)
However, it would be wrong to invoke it by using
(30, p2 = 4, 10)
because the positional argument 10 appears after the keyword argument p2 = 4.

6.11 Compare positional arguments and keyword arguments.
6.12 Suppose a function header is as follows:

def f(pl, p2, p3, p4):

Which of the following calls are correct?

f(l, p2 = 3, p3 =4, p4d = 4)

f(ll p2 = 3’ 41 p4 = 4)

f(pl =1, p2 =3, 4, p4 = 4)
f(pl =1, p2 = 3, p3 =4, p4b 4
f(p4 1, p2 3, p3 = 4, pl = 4)

6.6 Passing Arguments by Reference Values

When you invoke a function with arguments, each argument's reference is passed by
value to the parameter in the function.

Because all data are objects in Python, a variable for an object is actually a reference to the
object. When you invoke a function with arguments, the reference value of each argument is
passed to the parameter. This is referred to as pass-by-value in programming terminology. For
simplicity, we say that the value of an argument is passed to a parameter when invoking a
function. The value is actually a reference value to the object.

6.6 Passing Arguments by Reference Values

If the argument is a number or a string, the argument is not affected, regardless of the
changes made to the parameter inside the function. Listing 6.4 gives an example.

LISTING 6.4 Increment.py
1 def main(Q):

2 x =1

3 print("Before the call, x is", x)

4 increment (x)

5 print("After the call, x 1is", x)

6

7 def increment(n):

8 n+= 1

9 print("\tn inside the function is", n)
10

11 main() # Call the main function

Before the call, x is 1
n inside the function 1is 2
After the call, x is 1

As shown in the output for Listing 6.4, the value of x (1) is passed to the parameter n to
invoke the increment function (line 4). The parameter n is incremented by 1 in the function
(line 8), but x is not changed no matter what the function does.

The reason is that numbers and strings are known as immutable objects. The contents of
immutable objects cannot be changed. Whenever you assign a new number to a variable,
Python creates a new object for the new number and assigns the reference of the new object to
the variable.

Consider the following code:

>>> X = 4

>>> Yy = X

>>> id(x) # The reference of x

505408920

>>> id(y) # The reference of y is the same as the reference of x
505408920

>>>

You assign x to y, and both x and y now point to the same object for integer value 4, as
shown in Figure 6.4a—b. But if you add 1 to y, a new object is created and assigned to y, as
shown in Figure 6.4c. Now y refers to a new object, as shown in the following code:

>>y =Yy + 1 # y now points to a new int object with value 5
>>> id(y)

505408936

>>>

invoke increment

increment n

2

immutable objects

2

2

181

182 Chapter 6 Functions

x=4 y=x y=y+1
id: 505408920 id: 505408920 id: 505408920

X —> The object x The object X —> The object
for int 4 for int 4 for int 4
y
id: 505408936

Y —> The object
for int 5

(a) (®) (©)

FIGURE 6.4 (a) 4 is assigned to x; (b) x is assigned to y; (c) y + 1 is assigned toy.

ﬁheck 6.13 What is pass-by-value?
Point 6.14 Can the argument have the same name as its parameter?
MyProgramminglab” 6.15 Show the result of the following programs:

def main(Q): def main(Q):
max = 0 i=1
getMax(l, 2, max) while i <= 6:
print(max) print(functionl(i, 2))
i+=1
def getMax(valuel, value2, max):
if valuel > value2: def functionl(i, num):
max = valuel Tine = ""
else: for j 1in range(l, 1i):
max = value2 Tline += str(num) + " "
num *= 2
main() return line
main()
(a) (b)
def main(): def main(Q):
Initialize times i=0
times = 3 while i <= 4:
print("Before the call, variable", functionl(i)
"times 1is'", times) i+=1
Invoke nPrintln and display times print("i 1is", 1)
nPrint("Welcome to CS!"™, times)
print("After the call, variable", def functionl(i):
"times 1is'", times) Tline = " "
while i >= 1:
Print the message n times if i % 3 I= 0:
def nPrint(message, n): Tline 4= str(i) + " "
while n > 0: i-=1
print("n =", n)
print(message) print(line)
n-=1
main()
main()

(©) (d)

6.7 Modularizing Code 183

6.16 For (a) in the preceding question, show the contents of the stack just before the func-
tion max is invoked, just as max is entered, just before max is returned, and right after
max is returned.

6.7 Modularizing Code

Modularizing makes code easy to maintain and debug, and enables the code to be Ke
reused. 6 poin{

Functions can be used to reduce redundant code and enable code reuse. Functions can also
be used to modularize code and improve a program’s quality. In Python, you can place the
function definition into a file called module with the file-name extension .py. The module module
can be later imported into a program for reuse. The module file should be placed in the
same directory with your other programs. A module can contain more than one function.
Each function in a module must have a different name. Note that the turtle, random, and
math are the modules defined in the Python library, and thus they can be imported into any
Python program.

Listing 5.8, GreatestCommonDivisor.py, shows a program that prompts the user to
enter two integers and displays their greatest common divisor. You can rewrite the pro-
gram to use a function and place it into a module named GCDFunction.py, as shown in
Listing 6.5.

LISTING 6.5 GCDFunction.py

1 # Return the gcd of two integers
2 def gcd(nl, n2): define gcd function

3 gcd = 1 # Initial gcd is 1

4 k =2 # Possible gcd

5

6 while k <= nl and k <= n2:

7 if nl % k ==0and n2 % k == 0:

8 gcd = k # Update gcd

9 k += 1

10

11 return gcd # Return gcd return gcd

Now we write a separate program to use the gcd function, as shown in Listing 6.6.

LISTING 6.6 TestGCDFunction.py
from GCDFunction import gcd # Import the gcd function import gcd
Prompt the user to enter two integers

nl = eval (input("Enter the first integer: ")) get input
n2 = eval(input("Enter the second integer: "))

print("The greatest common divisor for", nl,
"and", n2, "is", gcd(nl, n2)) invoke gcd

NV WN R

Enter the first integer: 45 |dEnter g

Enter the second integer: 75 IuEnter
The greatest common divisor for 45 and 75 is 15

184 Chapter 6 Functions

import from module Line 1 imports the gcd function from the GCDFunction module, which enables you to
invoke gcd in this program (line 8). You can also import it using the following statement:

import GCDFunction

Using this statement, you would have to invoke gcd using GCDFunction.gcd.
By encapsulating the code for obtaining the ged in a function, this program has several
advantages:

1. It isolates the problem for computing the gcd from the rest of the code in the program.
Thus, the logic becomes clear and the program is easier to read.

2. Any errors for computing the gecd are confined to the gcd function, which narrows the
scope of debugging.

3. The gcd function now can be reused by other programs.

What happens if you define two functions with the same name in a module? There is no
syntax error in this case, but the latter function definition prevails.

Listing 6.7 applies the concept of code modularization to improve Listing 5.13,
PrimeNumber.py. The program defines two new functions, <isPrime and
printPrimeNumbers. The isPrime function determines whether a number is prime, and
the printPrimeNumbers function prints prime numbers.

LISTING 6.7 PrimeNumberFunction.py

1 # Check whether number is prime

isPrime function 2 def isPrime(number):
3 divisor = 2
4 while divisor <= number / 2:
5 if number % divisor ==

6 # If true, number is not prime

7 return False # number is not a prime
8

9
10
11

divisor += 1

return True # number is prime

printPrimeNumbers 12 def printPrimeNumbers(numberOfPrimes):
function 13 NUMBER_OF_PRIMES = 50 # Number of primes to display
14 NUMBER_OF_PRIMES_PER_LINE = 10 # Display 10 per Tine
15 count = 0 # Count the number of prime numbers
16 number = 2 # A number to be tested for primeness
17
18 # Repeatedly find prime numbers
19 while count < numberOfPrimes:
20 # Print the prime number and increase the count
invoke isPrime 21 if isPrime(number) :
22 count += 1 # Increase the count
23
24 print(number, end = " ")
25 if count % NUMBER_OF_PRIMES_PER_LINE == O:
26 # Print the number and advance to the new 1line
27 print()
28
29 # Check if the next number is prime
30 number += 1
31

32 def main(Q):
33 print("The first 50 prime numbers are")

6.8 Case Study: Converting Decimals to Hexadecimals 185

34 printPrimeNumbers (50) invoke printPrimeNumbers
35
36 main() # Call the main function

The first 50 prime numbers are g

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 50 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

This program divides a large problem into two subproblems. As a result, the new program
is easier to read and easier to debug. Moreover, the functions printPrimeNumbers and
isPrime can be reused by other programs.

6.8 Case Study: Converting Decimals to Hexadecimals

This section presents a program that converts a decimal number to a hexadecimal Key
number. 6 Point

Hexadecimal numbers (introduced in Chapter 3) are often used in computer systems pro-
gramming (see Appendix C for information on number systems). To convert a decimal
number d to a hexadecimal number, you have to find the hexadecimal digits
Ny By 1, hy—oy « . ., ho, By, and kg such that

d=h, X 16"+ h,_ X 16" "+ h, , X 16" 2 + ...
+ hy X 16> + hy X 16" + hy X 16°

These hexadecimal digits can be found by successively dividing d by 16 until the quotient
is 0. The remainders are hg, hy, hy, ... , h,—>, h,—;, and h,. The hexadecimal digits include
the decimal digits 0,1,2,3,4,5,6,7,8,9 plus A which is the decimal value 10, B which is the
decimal value 11, C which is 12, D which is 13, E which is 14, and F which is 15.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
shown below:

0/7 -<—— Quotient
16/ 7 16/ 123

0 112
7 11 <=—— Remainder
hy ho

The remainder of dividing 123 by 16 is 11, which is B in hexadecimal. The quotient of this
division is 7. The remainder of dividing 7 by 16 is 7 and the quotient is 0. So, 7B is the hexa-
decimal number for 123.

The program in Listing 6.8 prompts the user to enter a decimal number and converts it into
a hex number as a string.

LISTING 6.8 Decimal2HexConversion.py

1 # Convert a decimal to a hex as a string
2 def decimalToHex(decimalValue): define decimalToHex

186 Chapter 6

define toHexChar

get a letter

input decimal

Functions
3 hex = mn
4
5 while decimalValue != 0:
6 hexValue = decimalValue % 16
7 hex = toHexChar(hexValue) + hex
8 decimalValue = decimalvalue // 16
9
10 return hex
11

a

12 # Convert an integer to a single hex digit as a character
13 def toHexChar(hexValue):

14 if 0 <= hexValue <= 9:

15 return chr(ChexValue + ord('0"))

16 else: # 10 <= hexValue <= 15

17 return chr(hexValue - 10 + ord('A"))

18

19 def main(Q):

20 # Prompt the user to enter a decimal integer

21 decimalValue = eval(input("Enter a decimal number: "))
22

23 print("The hex number for decimal",

24 decimalValue, "1is", decimalToHex(decimalValue))
25

26 main() # Call the main function

Enter a decimal number: 1234 [-ener

The hex number for decimal 1234 is 4D2
line# decimalValue hex hexValue toHexChar(hexValue)
21 1234
3 wn
6 2

iteration | 7 npn o
8 77
6 13

iteration 2 7 np2" np
8 4
6 4

iteration 3 7 "4D2" g
8 0

The hex string is initially empty (line 3). The program uses the decimalToHex function
(lines 2—-10) to convert a decimal integer to a hex number as a string. The function gets the
remainder of the division of the decimal integer by 16 (line 6). The remainder is converted into
a character by invoking the toHexChar function and then appending to the hex string (line 7).
Dividing the decimal number by 16 removes a hex digit from the number (line 8). The function
repeatedly performs these operations in a loop until the quotient becomes 0 (lines 5-8).

The toHexChar function (lines 13—17) converts a hexValue between 0 and 15 into a hex
character. If hexValue is between 0 and 9, it is converted to chrChexValue + ord('0'))
(line 15). For example, if hexValueis 5, chr (hexValue + ord('0")) returns 5. Similarly, if

6.9 The Scope of Variables

hexValue is between 10 and 15, it is converted to chrChexValue - 10 + ord('A")) (line
17). For example, if hexValue is 11, chrChexValue - 10 + ord('A")) returns B.

6.9 The Scope of Variables

The scope of a variable is the part of the program where the variable can be referenced.

Chapter 2 introduced the scope of variables. This section discusses the scope of variables in
the context of functions. A variable created inside a function is referred to as a local variable.
Local variables can only be accessed within a function. The scope of a local variable starts
from its creation and continues to the end of the function that contains the variable.

In Python, you can also use global variables. They are created outside all functions and are
accessible to all functions in their scope. Consider the following examples.

Example |
1 globalvar = 1
2 def f10):
3 localVar = 2
4 print(globalvar)
5 print(localvar)
6
7 f10
8 print(globalvar)
9 print(localvar) # Out of scope, so this gives an error

A global variable is created in line 1. It is accessed within the function in line 4 and outside the
function in line 8. A local variable is created in line 3. It is accessed within the function in line 5.
Attempting to access the variable from outside of the function causes an error in line 9.

Example 2
1 x=1
2 def f1Q):
3 X =2
4 print(x) # Displays 2
5
6 f10
7 print(x) # Displays 1

Here a global variable x is created in line 1 and a local variable with the same name (x) is
created in line 3. From this point on, the global variable x is not accessible in the function.
Outside the function, the global variable x is still accessible. So, it prints 1 in line 7.

Example 3
1 x = eval(input("Enter a number: "))
2 dif x > 0:
3 y =4
4
5 print(y) # This gives an error if y is not created

Here the variable y is created if x > 0. If you enter a positive value for x (line 1), the program
runs fine. But if you enter a nonpositive value, line 5 produces an error because y is not created.

Example 4

1 sum =0
2 for i 1in range(5):

K
ke

scope of a variable
local variable

global variable

create a global variable

create a local variable

create a global variable

create a local variable

create a variable

variable i created

187

188 Chapter 6 Functions

global statement

global variable x

binding global variable

/Iheck
Point

MyProgramminglab’

3 sum += i
4
5 print(i)
Here the variable i is created in the loop. After the loop is finished, i is 4, so line 5
displays 4.
You can bind a local variable in the global scope. You can also create a variable in a func-

tion and use it outside the function. To do either, use a global statement, as shown in the
following example.

Example 5
1 x=1
2 def 1increase():
3 global x
4 X = X+ 1
5 print(x) # Displays 2
6
7 dincrease()
8 print(x) # Displays 2

Here a global variable x is created in line 1 and x is bound in the function in line 3, which
means that x in the function is the same as x outside of the function, so the program prints 2
in line 5 and in line 8.

t‘ Caution

Although global variables are allowed and you may see global variables used in other
programs, it is not a good practice to allow them to be modified in a function, because
doing so can make programs prone to errors. However, it is fine to define global con-
stants so all functions in the module can share them.

6.17 What is the printout of the following code?

def function(x): def f(x, y =1, z = 2):
print(x) return X + y + z
X = 4.5
y = 3.4 print(f(1, 1, 1))
print(y) print(f(ty =1, x = 2, z = 3))
print(f(1, z = 3))
X = 2
y =4
function(x)
print(x)
print(y)
(@) (b)

6.18 What is wrong in the following code?

1 def function():
2 X = 4.5

3 y = 3.4

4 print(x)

5 print(y)

6

7

function()

6.10 Default Arguments

8 print(x)
9 print(y)

6.19 Can the following code run? If so, what is the printout?
x =10
if x < 0:
y =-1

else:
y =1

print("y 1is", y)

6.10 Default Arguments

Python allows you to define functions with default argument values. The default values
are passed to the parameters when a function is invoked without the arguments.

Listing 6.9 demonstrates how to define functions with default argument values and how to
invoke such functions.

LIsTING 6.9 DefaultArgumentDemo.py

1 def printArea(width = 1, height = 2):

2 area = width * height

3 print("width:", width, "\theight:", height, "\tarea:", area)
4

5 printArea() # Default arguments width = 1 and height = 2

6 printArea(4, 2.5) # Positional arguments width = 4 and height = 2.5
7 printAreaCheight = 5, width = 3) # Keyword arguments width

8 printArea(width = 1.2) # Default height = 2

9 printAreaCheight = 6.2) # Default width = 1

width: 1 height: 2 area: 2

width: 4 height: 2.5 area: 10.0

width: 3 height: 5 area: 15

width: 1.2 height: 2 area: 2.4

width: 1 height: 6.2 area: 6.2

Line 1 defines the printArea function with the parameters width and height. width
has the default value 1 and height has the default value 2. Line 5 invokes the function with-
out passing an argument, so the program uses the default value 1 assigned to width and 2 to
height. Line 6 invokes the function by passing 4 to width and 2.5 to height. Line 7
invokes the function by passing 3 to width and 5 to height. Note that you can also pass the
argument by specifying the parameter name, as shown in lines 8 and 9.

Note
A function may mix parameters with default arguments and non-default arguments. In
this case, the non-default parameters must be defined before default parameters.

Note

Many programming languages support a useful feature that allows you to define two
functions with the same name in a module, but it is not supported in Python. With
default arguments, you can define a function once, and call the function in many

K
ke

default argument

default argument

default arguments
positional arguments
keyword arguments
mixed arguments
mixed arguments

2

189

190 Chapter 6 Functions

different ways. This achieves the same effect as defining multiple functions with the
same name in other programming languages. If you define multiple functions in Python,
the later definition replaces the previous definitions.

ﬁheck 6.20 Show the printout of the following code:

Point def f(w =1, h = 2):
MyProgramminglLab’ print(w, h)
O
f(w =5)
fch = 24)
f(4, 5

6.21 Identify and correct the errors in the following program:

1 def mainQ:

2 nPrintln(5)

3

4 def nPrintln(message = "Welcome to Python!", n):
5 for i in range(n):

6 print(message)

7

8 main() # Call the main function

6.22 What happens if you define two functions in a module that have the same name?

6.11 Returning Multiple Values

GfKey The Python return statement can return multiple values.

Point Python allows a function to return multiple values. Listing 6.10 defines a function that takes

two numbers and returns them in ascending order.

LISTING 6.10 MultipleReturnValueDemo.py

1 def sort(numberl, number2):
if numberl < number2:
return numberl, number?2
else:
return number2, numberl

return multiple values

nl, n2 = sort(3, 2)
print("nl is", nl)
print("n2 is", n2)

nl is 2
E n2 is 3

The sort function returns two values. When it is invoked, you need to pass the returned
values in a simultaneous assignment.

receiving returned values

OooNOuUVTh~WN

ﬁheck 6.23 Can a function return multiple values? Show the printout of the following code:

Point

MyProgramminglLab’ def TOO V-

return X +y, X -y, X *y, X/ y

tl, t2, t3, t4 = f(9, 5)

1
2
3
4
5 print(tl, t2, t3, t4)

6.12 Case Study: Generating Random ASCII Characters

6.12 Case Study: Generating Random ASCII Characters

A character is coded using an integer. Generating a random character is to generate
an integer. gﬁl(fl;{

Computer programs process numeric data and characters. You have seen many examples
involving numeric data. It is also important to understand characters and how to process them.
This section gives an example of generating random ASCII characters.

As introduced in Section 3.3, every ASCII character has a unique ASCII code between 0
and 127. To generate a random ASCII character, first generate a random integer between 0
and 127, and then use the chr function to obtain the character from the integer using the fol-
lowing code:

chr(randint(0, 127))

Let’s consider how to generate a random lowercase letter. The ASCII codes for lowercase let-
ters are consecutive integers starting with the code for a, then for b, c, ..., and z. The code for a is

ord('a'")

So a random integer between ord('a') and ord('z") is
randint(ord('a'), ord('z"))

Therefore, a random lowercase letter is
chr(randint(ord('a'), ord('z")))

Thus, a random character between any two characters chl and ch2 with chl < ch2 can
be generated as follows:

chr(randint(ord(chl), ord(ch2)))

This is a simple but useful discovery. In Listing 6.11 we create a module named
RandomCharacter.py with five functions that randomly generate specific types of charac-
ters. You can use these functions in your future projects.

LisTING 6.11 RandomCharacter.py

from random import randint # import randint

1
2
3 # Generate a random character between chl and ch2
4 def getRandomCharacter(chl, ch2):

5 return chr(randint(ord(chl), ord(ch2)))

6

7

8

9

Generate a random lowercase letter
def getRandomLowerCaselLetter() :
return getRandomCharacter('a', 'z'")

11 # Generate a random uppercase letter
12 def getRandomUpperCaselLetter() :
13 return getRandomCharacter('A', 'Z")

15 # Generate a random digit character
16 def getRandomDigitCharacter() :
17 return getRandomCharacter('0', '9")

19 # Generate a random character
20 def getRandomASCIICharacter() :
21 return chr(randint(0, 127))

191

192 Chapter 6 Functions

constants

lowercase letter

parentheses required

ﬁheck
Point

MyProgramminglab’

K
Gﬁoitr?é

function abstraction

information hiding

VideoNote
Divide and conquer

divide and conquer

Listing 6.12 is a test program that displays 175 random lowercase letters.

LIsTING 6.12 TestRandomCharacter.py

1 dmport RandomCharacter

2

3 NUMBER_OF_CHARS = 175 # Number of characters to generate

4 CHARS_PER_LINE = 25 # Number of characters to display per Tine

5

6 # Print random characters between 'a' and 'z', 25 chars per Tine
7 for i 1in range(NUMBER_OF_CHARS):

8 print(RandomCharacter.getRandomLowerCaselLetter(), end = "
9 if (i + 1) % CHARS_PER_LINE == 0:
10 print() # Jump to the new line

gmjsohezfkgtazggmswfclrao
pnrunulnwmaztl]fjedmpchcif
Talqdgivxkxpbzulrmgmbhikr
Tbnrjlsopfxahssghwuuljvbe
xbhdotzhpehbgmuwsfktwsoli
cbuwkzgxpmtzihgatds1vbwbz
bfesoklwbhnooygiigzdxugni

Line 1 imports the RandomCharacter module, because the program invokes the function
defined in this module.

Invoking getRandomlLowerCaseletter () returns a lowercase letter (line 8).

Note that the function getRandomLowerCaseletter() does not have any parameters,
but you still have to use the parentheses when defining and invoking it.

6.24 Write an expression that returns a random integer between 34 and 55, inclusively.
6.25 Write an expression that returns a random character between B and M, inclusively.

6.26 Write an expression that returns a random number between 6.5 and 56. 5 (excluding
56.5).

6.27 Write an expression that returns a random lowercase letter.

6.13 Function Abstraction and Stepwise Refinement

Function abstraction is achieved by separating the use of a function from its
implementation.

The key to developing software is to apply the concept of abstraction. You will learn many
levels of abstraction from this book. Function abstraction separates the use of a function from
its implementation. A client program, called simply the client, can use a function without
knowing how it is implemented. The details of the implementation are encapsulated in the
function and hidden from the client that invokes the function. This is known as information
hiding or encapsulation. If you decide to change the implementation, the client program will
not be affected, provided that you do not change the function header. The implementation of
the function is hidden from the client in a “black box,” as shown in Figure 6.5.

You have already used many of Python’s built-in functions; you used these in client pro-
grams. You know how to write the code to invoke these functions in your program, but as a
user of these functions, you are not required to know how they are implemented.

The concept of function abstraction can be applied to the process of developing programs.
When writing a large program, you can use the “divide-and-conquer” strategy, also known as

6.13 Function Abstraction and Stepwise Refinement 193

Optional arguments Optional return
for input value

! !

| Function Header |

~— Black box
Function Body

FIGURE 6.5 The function body can be thought of as a black box that contains the detailed
implementation of the function.

stepwise refinement, to break down the problem into subproblems. The subproblems can be stepwise refinement
further divided into smaller, more manageable ones.
Suppose you write a program that displays the calendar for a given month of the year. The
program prompts the user to enter the year and the month, and then it displays the entire cal-
endar for the month, as shown in the following sample run:

Enter full year (e.g., 2001): 2011 IdEnter E

Enter month as number between 1 and 12: 9 |~Enter
September 2011

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24
25 26 27 28 29 30

Let’s use this example to demonstrate the divide-and-conquer approach.

6.13.1 Top-Down Design

How would you get started writing such a program? Would you immediately start coding?
Beginning programmers often start by trying to work out the solution to every detail.
Although details are important in the final program, concern for detail in the early stages may
block the problem-solving process. To make problem solving flow as smoothly as possible,
this example begins by using function abstraction to isolate details from design and only later
implements the details.

For this example, the problem is first broken into two subproblems: (1) get input from the
user and (2) print the calendar for the month. At this stage, you should be concerned with
what the subproblems will achieve, not with how to get input and print the calendar for the
month. You can draw a structure chart to help visualize the decomposition of the problem (see
Figure 6.6a).

You can use the input function to read input for the year and the month. The problem of
printing the calendar for a given month can be broken into two subproblems: (1) print the
month title and (2) print the month body, as shown in Figure 6.6b. The month title consists of
three lines: month and year, a dashed line, and the names of the seven days of the week. You
need to get the month name (e.g., January) from the numeric month (e.g., 1). This is accom-
plished in getMonthName (see Figure 6.7a).

194 Chapter 6 Functions

printCalendar
(main)

Y Y Y

readInput | printMonth | printMonthTit]el printMonthBody I

(a) (b)

FIGURE 6.6 The structure chart shows that the printCalendar problem is divided into two subproblems, readInput
and printMonth, and that printMonth is divided into two smaller subproblems, printMonthTitTle and
printMonthBody.

printMonth

printMonthBody |
printMonthTit1e| |
getMonthName | getStartDay | getNumberOfDaysInMonth

(@) (b)

FIGURE 6.7 (a) To printMonthT1it1e, you need getMonthName. (b) The printMonthBody
problem is refined into several smaller problems.

In order to print the month body, you need to know which day of the week is the first day of
the month (getStartDay) and how many days the month has (getNumberOfDaysInMonth),
as shown in Figure 6.7b. For example, December 2005 has 31 days, and December 1, 2005, is a
Thursday.

How would you get the start day for the first date in a month? There are several ways
to do so. Assume you know that the start day for January 1, 1800, was Wednesday
(START_DAY_FOR_JAN_1 1800 = 3). You could compute the total number of days
(totalNumberOfDays) between January 1, 1800, and the first date of the calendar month.
The start day for the calendar month is (totalNumberOfDays + startDayl800) % 7,
since every week has seven days. Thus, the getStartDay problem can be further refined as
getTotalNumberOfDays, as shown in Figure 6.8a.

getStartDay getTotalNumberOfDays |

getNumberOfDaysInMonth

getTota1NumberOfDays| isLeapYear‘l

(a) (b)

FIGURE 6.8 (a) To getStartDay, you need getTotalNumberOfDays. (b) The
getTotalNumberOfDays problem is refined into two smaller problems.

To get the total number of days, you need to know whether the year is a leap year and the
number of days in each month. Therefore, getTotalNumberOfDays needs to be further
refined into two subproblems: isLeapYear and getNumberOfDaysInMonth, as shown in
Figure 6.8b. The complete structure chart is shown in Figure 6.9.

6.13 Function Abstraction and Stepwise Refinement 195

printCalendar
(main)

Y Y
readInput | printMonth |
I
Y
pri ntMonthT'it'Iel printMonthBody |
! Y
getMonthName | getStartDay |
getTotalNumberOfDays |

—

getNumberOfDaysInMonth

'isLeapYear'l

FIGURE 6.9 The structure chart shows the hierarchical relationship of the subproblems in
the program.

6.13.2 Top-Down and/or Bottom-Up Implementation

Now let’s turn our attention to implementation. In general, a subproblem corresponds to
a function in the implementation, although some are so simple that this is unnecessary.
You need to decide which modules to implement as functions and which to combine in other
functions. Decisions of this kind should be based on the way that the overall program will be
easier to read. In this example, the subproblem readInput can be simply implemented in the
ma‘in function.

You can use either a “top-down” or a “bottom-up” approach. The top-down approach top-down approach
implements one function in the structure chart at a time from the top to the bottom. A stub, stub
which is a simple but incomplete version of a function, can be used for the functions waiting
to be implemented. Stubs enable you to build the framework of a program quickly. Implement
the main function first, then use a stub for the printMonth function. For example, let
printMonth display the year and the month in the stub. Thus, your program may begin
like this:

A stub for printMonth may look Tike this
def printMonth(year, month) :
print(year, month)

A stub for printMonthTitle may look Tike this
def printMonthTitle(year, month):
print("printMonthTitle")

A stub for getMonthBody may look Tike this
def getMonthBody(year, month):
print("getMonthBody")

A stub for getMonthName may look Tike this
def getMonthName(month) :
print("getMonthName'")

196 Chapter 6

bottom-up approach
driver

Functions

A stub for getStartDay may look Tike this
def getStartDay(year, month) :
print("getStartDay")

A stub for getTotalNumberOfDays may look 1like this
def getTotalNumberOfDays(year, month) :
print("getTotalNumberOfDays")

A stub for getNumberOfDaysInMonth may look 1like this
def getNumberOfDaysInMonth(year, month):
print("getNumberOfDaysInMonth")

A stub for islLeapYear may look Tike this
def islLeapYear(year) :
print("isLeapYear™)

def main(Q):
Prompt the user to enter year and month
year = eval(input("Enter full year (e.g., 2001): "))
month = eval (input((
"Enter month as number between 1 and 12: ")))

Print calendar for the month of the year
printMonth(year, month)

main() # Call the main function

Run and test the program, and fix any errors. You can now implement the printMonth
function. For functions invoked from the printMonth function, you can again use stubs.

The bottom-up approach implements one function in the structure chart at a time from the bot-
tom to the top. For each function implemented, write a test program, known as the driver, to test it.

The top-down and bottom-up approaches are both fine. Both approaches implement func-
tions incrementally, help to isolate programming errors, and make debugging easy. They can
be used together.

6.13.3 Implementation Details

The isLeapYear(year) function can be implemented using the following code (see
Section 4.12):

return year % 400 == 0 or (year % 4 == 0 and year % 100 != 0)

Use the following facts to implement getTotalNumberOfDaysInMonth(year, month):
B January, March, May, July, August, October, and December have 31 days.
® April, June, September, and November have 30 days.

B February has 28 days during a regular year and 29 days during a leap year. A regular
year, therefore, has 365 days, and a leap year has 366 days.

To implement getTotalNumberOfDays (year, month), you need to compute the total
number of days (totalNumberOfDays) between January 1, 1800, and the first day of the
calendar month. You could find the total number of days between the year 1800 and the cal-
endar year and then figure out the total number of days prior to the calendar month in the cal-
endar year. The sum of these two totals is totalNumberOfDays.

To print the calendar’s body, first pad some space before the start day and then print the
lines for every week.

The complete program is given in Listing 6.13.

6.13 Function Abstraction and Stepwise Refinement

LIsTING 6.13 PrintCalendar.py

1 # Print the calendar for a month in a year
2 def printMonth(year, month): printMonth

3 # Print the headings of the calendar

4 printMonthTitle(year, month)

5

6 # Print the body of the calendar

7 printMonthBody (year, month)

8

9 # Print the month title, e.g., May 1999

10 def printMonthTitle(year, month): printMonthTitle
11 print(" ", getMonthName(month), " ", year)
12 print(")
13 print(" Sun Mon Tue Wed Thu Fri Sat")

14

15 # Print month body

16 def printMonthBody(year, month): printMonthBody
17 # Get start day of the week for the first date in the month
18 startDay = getStartDay(year, month)

19

20 # Get number of days in the month

21 numberOfDaysInMonth = getNumberOfDaysInMonth(year, month)
22

23 # Pad space before the first day of the month

24 i=0

25 for i 1in range(0, startDay):

26 print(" "Send ="")

27

28 for i 1in range(l, numberOfDaysInMonth + 1):

29 print(format(i, "4d"), end = " ")

30

31 if (i + startDay) % 7 == 0:

32 print() # Jump to the new 1line

33

34 # Get the English name for the month

35 def getMonthName(month): getMonthName
36 if month == 1:

37 monthName = "January"

38 elif month == 2:

39 monthName = "February"
40 elif month == 3:
41 monthName = "March"
42 elif month == 4:
43 monthName = "April"
44 elif month == 5:
45 monthName = "May"
46 elif month == 6:
47 monthName = "June"
48 elif month == 7:
49 monthName = "July"

50 elif month == 8:

51 monthName = "August"

52 elif month == 9:

53 monthName = "September"

54 elif month == 10:

55 monthName = "October"

56 elif month == 11:

57 monthName = "November"

197

198 Chapter 6 Functions

58 else:

59 monthName = "December"

60

61 return monthName

62

63 # Get the start day of month/1/year
getStartDay 64 def getStartDay(year, month):

65 START_DAY_FOR_JAN_1_1800 = 3

66

67 # Get total number of days from 1/1/1800 to month/1l/year

68 totalNumberOfDays = getTotalNumberOfDays(year, month)

69

70 # Return the start day for month/1/year

71 return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7

72

73 # Get the total number of days since January 1, 1800
getTotalNumberOfDays 74 def getTotalNumberOfDays(year, month):

75 total = 0

76

77 # Get the total days from 1800 to 1/1/year

78 for i 1in range(1800, year):

79 if disLeapYear(i):

80 total = total + 366

81 else:

82 total = total + 365

83

84 # Add days from Jan to the month prior to the calendar month

85 for i 1in range(l, month):

86 total = total + getNumberOfDaysInMonth(year, 1)

87

88 return total

89

90 # Get the number of days in a month
getNumberOfDaysInMonth 91 def getNumberOfDaysInMonth(year, month):

92 if (month == 1 or month == 3 or month == 5 or month == 7 or
93 month == 8 or month == 10 or month == 12):
94 return 31
95
96 if month == 4 or month == 6 or month == 9 or month == 11:
97 return 30
98
99 if month ==
100 return 29 if islLeapYear(year) else 28
101
102 return 0 # If month is incorrect
103
104 # Determine if it is a leap year
isLeapYear 105 def islLeapYear(year):
106 return year % 400 == 0 or (year % 4 == 0 and year % 100 != 0)
107
108 def main():
109 # Prompt the user to enter year and month
110 year = eval(input("Enter full year (e.g., 2001): "))
111 month = eval(input(("Enter month as number between 1 and 12: ')))
112
113 # Print calendar for the month of the year
114 printMonth(year, month)
115

116 main() # Call the main function

6.14 Case Study: Reusable Graphics Functions 199

This program does not validate user input. For instance, if the user enters either a month
not in the range between 1 and 12 or a year before 1800, the program displays an erroneous
calendar. To avoid this error, add an 1if statement to check the input before printing the
calendar.

This program prints calendars for a month but could easily be modified to print calendars
for a whole year. Although it can print months only after January 1800, it could be modified
to print months before 1800.

6.13.4 Benefits of Stepwise Refinement

Stepwise refinement breaks a large problem into smaller manageable subproblems. Each sub-
problem can be implemented using a function. This approach makes the program easier to
write, reuse, debug, test, modify, and maintain.

Simpler Program

The print calendar program is long. Rather than writing a long sequence of statements in one
function, stepwise refinement breaks it into smaller functions. This simplifies the program
and makes the whole program easier to read and understand.

Reusing Functions

Stepwise refinement promotes code reuse within a program. The islLeapYear function is
defined once and invoked from the getTotalNumberOfDays and getNumberOfDasInMonth
functions. This reduces redundant code.

Easier Developing, Debugging, and Testing

Since each subproblem is solved in a function, a function can be developed, debugged, and
tested individually. This isolates the errors and makes developing, debugging, and testing
easier.

When implementing a large program, use the top-down and/or bottom-up approach. Do
not write the entire program at once. Using these approaches seems to take more development
time (because you repeatedly run the program), but it actually saves time and makes debug-
ging easier.

Better Facilitating Teamwork

Since a large problem is divided into subprograms, the subproblems can be assigned to pro-
grammers. This makes it easier for programmers to work in teams.

6.14 Case Study: Reusable Graphics Functions

You can develop reusable functions to simplify coding in the turtle module.

Often you need to draw a line between two points, display text or a small point at a speci-
fied location, depict a circle with a specified center and radius, or create a rectangle with a
specified center, width, and height. It would greatly simplify programming if these func-
tions were available for reuse. Listing 6.14 defines these functions in a module named
UsefulTurtleFunctions.

LISTING 6.14 UsefulTurtleFunctions.py

import turtle

def drawlLine(x1, yl, x2, y2):

1
2
3 # Draw a Tine from (x1, yl) to (x2, y2)
4
5 turtle.penup()

incremental development and
testing

K
ke

import turtle

function drawLine

200 Chapter 6 Functions

draw a line

function writeText

write string

function drawPoint

draw a tiny circle

function drawCircle

draw a circle

function drawRectangle

import turtle
import
UsefulTurtleFunctions

draw a line

write text string

draw a point

6 turtle.goto(x1l, yl)
7 turtle.pendown()

8 turtle.goto(x2, y2)
9

10 # Write a string s at the specified Tocation (x, y)
11 def writeText(s, X, y):

12 turtle.penup() # Pull the pen up

13 turtle.goto(x, y)

14 turtle.pendown() # Pull the pen down
15 turtle.write(s) # Write a string

16

17 # Draw a point at the specified location (x, y)
18 def drawPoint(x, y):

19 turtle.penup() # Pull the pen up

20 turtle.goto(x, y)

21 turtle.pendown() # Pull the pen down

22 turtle.begin_fil11() # Begin to fill color in a shape
23 turtle.circle(3)

24 turtle.end_fi11(Q) # Fi1l the shape

25

26 # Draw a circle centered at (x, y) with the specified radius
27 def drawCircle(x = 0, y = 0, radius = 10):

28 turtle.penup() # Pull the pen up

29 turtle.goto(x, y - radius)

30 turtle.pendown() # Pull the pen down
31 turtle.circle(radius)

32

33 # Draw a rectangle at (x, y) with the specified width and height
34 def drawRectangle(x = 0, y = 0, width = 10, height = 10):

35 turtle.penup() # Pull the pen up

36 turtle.goto(x + width / 2, y + height / 2)
37 turtle.pendown() # Pull the pen down
38 turtle.right(90)

39 turtle.forward(height)

40 turtle.right(90)

41 turtle.forward(width)

42 turtle.right(90)

43 turtle.forward(height)

44 turtle.right(90)

45 turtle.forward(width)

Now that you have written this code, you can use these functions to draw shapes. Listing 6.15
gives a test program to use these functions from the UsefulTurtleFunctions module to draw
a line, write some text, and create a point, a circle, and a rectangle, as shown in Figure 6.10.

LISTING 6.15 UseCustomTurtleFunctions.py

import turtle
from UsefulTurtleFunctions import *

1

2

3

4 # Draw a line from (-50, -50) to (50, 50)
5 drawLine(-50, -50, 50, 50)
6

7

8

9

Write text at (-50, -60)
writeText("Testing useful Turtle functions", -50, -60)

10 # Draw a point at (0, 0)
11 drawPoint(0, 0)

13 # Draw a circle at (0, 0) with radius 80

14
15
16
17
18
19
20

drawCircle(0, 0, 80)

Chapter Summary

draw a circle

Draw a rectangle at (0, 0) with width 60 and height 40

drawRectangle(0, 0, 60, 40)

turtle.hideturtle()
turtle.done()

draw a rectangle

pause

& Python Turtle Grap hics.

R o

TQQ useful Turtle fufictions

FIGURE 6.10 The program draws shapes using the custom functions.

The asterisk (*) in line 2 imports all functions from the UsefulTurtleFunctions mod-
ule into the program. Line 5 invokes the drawLine function to draw a line, and line 8 invokes
the writeText function to write a text string. The drawPoint function (line 11) draws a
point, and the drawCircle function (line 14) draws a circle. Line 17 invokes the
drawRectangle function to draw a rectangle.

KEey TERMS

actual parameter 173
argument 173

caller 173

default argument 189
divide and conquer 192

formal parameters (i.e., parameter) 173
functions 172
function abstraction
function header 173
global variable 187

immutable objects

192

181

CHAPTER SUMMARY

information hiding 192
keyword arguments 180
local variable 187

None function 178
parameters 173
pass-by-value 180
positional arguments 179
return value 173

scope of a variable 187
stepwise refinement 193

stub 195

I. Making programs modular and reusable is one of the central goals in software engi-
neering. Functions can help to achieve this goal.

2. A function header begins with the def keyword followed by function’s name and

parameters, and ends with a colon.

3. Parameters are optional; that is, a function does not have to contain any parameters.

201

202 Chapter 6 Functions

10.

12.

13.

14.

I5.

16.

17.

A function is called a void or None function if it does not return a value.

A return statement can also be used in a void function for terminating the function
and returning to the function’s caller. This is useful occasionally for circumventing
the normal flow of control in a function.

The arguments that are passed to a function should have the same number, type, and
order as the parameters in the function header.

When a program calls a function, program control is transferred to the called func-
tion. A called function returns control to the caller when its return statement is exe-
cuted or when the last statement in the function is executed.

A value-returning function can also be invoked as a statement in Python. In this case,
the function’s return value is ignored.

A function’s arguments can be passed as positional arguments or keyword arguments.

When you invoke a function with a parameter, the reference value of the argument
is passed to the parameter. This is referred to as pass-by-value in programming
terminology.

A variable created in a function is called a local variable. The scope of a local vari-
able starts from its creation and exists until the function returns. A variable must be
created before it is used.

Global variables are created outside all functions and are accessible to all functions
in their scope.

Python allows you to define functions with default argument values. The default val-
ues are passed to the parameters when a function is invoked without the arguments.

The Python return statement can return multiple values.

Function abstraction is achieved by separating the use of a function from its imple-
mentation. The client can use a function without knowing how it is implemented. The
details of the implementation are encapsulated in the function and hidden from the
client that invokes the function. This is known as information hiding or encapsulation.

Function abstraction modularizes programs in a neat, hierarchical manner. Programs
written as collections of concise functions are easier to write, debug, maintain, and
modify than would otherwise be the case. This writing style also promotes function
reusability.

When implementing a large program, use the top-down and/or bottom-up coding
approach. Do not write the entire program at once. This approach may seem to take
more time for coding (because you are repeatedly running the program), but it actu-
ally saves time and makes debugging easier.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

www.cs.armstrong.edu/liang/py/test.html

Programming Exercises 203

PROGRAMMING EXERCISES

Sections 6.2-6.9

6.1

*6.2

*%*6.3

*6.4

*6.5

(Math: pentagonal numbers) A pentagonal number is defined as n(3n — 1)/2 for
n=12,...,and so on. So, the first few numbers are 1, 5, 12, 22, Write a
function with the following header that returns a pentagonal number:

def getPentagonalNumber(n):

Write a test program that uses this function to display the first 100 pentagonal
numbers with 10 numbers on each line.

(Sum the digits in an integer) Write a function that computes the sum of the digits
in an integer. Use the following function header:

def sumDigits(n):

For example, sumDigits(234) returns 9 (2 + 3 + 4). (Hint: Use the % operator
to extract digits, and the // operator to remove the extracted digit. For instance, to
extract 4 from 234, use 234 % 10 (= 4). To remove 4 from 234, use 234 // 10
(= 23). Use a loop to repeatedly extract and remove the digits until all the digits
are extracted.) Write a test program that prompts the user to enter an integer and
displays the sum of all its digits.

(Palindrome integer) Write the functions with the following headers:

Return the reversal of an integer, e.g. reverse(456) returns
654
def reverse(number):

Return true if number is a palindrome
def isPalindrome(number):

Use the reverse function to implement isPalindrome. A number is a palin-
drome if its reversal is the same as itself. Write a test program that prompts the
user to enter an integer and reports whether the integer is a palindrome.

(Display an integer reversed) Write the following function to display an integer in
reverse order:

def reverse(number):

For example, reverse(3456) displays 6543. Write a test program that prompts
the user to enter an integer and displays its reversal.

(Sort three numbers) Write the following function to display three numbers in
increasing order:

def displaySortedNumbers(numl, num2, num3):

Write a test program that prompts the user to enter three numbers and invokes the
function to display them in increasing order. Here are some sample runs:

Enter three numbers: 3, 2.4, 5 |~Enter
The sorted numbers are 2.4 3 5

MyProgramminglab’

204 Chapter 6

Functions

2

Enter three numbers: 31, 12.4, 15
The sorted numbers are 12.4 15 31

*6.6 (Display patterns) Write a function to display a pattern as follows:
1
21
321
nn-l...321
The function header is
def displayPattern(n):
Write a test program that prompts the user to enter a number n and invokes
displayPattern(n) to display the pattern.
*6.7 (Financial application: compute the future investment value) Write a function that
computes a future investment value at a given interest rate for a specified number of
years. The future investment is determined using the formula in Exercise 2.19.
Use the following function header:
def futureInvestmentValue(
investmentAmount, monthlyInterestRate, years):
For example, futureInvestmentValue(10000, 0.05/12, 5) returns
12833.59.
Write a test program that prompts the user to enter the investment amount and the
annual interest rate in percent and prints a table that displays the future value for
the years from 1 to 30. Here is a sample run:
The amount invested: 1000 !uEnter
Annual interest rate: 9 |-enter
Years Future Value
1 1093.80
2 1196.41
29 13467.25
30 14730.57
6.8 (Conversions between Celsius and Fahrenheit) Write a module that contains the

following two functions:

Converts from Celsius to Fahrenheit
def celsiusToFahrenheit(celsius):

Converts from Fahrenheit to Celsius
def fahrenheitToCelsius(fahrenheit):

The formulas for the conversion are:

celsius = (5 / 9) * (fahrenheit - 32)
fahrenheit = (9 / 5) * celsius + 32

Programming Exercises 205

Write a test program that invokes these functions to display the following tables:

Celsius Fahrenheit | Fahrenheit Celsius
40.0 104.0 | 120.0 48.89
39.0 102.2 | 110.0 43.33
32.0 89.6 | 40.0 4.44
31.0 87.8 | 30.0 -1.11

6.9 (Conversions between feet and meters) Write a module that contains the following
two functions:

Converts from feet to meters
def footToMeter(foot):

Converts from meters to feet
def meterToFoot(meter):

The formulas for the conversion are:

foot = meter / 0.305
meter = 0.305 * foot

Write a test program that invokes these functions to display the following tables:

Feet Meters | Meters Feet
1.0 0.305 | 20.0 66.574
2.0 0.610 | 26.0 81.967
9.0 2.745 | 60.0 196.721
10.0 3.050 | 66.0 213.115

6.10 (Use the isPrime Function) Listing 6.7, PrimeNumberFunction.py, provides the
isPrime(number) function for testing whether a number is prime. Use this
function to find the number of prime numbers less than 10,000.

6.1 1 (Financial application: compute commissions) Write a function that computes
the commission, using the scheme in Exercise 5.39. The header of the function is:

def computeCommission(salesAmount):

Write a test program that displays the following table:

Sales Amount Commission
10000 900.0
15000 1500.0
95000 11100.0
100000 11700.0

6.12 (Display characters) Write a function that prints characters using the following
header:

def printChars(chl, ch2, numberPerLine):

This function prints the characters between chl and ch2 with the specified
numbers per line. Write a test program that prints ten characters per line from 1
to Z.

206 Chapter 6

Functions

*6.13

*6.14

*6.15

*6.16

(Sum series) Write a function to compute the following series:

h=tyZy T
S S T

Write a test program that displays the following table:

i m(i)

1 0.5000
2 1.1667
19 16.4023
20 17.3546

(Estimate) 7 can be computed using the following series:

1 1 _li+l
oLy o8
9 11 2i — 1

Write a function that returns m(i) for a given 1 and write a test program that dis-
plays the following table:

i m(i)

1 4.0000
101 3.1515
201 3.1466
301 3.1449
401 3.1441
501 3.1436
601 3.1433
701 3.1430
801 3.1428
901 3.1427

(Financial application: print a tax table) Listing 4.7, ComputeTax.py, gives a
program to compute tax. Write a function for computing tax using the following
header:

def computeTax(status, taxableIncome):

Use this function to write a program that prints a tax table for taxable income from
$50,000 to $60,000 with intervals of $50 for all four statuses, as follows:

Taxable Single Married Married Head of
Income Joint Separate a House
50000 8688 6665 8688 7352
50050 8700 6673 8700 7365
59950 11175 8158 11175 9840
60000 11188 8165 11188 9852

(Number of days in a year) Write a function that returns the number of days in a
year using the following header:

def numberOfDaysInAYear(year):

Write a test program that displays the number of days in the years from 2010 to
2020.

Programming Exercises 207

Sections 6.10-6.11

*6.17 (The MyTriangle module) Create a module named MyTriangle that contains
the following two functions:

Returns true if the sum of any two sides is
greater than the third side.
def isValid(sidel, side2, side3):

Returns the area of the triangle.
def area(sidel, side2, side3):

Write a test program that reads three sides for a triangle and computes the area if the
input is valid. Otherwise, it displays that the input is invalid. The formula for com-
puting the area of a triangle is given in Exercise 2.14. Here are some sample runs:

Enter three sides in double: 1, 3, 1 E

Input 1is invalid

Enter three sides in double: 1, 1, 1 E

The area of the triangle is 0.4330127018922193

*6.18 (Display matrix of Os and Is) Write a function that displays an n-by-n matrix using
the following header:

def printMatrix(n):

Each element is O or 1, which is generated randomly. Write a test program that
prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

n: 3 [oemer E

*6.19 (Geometry: point position) Exercise 4.31 shows how to test whether a point is on
the left side of a directed line, on the right, or on the same line. Write the follow-
ing functions:

Return true if point (x2, y2) is on the left side of the
directed 1line from (x0, y0) to (x1, yl)
def leftOfTheLine(x0, y0, x1, yl, x2, y2):

Return true if point (x2, y2) is on the same
Tine from (x0, y0) to (x1, yl)
def onTheSamelLine(x0, y0, x1, yl, x2, y2):

Return true if point (x2, y2) is on the
Tine segment from (x0, y0) to (x1, yl)
def onThelLineSegment(x0, y0, x1, yl, x2, y2):

208 Chapter 6

Functions

*6.20

**6.21

Write a program that prompts the user to enter the three points for p0, pl, and p2
and displays whether p2 is on the left of the line from pO to p1, on the right, on the
same line, or on the line segment. The sample runs of this program are the same as
in Exercise 4.31.

(Geometry: display angles) Rewrite Listing 2.9, ComputeDistance.py, using the
following function for computing the distance between two points.

def distance(xl, yl, x2, y2):

(Math: approximate the square root) There are several techniques for implement-
ing the sqrt function in the math module. One such technique is known as the
Babylonian function. It approximates the square root of a number, n, by repeatedly
performing a calculation using the following formula:

nextGuess = (lastGuess + (n / lastGuess)) / 2

When nextGuess and lastGuess are almost identical, nextGuess is the
approximated square root. The initial guess can be any positive value (e.g., 1).
This value will be the starting value for TastGuess. If the difference between
nextGuess and lastGuess is less than a very small number, such as 0.0001,
you can claim that nextGuess is the approximated square root of n. If not,
nextGuess becomes lastGuess and the approximation process continues.
Implement the following function that returns the square root of n.

def sqrt(n):

Sections 6.12-6.13

*%6.22

*%6.23

**6.24

(Display current date and time) Listing 2.7, ShowCurrentTime.py, displays the
current time. Enhance this program to display the current date and time. (Hint: The
calendar example in Listing 6.13, PrintCalendar.py, should give you some ideas on
how to find the year, month, and day.)

(Convert milliseconds to hours, minutes, and seconds) Write a function that con-
verts milliseconds to hours, minutes, and seconds using the following header:

def convertMillis(millis):

The function returns a string as hours:minutes:seconds. For example,
convertMillis(5500) returns the string 0:0:5, convertMillis(100000)
returns the string 0:1:40, and convertMil1is(555550000) returns the string
154:19:10.

Write a test program that prompts the user to enter a value for milliseconds and
displays a string in the format of hours:minutes:seconds.

(Palindromic prime) A palindromic prime is a prime number that is also palin-
dromic. For example, 131 is a prime and also a palindromic prime, as are 313 and
757. Write a program that displays the first 100 palindromic prime numbers. Dis-
play 10 numbers per line and align the numbers properly, as follows:

2 3 5 7 11 101 131 151 181 191
313 353 373 383 727 757 787 797 919 929

Programming Exercises 209

*%6.25 (Emirp) An emirp (prime spelled backward) is a nonpalindromic prime number
whose reversal is also a prime. For example, both 17 and 71 are prime numbers, so
17 and 71 are emirps. Write a program that displays the first 100 emirps. Display
10 numbers per line and align the numbers properly, as follows:

13 17 31 37 71 73 79 97 107 113
149 157 167 179 199 311 337 347 359 389

*%6.26 (Mersenne prime) A prime number is called a Mersenne prime if it can be written
in the form 27 — 1 for some positive integer p. Write a program that finds all
Mersenne primes with p = 31 and displays the output as follows:

2Ap - 1

UvTWNT

3
7
31

**6.27 (Twin primes) Twin primes are a pair of prime numbers that differ by 2. For exam-
ple, 3 and 5, 5 and 7, and 11 and 13 are twin primes. Write a program to find all
twin primes less than 1,000. Display the output as follows:

@3, 5
G, ...

*%6.28 (Game: craps) Craps is a popular dice game played in casinos. Write a program to
play a variation of the game, as follows:

Roll two dice. Each die has six faces representing values 1, 2, ..., and 6, respec-
tively. Check the sum of the two dice. If the sum is 2, 3, or 12 (called craps), you
lose; if the sum is 7 or 11 (called natural), you win; if the sum is another value
(i.e.,4,5,6,8,9,or 10), a point is established. Continue to roll the dice until either
a 7 or the same point value is rolled. If 7 is rolled, you lose. Otherwise, you win.

Your program acts as a single player. Here are some sample runs.

You rolled 5 + 6
You win

11

You rolled 1 + 2 = 3
You lose

o

You rolled 4 + 4 = 8
point is 8

You rolled 6 + 2 = 8
You win

W

You rolled 3 + 2 =5
point is 5

You rolled 2 + 5 =7
You lose

w

210 Chapter 6 Functions

*%6.29 (Financial: credit card number validation) Credit card numbers follow certain
patterns: It must have between 13 and 16 digits, and the number must start with:

B 4 for Visa cards

B 5 for MasterCard credit cards
m 37 for American Express cards
B 6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card num-
bers. The algorithm is useful to determine whether a card number is entered cor-
rectly or whether a credit card is scanned correctly by a scanner. Credit card
numbers are generated following this validity check, commonly known as the
Luhn check or the Mod 10 check, which can be described as follows (for illustra-
tion, consider the card number 4388576018402626):

1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number.

4388576018402626

|—>2>x<2=4
2#%2=4
4%2=8

1%2=2
6%2=12 (1+2=3)
5%2=10 (1+0=1)
8+2=16 (1+6=7)

L > 4x%2=8

2. Now add all single-digit numbers from Step 1.
4+4+8+2+3+1+7+8=37

3. Add all digits in the odd places from right to left in the card number.
6+6+0+8+0+7+8+3=38
4. Sum the results from Steps 2 and 3.
37 +38=175

5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise,
it is invalid. For example, the number 4388576018402626 is invalid, but the
number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as an integer.
Display whether the number is valid or invalid. Design your program to use the
following functions:

Return true if the card number is valid
def isValid(number):

Get the result from Step 2
def sumOfDoubleEvenPlace(number):

Return this number if it is a single digit, otherwise, return
the sum of the two digits
def getDigit(number):

Return sum of odd place digits in number
def sumOfOddPTace(number):

Programming Exercises 211

Return true if the digit d is a prefix for number
def prefixMatched(number, d):

Return the number of digits in d
def getSize(d):

Return the first k number of digits from number. If the
number of digits in number 1is Tess than k, return number.
def getPrefix(number, k):

**6.30 (Game: chance of winning at craps) Revise Exercise 6.28 to run it 10,000 times
and display the number of winning games.

**%6.31 (Current date and time) Invoking time. time () returns the elapsed time in sec-
onds since midnight of January 1, 1970. Write a program that displays the date
and time. Here is a sample run:

Current date and time is May 16, 2012 10:34:23 g

*%6.32 (Print calendar) Exercise 4.21 uses Zeller’s congruence to calculate the day of
the week. Simplify Listing 6.13, PrintCalendar.py, using Zeller’s algorithm to get
the start day of the month.

*%6.33 (Geometry: area of a pentagon) Rewrite Exercise 3.4 using the following func-
tion to return the area of a pentagon:

def area(s):

*6.34 (Geometry: area of a regular polygon) Rewrite Exercise 3.5 using the following
function to return the area of a regular polygon:
def area(n, side):

*6.35 (Compute the probability) Use the functions in RandomCharacter in Listing
6.11 to generate 10,000 uppercase letters and count the occurrence of A.

*6.36 (Generate random characters) Use the functions in RandomCharacter in
Listing 6.11 to print 100 uppercase letters and then 100 single digits, printing ten
per line.

Section 6.14

*6.37 (Turtle: generate random characters) Use the functions in RandomCharacter
in Listing 6.11 to display 100 lowercase letters, fifteen per line, as shown in
Figure 6.11a.

*%6.38 (Turtle: draw a line) Write the following function that draws a line from point
(x1, y1) to (x2, y2) with color (default to black) and line size (default to 1).

def drawLine(xl, yl, x2, y2, color = "black", size = 1):

*%6.39 (Turtle: draw a star) Write a program that draws a star, as shown in Figure 6.11b.
Use the drawlLine function defined in Exercise 6.38.

212 Chapter 6 Functions

dlowrojotyrteegq
dssdwdvsqbdkjkw
mjohuopigkrnnpyv

snudmburxsfrmkq
hgudbhvmcjtccqp
Jyecgokycgvweyqrh

(@)

(b) (c)

FIGURe 6.11 (a) The program displays random lowercase letters. (b) The program draws a star. (c) The program draws
random points in a rectangle and in a circle.

**6.40

**6.41

**6.42

**6.43

**6.44

*%*6.45

*6.46

*6.47

(Turtle: filled rectangle and circle) Write the following functions that fill a rectan-
gle with the specified color, center, width, and height, and a circle with the specified
color, center, and radius.

Fi1l a rectangle
def drawRectangle(color
x =0, y =0, width

"black",
30, height = 30):

Fill a circle
def drawCircle(color = "black", x = 0, y = 0, radius = 50):

(Turtle: draw points, rectangles, and circles) Use the functions defined in Listing
6.14 to write a program that displays a rectangle centered at (—75, 0) with width
and height 100 and a circle centered at (50, 0) with radius 50. Fill 10 random
points inside the rectangle and 10 inside the circle, as shown in Figure 6.11c.

(Turtle: plot the sine function) Simplify the code for Exercise 5.52 by using the
functions in Listing 6.14.

(Turtle: plot the sine and cosine functions) Simplify the code for Exercise 5.53 by
using the functions in Listing 6.14.

(Turtle: plot the square function) Simplify the code for Exercise 5.54 by using the
functions in Listing 6.14.

(Turtle: draw a regular polygon) Write the following function to draw a regular
polygon:

def drawPolygon(x = 0, y = 0, radius = 50, numberOfSides = 3):

The polygon is centered at (x, y) with a specified radius for the bounding circle for
the polygon and the number of sides. Write a test program that displays a triangle,
square, pentagon, hexagon, heptagon, and octagon, as shown in Figure 6.12a.

(Turtle: connect all points in a hexagon) Write a program that displays a hexagon
with all the points connected, as shown in Figure 6.12b.

(Turtle: two chessboards) Write a program that displays two chessboards, as
shown in Figure 6.13. Your program should define at least the following function:

Draw one chessboard whose upper-left corner is at
(startx, starty) and bottom-right corner is at (endx, endy)
def drawChessboard(startx, endx, starty, endy):

Programming Exercises 213

'?.é Python Turtle Graphics LEIEI&J
=]
»

i

& Python Turtle Graphic-’s. o S e S

(b)

FIGURE 6.12 (a) The program displays several n-sided polygons. (b) The program displays a hexagon with all points
connected.

i Python Turtle Graphics

FIGURE 6.13 The program draws two chessboards.

*6.48 (Format an integer) Write a function with the following header to format the inte-
ger with the specified width.

def format(number, width):

The function returns a string for the number with prefix 0s. The size of the string is
the width. For example, format(34, 4) returns "0034" and format(34, 5)
returns ""00034". If the number is longer than the width, the function returns the
string representation for the number. For example, format(34, 1) returns ""34".

Write a test program that prompts the user to enter a number and its width and dis-
plays a string returned from invoking format(number, width). Here is a sample
run:

Enter an integer: 453 |-enter
Enter the width: 6 |-enter
The formatted number is 000453

m

This page intentionally left blank

OBJECTS AND CLASSES

Objectives

To describe objects and classes, and use classes to model objects (§7.2).

B To define classes with data fields and methods (§7.2.1).

To construct an object using a constructor that invokes the initializer
to create and initialize data fields (§7.2.2).

To access the members of objects using the dot operator (.) (§7.2.3).
To reference an object itself with the sel f parameter (§7.2.4).

To use UML graphical notations to describe classes and objects (§7.3).
To distinguish between immutable and mutable objects (§7.4).

To hide data fields to prevent data corruption and make classes easy
to maintain (§7.5).

To apply class abstraction and encapsulation to software
development (§7.6).

To explore the differences between the procedural paradigm and
the object-oriented paradigm (§7.7).

CHAPTER

216 Chapter 7 Objects and Classes

K
Gﬁoiz

why OOP?

K
gﬁoi?tl

object-oriented programming
object

identity

state
properties
attributes
data fields

behavior
actions

class
contract

7.1 Introduction

Object-oriented programming enables you to develop large-scale software and GUIs
effectively.

Having learned the material in the preceding chapters, you are now able to solve many pro-
gramming problems by using selections, loops, and functions. However, these features are not
sufficient for developing a graphical user interface (GUI, pronounced goo-ee) or a large-scale
software system. Suppose you want to develop the GUI shown in Figure 7.1. How would you
program it?

Button Label Entry (text field) Check Button Radio Button

OK | Cancel | Enter your name: [~ Bold [Hhalic ™ Red ™ Yellow

FIGURE 7.1 You can create GUI objects like this using object-oriented programming.

This chapter introduces object-oriented programming, which will build a foundation that
enables you to develop GUIs and large-scale software systems in the upcoming chapters.

7.2 Defining Classes for Objects

A class defines the properties and behaviors for objects.

Section 3.5 introduced objects and methods, and showed you how to use objects. Objects are
created from classes. This section shows you how to define custom classes.

Object-oriented programming (OOP) involves the use of objects to create programs. An
object represents an entity in the real world that can be distinctly identified. For example, a
student, a desk, a circle, a button, and even a loan can all be viewed as objects. An object has
a unique identity, state, and behavior.

B An object’s identity is like a person’s Social Security number. Python automatically
assigns each object a unique id for identifying the object at runtime.

B An object’s state (also known as its properties or attributes) is represented by vari-
ables, called data fields. A circle object, for example, has a data field radius,
which is a property that characterizes a circle. A rectangle object has the data
fields width and height, which are properties that characterize a rectangle.

B Python uses methods to define an object’s behavior (also known as its actions).
Recall that methods are defined as functions. You make an object perform an action
by invoking a method on that object. For example, you can define methods named
getArea() and getPerimeter() for circle objects. A circle object can then
invoke the getArea() method to return its area and the getPerimeter () method
to return its perimeter.

Objects of the same kind are defined by using a common class. The relationship between
classes and objects is analogous to that between an apple-pie recipe and apple pies. You can
make as many apple pies (objects) as you want from a single recipe (class).

A Python class uses variables to store data fields and defines methods to perform actions.
A class is a contract—also sometimes called a template or blueprint—that defines what an
object’s data fields and methods will be.

7.2 Defining Classes for Objects 217

An object is an instance of a class, and you can create many instances of a class. Creating
an instance of a class is referred to as instantiation. The terms object and instance are often
used interchangeably. An object is an instance and an instance is an object.

Figure 7.2 shows a class named Circle and its three objects.

Class Name: Circle | <— A class template

Data Fields:
radius is

Methods:
getArea
getPerimeter
setRadius

—<—— Three objects of

Circle Object 1
the Circle class

Circle Object 2 Circle Object 3

Data Fields:
radius is 25

Data Fields:
radius is 125

Data Fields:
radius is_1

FIGURE 7.2 A class is a template—or contract—for creating objects.

7.2.1 Defining Classes

In addition to using variables to store data fields and define methods, a class provides a special
method, _init__. This method, known as an initializer, is invoked to initialize a new object’s
state when it is created. An initializer can perform any action, but initializers are designed to per-
form initializing actions, such as creating an object’s data fields with initial values.

Python uses the following syntax to define a class:

class ClassName:
initializer
methods

Listing 7.1 defines the Circle class. The class name is preceded by the keyword class
and followed by a colon (:). The initializer is always named __init__ (line 5), whichis a
special method. Note that init needs to be preceded and followed by two underscores.
A data field radius is created in the initializer (line 6). The methods getPerimeter and
getArea are defined to return the perimeter and area of a circle (lines 8—12). More details
on the initializer, data fields, and methods will be explained in the following sections.

LisTING 7.1 Circle.py
1 import math

2

3 class Circle:

4 # Construct a circle object

5 def __init__(self, radius = 1):

6 self.radius = radius

7

8 def getPerimeter(self):

9 return 2 * self.radius * math.pi
10
11 def getArea(self):
12 return self.radius * self.radius * math.pi
13
14 def setRadius(self, radius):

15 self.radius = radius

instantiation
object
instance

methods
initializer

class definition

VideoNote
Define and use classes

class name

initializer
create data field

getPerimeter() method

getArea() method

218 Chapter 7 Objects and Classes

class naming convention

constructor

self parameter
_ _init__ method

T Note

The naming style for class names in the Python library is not consistent. In this book,
we will adopt a convention that capitalizes the first letter of each word in the class
name. For example, Circle, LinearEquation, and LinkedList are correct
class names according to our convention.

7.2.2 Constructing Objects

Once a class is defined, you can create objects from the class with a constructor. The con-
structor does two things:

B [t creates an object in the memory for the class.
B It invokes the class’s __init__ method to initialize the object.

All methods, including the initializer, have the first parameter sel f. This parameter refers
to the object that invokes the method. The sel f parameter in the ~_init__ method is auto-
matically set to reference the object that was just created. You can specify any name for this
parameter, but by convention sel f is usually used. We will discuss the role of self more in
Section 7.2.4.

The syntax for a constructor is:

ClassName(arguments)

Figure 7.3 shows how an object is created and initialized. After the object is created, se'l f
can be used to reference the object.

1. It creates an object in the memory for |_______. > object
the class. Data Fields:
2. It invokes the class’s __init__ method
to initialize the object. The self
parameter in the __init _ methodis f===n=n- > __init__(self, ...)
automatically set to reference the
object that was just created.

FiGure 7.3 Constructing an object creates the object in the memory and invokes its initializer.

The arguments of the constructor match the parameters in the ~_init__ method without
self. For example, since the ~_init__ method in line 5 of Listing 7.1 is defined as
__init__(self, radius = 1), to construct a Circle object with radius 5, you should
use Circle(5). Figure 7.4 shows the effect of constructing a Circle object using
Circle(5). First, a Circle object is created in the memory, and then the initializer is
invoked to set radius to 5.

1. Creates a Circle object. I """""" > Circle object I

/—\
2. Invokes __init__(self, radius)l ____________ > Circle object
radius: 5

FIGURE 7.4 A circle object is constructed using Circle(5).

7.2 Defining Classes for Objects

The initializer in the Circle class has a default radius value of 1. The following con-
structor creates a Circle object with default radius 1:

Circle()

7.2.3 Accessing Members of Objects

An object’s member refers to its data fields and methods. Data fields are also called instance
variables, because each object (instance) has a specific value for a data field. Methods are
also called instance methods, because a method is invoked by an object (instance) to perform
actions on the object such as changing the values in data fields for the object. In order to
access an object’s data fields and invoke an object’s methods, you need to assign the object to
a variable by using the following syntax:

objectRefVar = ClassName(arguments)
For example,

cl
c2

Circle(5)
Circle()

You can access the object’s data fields and invoke its methods by using the dot operator (.),
also known as the object member access operator. The syntax for using the dot operator is:

objectRefVar.datafield
objectRefVar.method(args)

For example, the following code accesses the radius data field (line 3), and then invokes
the getPerimeter method (line 5) and the getArea method (line 7). Note that line 1
imports the Circle class defined in the Circle module in Listing 7.1, Circle.py.

>>> from Circle import Circle
>>> ¢ = Circle(5)

>>> c.radius

5

>>> c.getPerimeter()
31.41592653589793

>>> c.getArea()
78.53981633974483

>>>

OooNOUVTDh WN R

T Note

Usually you create an object and assign it to a variable. Later you can use the variable to
reference the object. Occasionally an object does not need to be referenced later. In this
case, you can create an object without explicitly assigning it to a variable, as shown below:

print("Area 1is", Circle(5).getArea())

The statement creates a Circle object and invokes its getArea method to return its
area. An object created in this way is known as an anonymous object.

7.2.4 The self Parameter

As mentioned earlier, the first parameter for each method defined is self. This parameter is
used in the implementation of the method, but it is not used when the method is called. So,
what is this parameter sel f for? Why does Python need it?

default values

instance methods

dot operator (.)

object member access
operator

2

anonymous object

why self?

219

220 Chapter 7 Objects and Classes

scope of an instance variable

import Circle
main function
create object

invoke methods

create object

create object

self is a parameter that references the object itself. Using se'l f, you can access object’s
members in a class definition. For example, you can use the syntax self.x to access the
instance variable x and syntax self.m1() to invoke the instance method m1 for the object
self in a class, as illustrated in Figure 7.5.

def ClassName:
e
def __init__(self, ...):
self.x = 1 # Create/modify x

def ml(self, ...):
self.y = 2 # Create/modify y Scope of self.x
- and self.y
z =5 # Create/modify z ~——0r
. Scope of z
——

def m2(self, ...):
self.y = 3 # Create/modify y

u=self.x + 1 # Create/modify u
self.ml(...) # Invoke ml

-
FiIGUre 7.5 The scope of an instance variable is the entire class.

The scope of an instance variable is the entire class once it is created. In Figure 7.5, self.x
is an instance variable created in the __init__ method. It is accessed in method m2. The
instance variable self.y is set to 2 in method m1 and set to 3 in m2. Note that you can also cre-
ate local variables in a method. The scope of a local variable is within the method. The local
variable z is created in method m1 and its scope is from its creation to the end of method m1.

7.2.5 Example: Using Classes

The preceding sections demonstrated the concept of class and objects. You learned how to
define a class with the initializer, data fields, and methods, and how to create an object with
constructor. This section presents a test program that constructs three circle objects with radii
of 1, 25, and 125, and then displays the radius and area of each circle in Listing 7.2. The pro-
gram then changes the radius of the second object to 100 and displays its new radius and area.

LisTING 7.2 TestCircle.py

1 from Circle import Circle

2

3 def main(Q):

4 # Create a circle with radius 1

5 circlel = Circle()

6 print("The area of the circle of radius",

7 circlel.radius , "is", circlel.getArea())
8

9 # Create a circle with radius 25
10 circle2 = Circle(25)
11 print("The area of the circle of radius",
12 circle2.radius , "is" circle2.getArea())
13
14 # Create a circle with radius 125
15 circle3 = Circle(125)
16 print("The area of the circle of radius",
17 circle3.radius , "is" circle3.getArea())

19
20
21
22
23

7.2 Defining Classes for Objects 221

Modify circle radius

circle2.radius = 100 # or circle2.setRadius(100)

print("The area of the circle of radius",
circle2.radius , "is" circle2.getArea())

24 main() # Call the main function

The
The
The
The

area of the circle of radius 1.0 is 3.141592653589793

area of the circle of radius 25.0 is 1963.4954084936207
area of the circle of radius 125.0 is 49087.385212340516
area of the circle of radius 100.0 is 31415.926535897932

The program uses the Circle class to create Circle objects. Such a program that uses
the class (such as Circle) is often referred to as a client of the class.

The Circle class is defined in Listing 7.1, Circle.py, and this program imports it in line 1
using the syntax from Circle +dmport Circle. The program creates a Circle object
with a default radius 1 (line 5) and creates two Circle objects with the specified radii (lines
10, 15), and then retrieves the radius property and invokes the getArea() method on the
objects to obtain the area (lines 7, 12, and 17). The program sets a new radius property on
circle2 (line 20). This can also be done by using circle2.setRadius(100).

T Note

7.1
7.2
7.3
7.4
7.5

7.6

1.7
7.8
7.9

7.10

An variable that appears to hold an object actually contains a reference to that object.
Strictly speaking, a variable and an object are different, but most of the time the distinction
can be ignored. So it is fine, for simplicity, to say that “circlel is a Circle object”
rather than use the longer-winded description that “circlel is a variable that contains a
reference to a Circle object.”

Describe the relationship between an object and its defining class.
How do you define a class?

How do you create an object?

What is the name of the initializer method?

The first parameter in the initializer method is named self by convention. What is
the role of self?

What is the syntax for constructing an object? What does Python do when construct-
ing an object?

What are the differences between an initializer and a method?
What is the object member access operator for?

What problem arises in running the following program? How do you fix it?

class A:
def __init__(self, i):
self.i =1
def main(Q:
a =AQ0
print(a.i)

main() # Call the main function

What is wrong with the following programs?

set a new radius

client

object vs. variable

ﬁheck
Point

MyProgramminglLab’

222 Chapter 7 Objects and Classes

1 class A: class A:

2 # Construct an object of the class # Construct an object of the class
3 def A(self): def __init__(self):

4 radius = 3 radius = 3

def setRadius(radius):
self.radius = radius

Nouvih wN R

() (b)

7.3 UML Class Diagrams

6 fKey UML class diagrams use graphical notation to describe classes.

Point he jjjustration of class templates and objects in Figure 7.2 can be standardized using UML (Uni-
fied Modeling Language) notation. This notation, as shown in Figure 7.6, called a UML class dia-
gram or simply a class diagram, is language independent; that is, other programming languages
use this same modeling and notation. In UML class diagrams, data fields are denoted as:

UML

dataFieldName: dataFieldType

Constructors are shown as:
ClassName(parameterName: parameterType)
Methods are represented as:

methodName (parameterName: parameterType): returnType

UML Class Diagram Circle < Class name
radius: float ~<—————— Data fields
Circle(radius = 1: float) < Constructor
getArea(): float < Methods
getPerimeter(): float
setRadius(radius: float): None

circlel: Circle circle2: Circle circle3: Circle —~<—— UML notation
for objects

radius = 1 radius = 25 radius = 125

FIGURe 7.6 Classes and objects can be represented using UML notation.

The method definition in the class always has the special self parameter, but don’t
include it in the UML diagram, because the client does not need to know this parameter and
does not use this parameter to invoke the methods.

The _init__ method does not need to be listed in the UML diagram either, because it is
invoked by the constructor and its parameters are the same as the constructor’s parameters.

The UML diagram serves as the contract (template) for the client so that it will know how to
use the class. The diagram describes for the client how to create objects and how to invoke the
methods on the objects.

As an example, consider TV sets. Each TV is an object with states (that is, current chan-
nel, current volume level, and power on or off are its properties that are represented by data
fields) and behaviors (change channels, adjust volume, and turn on/off are the actions each

TV object implements with methods). You can use a class to define TV sets. The UML dia-

gram for the TV class is shown in Figure 7.7.

TV

channel: int
volumelLevel: int
on: bool

7.3 UML Class Diagrams 223

™vVO

turnOn() : None

turnOff(): None

getChannel(): int

setChannel (channel: int): None
getVolume(): int
setVolume(volumelLevel: int): None
channelUp(): None
channelDown() : None
volumeUp(): None

volumeDown(): None

The current channel (1 to 120) of this TV.
The current volume level (1 to 7) of this TV.
Indicates whether this TV is on/off.

Constructs a default TV object.
Turns on this TV.

Turns off this TV.

Returns the channel for this TV.
Sets a new channel for this TV.
Gets the volume level for this TV.
Sets a new volume level for this TV.
Increases the channel number by 1.
Decreases the channel number by 1.
Increases the volume level by 1.
Decreases the volume level by 1.

FIGURE 7.7 The TV class defines TV sets.

Listing 7.3 gives the Python code for defining the TV class.

LISTING 7.3 TV.py
1 class TV:

2 def __init__(self):

3 self.channel = 1 # Default channel is 1
4 self.volumeLevel = 1 # Default volume Tevel is 1
5 self.on = False # Initially, TV 1is off
6

7 def turnOn(self):

8 self.on = True

9
10 def turnOff(self) :
11 self.on = False
12
13 def getChannel(self):
14 return self.channel
15
16 def setChannel(self, channel):
17 if self.on and 1 <= self.channel <= 120:
18 self.channel = channel
19
20 def getVolumelevel(self):
21 return self.volumelLevel
22
23 def setVolume(self, volumelLevel):
24 if self.on and \
25 1 <= self.volumelLevel <= 7:
26 self.volumeLevel = volumelLevel
27

28 def channelUp(self):

define a class
define initializer
create instance variables

turn on TV

turn off TV

get the channel

set a new channel

get the volume

set a new volume

increase channel

224 Chapter 7 Objects and Classes

decrease channel

increase volume

decrease volume

import TV class

main function
create a TV

turn on

set a new channel
set a new volume

create a TV
turn on
increase channel

increase volume

display state

29 if self.on and self.channel < 120:
30 self.channel += 1

31

32 def channelDown(self):

33 if self.on and self.channel > 1:

34 self.channel -=1

35

36 def volumeUp(self):

37 if self.on and self.volumelLevel < 7:
38 self.volumelLevel += 1

39

40 def volumeDown(self):

41 if self.on and self.volumelLevel > 1:
42 self.volumeLevel -= 1

The initializer creates the instance variables channel, volumelLevel, and on for the data
fields in a TV object (lines 2-5). Note that this initializer does not have any argument except
self.

The channel and volume level are not changed if the TV is not on (lines 16—18 and 23-26).
Before either of these is changed, its current value is checked to ensure that it is within the
correct range.

Listing 7.4 is a program that uses the TV class to create two objects.

LISTING 7.4 TestTV.py
1 from TV dimport TV

2

3 def main(Q):

4 tvl = TVQO

5 tvl.turnOn()

6 tvl.setChannel(30)

7 tvl.setVolume(3)

8

9 tv2 = TVQ
10 tv2.turnOn()

11 tv2.channelUp()

12 tv2.channelUp ()

13 tv2.volumeUp()

14

15 print("tvl's channel 1is", tvl.getChannel()

16 "and volume Tlevel 1is", tvl.getVolumelLevel(Q))
17 print("tv2's channel 1is", tv2.getChannel(),

18 "and volume Tevel 1is", tv2.getVolumelLevel())
19

20 main() # Call the main function

tvl's channel is 30 and volume level is 3
tv2's channel is 3 and volume Tevel 1is 2

The program creates two TV objects tv1 and tv2 (lines 4 and 9), and invokes the methods
on the objects to perform actions for setting channels and volume levels and for increasing
channels and volumes. tv1 is turned on by invoking tvl. turnOn() in line 5, its channel is
set to 30 by invoking tv1.setChannel (30) in line 6, and its volume level is set to 3 in line
7. tv2 is turned on in line 10, its channel is increased by 1 by invoking tv2.channelUp()
in line 11, and again by another 1 in line 12. Since the initial channel is set to 1 (line 3 in

7.4 Immutable Objects vs. Mutable Objects 225

TV.py), tv2’s channel is now 3. tv2’s volume is increased by 1 by invoking
tv2.volumeUp() in line 13. Since the initial volume is set to 1 (line 4 in TV.py), tv2’s vol-
ume is now 2.

The program displays the state of the objects in lines 15—18. The data fields are read using
the getChannel () and getVolumelLevel () methods.

7.4 Immutable Objects vs. Mutable Objects

When passing a mutable object to a function, the function may change the contents of fKey
the object. 6 Point
Recall that numbers and strings are immutable objects in Python. Their contents cannot be
changed. When passing an immutable object to a function, the object will not be changed.
However, if you pass a mutable object to a function, the contents of the object may change.
The example in Listing 7.5 demonstrates the differences between an immutable object and
mutable object arguments in a function.
LISTING 7.5 TestPassMutableObject.py
1 from Circle import Circle import Circle
2
3 def main(Q:
4 # Create a Circle object with radius 1
5 myCircle = Circle() create object
6
7 # Print areas for radius 1, 2, 3, 4, and 5
8 n=>5
9 printAreas(myCircle, n) invoke printAreas
10
11 # Display myCircle.radius and times
12 print("\nRadius 1is", myCircle.radius) display radius
13 print("n 1is", n) display n
14
15 # Print a table of areas for radius
16 def printAreas(c, times):
17 print("Radius \t\tArea')
18 while times >= 1:
19 print(c.radius, "\t\t", c.getArea())
20 c.radius = c.radius + 1
21 times = times - 1
22
23 main() # Call the main function
Radius Area E
1 3.141592653589793
2 12.566370614359172
3 29.274333882308138
4 50.26548245743669
5 79.53981633974483
Radius is 6
n is 5

The Circle class is defined in Listing 7.1. The program passes a Circle object
myCircle and an int object n to invoke printAreas(myCircle, n) (line 9), which
prints a table of areas for radii 1, 2, 3, 4, and 5, as shown in the sample output.

226 Chapter 7 Objects and Classes

When you pass an object to a function, the reference of the object is passed to the function.
However, there are important differences between passing immutable objects and mutable
objects.

B For an argument of an immutable object such as a number or string, the original
value of the object outside the function is not changed.

m For an argument of a mutable object such as a circle, the original value of the object
immutable object vs. mutable is changed if the contents of the object are changed inside the function.
object
In line 20, the radius property of the Circle object c is incremented by 1. c.radius
+ 1 creates a new int object, which is assigned to c. radius. myCircle and c both point to
the same object. When the printAreas function is finished, c. radius is 6. So, the printout
for myCircle.radius is 6 from line 12.
In line 21, times - 1 creates a new int object, which is assigned to times. Outside of
the printAreas function, n is still 5. So, the printout for n is 5 from line 13.

ﬁheck 7.11 Show the output of the following program:

Point
class Count:

MyProgramminglLab’ def __init__(self, count = 0):
self.count = count

def main(Q:
c = Count()
times = 0

for i 1in range(100):
increment(c, times)

print("count is", c.count)
print("times is", times)

def increment(c, times):
c.count += 1
times += 1

main() # Call the main function

7.12 Show the output of the following program:

class Count:
def __init__(self, count = 0):
self.count = count

def mainQ:
c = Count(Q)
n=1
m(c, n)

print("count is", c.count)
print("n is", n)

def m(c, n):
c = Count(5)
n=3

main() # Call the main function

7.5 Hiding Data Fields 227

7.5 Hiding Data Fields

Making data fields private protects data and makes the class easy to maintain.

You can access data fields via instance variables directly from an object. For example, the fol-
lowing code, which lets you access the circle’s radius from c. radius, is legal:

>>> ¢ = Circle(5)

>>> c.radius = 5.4 # Access instance variable directly
>>> print(c.radius) # Access instance variable directly
5.4

>>>

However, direct access of a data field in an object is not a good practice—for two reasons:

B First, data may be tampered with. For example, channel in the TV class has a value
between 1 and 120, but it may be mistakenly set to an arbitrary value (e.g.,
tvl.channel = 125).

B Second, the class becomes difficult to maintain and vulnerable to bugs. Suppose you
want to modify the Circle class to ensure that the radius is nonnegative after other
programs have already used the class. You have to change not only the Circle class
but also the programs that use it, because the clients may have modified the radius
directly (e.g., myCircle.radius = -5).

To prevent direct modifications of data fields, don’t let the client directly access data fields.
This is known as data hiding. This can be done by defining private data fields. In Python, the
private data fields are defined with two leading underscores. You can also define a private
method named with two leading underscores.

Private data fields and methods can be accessed within a class, but they cannot be accessed
outside the class. To make a data field accessible for the client, provide a gef method to return
its value. To enable a data field to be modified, provide a sef method to set a new value.

Colloquially, a get method is referred to as a getter (or accessor), and a set method is
referred to as a setter (or mutator).

A get method has the following header:

def getPropertyName(self):

If the return type is Boolean, the get method is defined as follows by convention:

def isPropertyName(self):

A set method has the following header:

def setPropertyName(self, propertyValue):

Listing 7.6 revises the Circle class in Listing 7.1 by defining the rad-ius property as pri-

vate by placing two underscores in front of the property name (line 6).

LisTING 7.6 CircleWithPrivateRadius.py

1 import math

2

3 class Circle:

4 # Construct a circle object

5 def __init__(self, radius = 1):
6 self.__radius = radius

7

K
Gﬁoi‘;};

2

VideoNote
Private data fields

data hiding
private data fields
private method

accessor
mutator

Boolean accessor

class name

initializer
private radius

228 Chapter 7 Objects and Classes

getRadius () 8 def getRadius(self):
9 return self.__radius
10
11 def getPerimeter(self):
12 return 2 * self.__radius * math.pi
13
14 def getArea(self):
15 return self.__radius * self.__radius * math.pi

The radius property cannot be directly accessed in this new Circle class. However, you
can read it by using the getRadius () method. For example:

1 >>> from CircleWithPrivateRadius import Circle
E 2 >>> c = CGircle(5)

3 >>> c.__radius

4 AttributeError: no attribute '__radius'

5 >>> c.getRadius()

6 5

7 >>>

Line 1 imports the Circle class, which is defined in the CircleWithPrivateRadius
module in Listing 7.6. Line 2 creates a Circle object. Line 3 attempts to access the property
__radius. This causes an error, because __radius is private. However, you can use the
getRadius () method to return the radius (line 5).

AAE Tip
If a class is designed for other programs to use, to prevent data from being tampered with
and to make the class easy to maintain, define data fields as private. If a class is only

used internally by your own program, there is no need to hide the data fields.

Note

Name private data fields and methods with two leading underscores, but don’t end the
name with more than one underscores. The names with two leading underscores and
two ending underscores have special meaning in Python. For example, __radius isa
private data field, but, __radius_ _is not a private data field.

Cheek -1 3 What problem arises in running the following program? How do you fix it?

Point 1 A
) . class A:
MyProgramminglab def __init__(self, i):
self.__i =1
def main():
a = A(5)

print(a.__i)
main() # Call the main function
7.14 Ts the following code correct? If so, what is the printout?
def mainQ:

1

2 a = A0

3 a.print(Q)
4

7.6 Class Abstraction and Encapsulation 229

5 class A:

6 def __init__(self, newS = "Welcome'):
7 self.__s = newS

8

9 def print(self):

10 print(self.__s)

11

12 main() # Call the main function

7.15 Is the following code correct? If not, fix the error.

class A:
def __init__(self, on):
self.__on = not on

def mainQ):
a = A(False)
print(a.on)

main() # Call the main function

7.16 What are the benefits of data hiding? How is it done in Python?
7.17 How do you define a private method?

7.6 Class Abstraction and Encapsulation

Class abstraction is a concept that separates class implementation from the use of a
class. The class implementation details are invisible from the user. This is known as
class encapsulation.

There are many levels of abstraction in software development. In Chapter 6, you learned
about function abstraction and used it in stepwise refinement. Class abstraction is the separa-
tion of class implementation from the use of a class. The creator of a class describes the
class’s functions and lets the client know how the class can be used. The class’s collection of
methods, together with the description of how these methods are expected to behave, serves
as the class’s contract with the client.

As shown in Figure 7.8, the user of the class does not need to know how the class is
implemented. The details of implementation are encapsulated and hidden from the user. This
is known as class encapsulation. In essence, encapsulation combines data and methods into
a single object and hides the data fields and method implementation from the user. For exam-
ple, you can create a Circle object and find the area of the circle without knowing how the

area is computed. For this reason, a class is also known as an abstract data type (ADT).
Class implementation Clbas’ls Cratia .
is like a black box (headers of Clients use the
hidden from the clients Class vk e il <——> class through the
methods) class’s contract

FiGure 7.8 Class abstraction separates class implementation from the use of the class.

Class abstraction and encapsulation are two sides of the same coin. Many real-life exam-
ples illustrate the concept of class abstraction. Consider, for instance, building a computer
system. Your personal computer has many components—a CPU, memory, disk, motherboard,
fan, and so on. Each component can be viewed as an object that has properties and methods.
To get the components to work together, you need to know only how each component is used
and how it interacts with the others. You don’t need to know how the components work

6{ Key
Point
class abstraction
class’s contract

class encapsulation

abstract data type

230 Chapter 7 Objects and Classes

internally. The internal implementation is encapsulated and hidden from you. You can even

build a computer without knowing how a component is implemented.

The computer-system analogy precisely mirrors the object-oriented approach. Each com-
ponent can be viewed as an object of the class for the component. For example, you might
have a class that defines fans for use in a computer, with properties such as fan size and speed
and methods such as start and stop. A specific fan is an instance of this class with specific

property values.

As another example, consider getting a loan. A specific loan can be viewed as an object of
a Loan class. The interest rate, loan amount, and loan period are its data properties, and com-
puting monthly payment and total payment are its methods. When you buy a car, a loan object
is created by instantiating the class with your loan interest rate, loan amount, and loan period.
You can then use the methods to find the monthly payment and total payment of your loan. As
a user of the Loan class, you don’t need to know how these methods are implemented.

Listing 2.8, ComputeLoan.py, presented a program for computing loan payments. The
program as it is currently written cannot be reused in other programs. One way to fix this
problem is to define functions for computing monthly payment and total payment. However,
this solution has limitations. Suppose you wish to associate a borrower with the loan. There is
no good way to tie a borrower with a loan without using objects. The traditional procedural
programming paradigm is action-driven; data are separated from actions. The object-oriented
programming paradigm focuses on objects, so actions are defined along with the data in
objects. To tie a borrower with a loan, you can define a loan class with borrower along with
other properties of the loan as data fields. A loan object would then contain data and actions
for manipulating and processing data, with loan data and actions integrated in one object.
Figure 7.9 shows the UML class diagram for the Loan class. Note that the — (dash) in the

UML class diagram denotes a private data field or method of the class.

The — sign denotes a private data field\

Loan

:gghua11nterestRate: float
-numberOfYears: int
-ToanAmount: float
-borrower: str

Loan(annualInterestRate: float,
numberOfYears: int, lToanAmount
float, borrower: str)

getAnnualInterestRate(): float
getNumberOfYears(): int
getLoanAmount(): float
getBorrower(): str

setAnnualInterestRate(
annualInterestRate: float): None

setNumberOfYears(
numberOfYears: int): None

setLoanAmount (
ToanAmount: float): None

setBorrower(borrower: str): None
setMonthlyPayment(): float
getTotalPayment(): float

The annual interest rate of the loan (default 2.5).
The number of years for the loan (default 1).
The loan amount (default 1000).

The borrower of this loan (default " ").

Constructs a Loan object with the
specified annual interest rate, number of years, loan
amount, and borrower.

Returns the annual interest rate of this loan.
Returns the number of the years of this loan.
Returns the amount of this loan.

Returns the borrower of this loan.

Sets a new annual interest rate for this loan.
Sets a new number of years for this loan.
Sets a new amount for this loan.

Sets a new borrower for this loan.
Returns the monthly payment of this loan.

Returns the total payment of this loan.

FiGUre 7.9 The UML diagram for the Loan class models (shows) the properties and behaviors of loans.

7.6 Class Abstraction and Encapsulation

The UML diagram in Figure 7.9 serves as the contract for the Loan class. That is, the user
can use the class without knowing how the class is implemented. Assume that the Loan class
is available. We begin by writing a test program that uses the Loan class in Listing 7.7.

LISTING 7.7 TestLoanClass.py

1 from Loan import Loan

29

def main(Q:

Enter yearly interest rate
annualInterestRate = eval(input
("Enter yearly interest rate, for example, 7.25: "))

Enter number of years
numberOfYears = eval(input(
"Enter number of years as an integer: "))

Enter loan amount
ToanAmount = eval (input(
"Enter loan amount, for example, 120000.95: "))

Enter a borrower
borrower = input("Enter a borrower's name: ")

Create a Loan object
Joan = Loan(annualInterestRate, numberOfYears,
ToanAmount, borrower)

Display loan date, monthly payment, and total payment
print("The loan is for", Tloan.getBorrower())
print("The monthly payment is",
format(loan.getMonthlyPayment() , ".2f"))
print("The total payment 1is",
format(loan.getTotalPayment() , ".2f"))

30 main() # Call the main function

Enter
Enter
Enter
Enter

The Tloan is for John Jones
The monthly payment is 17.75
The total payment is 1064.84

yearly interest rate, for example, 7.25: 2.5 W
number of years as an integer: 5

Toan amount, for example, 120000.95: 1000

a borrower's name: John Jones

The main function (1) reads the interest rate, payment period (in years), and loan amount,
(2) creates a Loan object, and then (3) obtains the monthly payment (line 26) and total pay-
ment (line 28) using the instance methods in the Loan class.

The Loan class can be implemented as in Listing 7.8.

LISTING 7.8 Loan.py

1 class Loan :

v WwWN

def __init__(self, annualInterestRate = 2.5,
numberOfYears = 1, ToanAmount = 1000, borrower = " "):
self.__annualInterestRate = annualIlnterestRate
self.__numberOfYears = numberOfYears
self.__TloanAmount = loanAmount

create Loan object

invoke instance method
invoke instance method

invoke instance method

2

initializer

231

232 Chapter 7

get methods

set methods

getMonthlyPayment

getTotalPayment

Objects and Classes

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

self.__borrower = borrower

def getAnnuallnterestRate(self):
return self.__annualInterestRate

def getNumberOfYears(self):
return self.__numberOfYears

def getLoanAmount(self):
return self.__ToanAmount

def getBorrower(self):
return self.__borrower

def setAnnualInterestRate(self, annualInterestRate):
self.__annualInterestRate = annualInterestRate

def setNumberOfYears(self, numberOfYears):
self.__numberOfYears = numberOfYears

def setLoanAmount(self, loanAmount):
self.__TloanAmount = loanAmount

def setBorrower(self, borrower):
self.__borrower = borrower

def getMonthlyPayment(self):
monthlyInterestRate = self.__annualInterestRate / 1200
monthlyPayment = \
self.__TloanAmount * monthlyInterestRate / (1 - (1 /
(1 + monthlyInterestRate) ** (self.__numberOfYears * 12)))
return monthlyPayment

def getTotalPayment(self):
totalPayment = self.getMonthlyPayment() * \
self.__numberOfYears * 12
return totalPayment

Because the data fields annualInterestRate, numberOfYears, ToanAmount, and

borrower are defined as private (with two leading underscores), they cannot be accessed
from outside the class by a client program.

From a class developer’s perspective, a class is designed for use by many different cus-

tomers. In order to be useful in a wide range of applications, a class should provide a variety
of ways for users to customize the class with methods.

t— Important Pedagogical Tip

The UML diagram for the Loan class is shown in Figure 7.9. You should first write a test
program that uses the Loan class even though you don’t know how the Loan class is
implemented. This has three benefits:

W It demonstrates that developing a class and using a class are two separate
tasks.

B [t enables you to skip the complex implementation of certain classes without
interrupting the sequence of the book.

W |t is easier to learn how to implement a class if you are familiar with the
class through using it.

For all the class development examples from now on, first create an object from the class
and try to use its methods and then turn your attention to its implementation.

7.7 Object-Oriented Thinking 233

7.7 Object-Oriented Thinking

The procedural paradigm for programming focuses on designing functions. The fK
object-oriented paradigm couples data and methods together into objects. Software 6
design using the object-oriented paradigm focuses on objects and operations on

objects.

ey
Point

This book’s approach is to teach problem solving and fundamental programming techniques
before object-oriented programming. This section shows how procedural and object-oriented
programming differ. You will see the benefits of object-oriented programming and learn to
use it effectively. We will improve the solution for the BMI problem introduced in Chapter 4
by using the object-oriented approach. From the improvements, you will gain insight into the
differences between procedural and object-oriented programming and see the benefits of
developing reusable code using objects and classes.

Listing 4.6, ComputeBMI.py, presents a program for computing body mass index. The
code as it is cannot be reused in other programs. To make it reusable, define a standalone
function to compute body mass index, as follows:

def getBMI(weight, height):

This function is useful for computing body mass index for a specified weight and height.
However, it has limitations. Suppose you need to associate the weight and height with a per-
son’s name and birth date. You could create separate variables to store these values, but these
values are not tightly coupled. The ideal way to couple them is to create an object that con-
tains them. Since these values are tied to individual objects, they should be stored in data
fields. You can define a class named BMI, as shown in Figure 7.10.

The get methods for these data fields
are provided in the class, but are omitted in

the UML diagram for brevity.
BMI

-name: str / The name of the person.

-age: int The age of the person.

-weight: float The weight of the person in pounds.

-height: float The height of the person in inches.

BMI(name: str, age: int, weight: Creates a BMI object with the specified

float, height: float) name, age (the default is 20), weight,

and height.

getBMI(): float Returns the BMI.

getStatus(): str Returns the BMI status (e.g., Normal,
Overweight, etc.).

FIGURE 7.10 The BMI class encapsulates BMI data and methods.

Assume that the BMI class is available. Listing 7.9 is a test program that uses this class.

LISTING 7.9 UseBMIClass.py

1 from BMI import BMI import BMI class
2

3 def main(Q: .

4 bmil = BMI("John Doe", 18, 145, 70) create an object
5 print("The BMI for", bmil.getName(), "is" invoke method

234 Chapter 7 Objects and Classes

bmil.getBMI() , bmil.getStatus())

bmi2 = BMI("Peter King", 50, 215, 70)
print("The BMI for", bmi2.getName(), "is"

6

7

create an object 8

9
10 bmi2.getBMI(), bmi2.getStatus())

11

invoke method

12 main() # Call the main function

The BMI for John Doe is 20.81 Normal
E The BMI for Peter King is 30.85 Obese

Line 4 creates an object bmil for John Doe and line 8 creates an object bmi2 for Peter
King. You can use the methods getName(), getBMI(), and getStatus() to return the
BMI information in a BMI object (lines 5 and 9).

The BMI class can be implemented as in Listing 7.10.

LISTING 7.10 BMI.py
1 class BMI:

initializer 2 def __init__(self, name, age, weight, height):
3 self.__name = name
4 self.__age = age
5 self.__weight = weight
6 self.__height = height
7
getBMI 8 def getBMI(self):
9 KILOGRAMS_PER_POUND = 0.45359237
10 METERS_PER_INCH = 0.0254
11 bmi = self.__weight * KILOGRAMS_PER_POUND / \
12 ((self.__height * METERS_PER_INCH) * \
13 (self.__height * METERS_PER_INCH))
14 return round(bmi * 100) / 100
15
getStatus 16 def getStatus(self):
17 bmi = self.getBMI()
18 if bmi < 18.5:
19 return "Underweight"
20 elif bmi < 25:
21 return "Normal"
22 elif bmi < 30:
23 return "Overweight"
24 else:
25 return "Obese"
26
27 def getName(self):
28 return self.__name
29
30 def getAge(self):
31 return self.__age
32
33 def getWeight(self):
34 return self.__weight
35
36 def getHeight(self):

37 return self.__height

Chapter Summary 235

The mathematical formula for computing the BMI using weight and height is given in
Section 4.9. The method getBMI() returns the BMI. Since the weight and height are data
fields in the object, the getBMI () method can use these properties to compute the BMI for
the object.

The method getStatus() returns a string that interprets the BMI. The interpretation is
also given in Section 4.9.

This example demonstrates the advantages of the object-oriented paradigm over the proce-
dural paradigm. The object-oriented approach combines the power of the procedural para-
digm with an added dimension that integrates data with operations into objects.

In procedural programming, data and operations are separate, and this methodology
requires sending data to methods. Object-oriented programming places data and the opera-
tions that pertain to them together in an object. This approach solves many of the problems
inherent in procedural programming. The object-oriented programming approach organizes
programs in a way that mirrors the real world, in which all objects are associated with both
attributes and activities. Using objects improves software reusability and makes programs
easier to develop and easier to maintain. Programming in Python involves thinking in terms of
objects; a Python program can be viewed as a collection of cooperating objects.

7.18 Describe the differences between procedural and object-oriented paradigms.

KEey TERMS

abstract data type (ADT) 229 identity 216

accessor (getter) 227 initializer 217

actions 216 instance 217

anonymous object 219 instance method 219
attributes 216 instance variable 220
behavior 216 instantiation 217

class 216 mutator (setter) 227

class abstraction 229 object-oriented programming
class encapsulation 229 (O0OP) 216

class’s contract 229 private data fields 227
client 221 private method 227
constructor 218 property 216

data fields 216 state 216

data hiding 227 Unified Modeling Language
dot operator (.) 219 (UML) 222

CHAPTER SUMMARY

I. A class is a template, a blueprint, a contract, and a data type for objects. It defines the
properties of objects and provides an initializer for initializing objects and methods
for manipulating them.

2. The initializer is always named __init__. The first parameter in each method
including the initializer in the class refers to the object that calls the method. By con-
vention, this parameter is named self.

3. An object is an instance of a class. You use the constructor to create an object, and
the dot operator (.) to access members of that object through its reference variable.

procedural vs. object-oriented
paradigms

ﬁheck
Point

MyProgramminglab’

236 Chapter 7 Objects and Classes

MyProgramminglab’

4.

An instance variable or method belongs to an instance of a class. Its use is associated
with individual instances.

Data fields in classes should be hidden to prevent data tampering and to make classes
easy to maintain.

You can provide a get method or a set method to enable clients to see or modify the
data. Colloquially, a get method is referred to as a getter (or accessor), and a set
method as a setter (or mutator).

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

PROGRAMMING EXERCISES

Sections 7.2-7.3

7.1

(The Rectangle class) Following the example of the Circle class in Section
7.2, design a class named Rectangle to represent a rectangle. The class
contains:

B Two data fields named width and height.

B A constructor that creates a rectangle with the specified width and height.
The default values are 1 and 2 for the width and height, respectively.

B A method named getArea() that returns the area of this rectangle.

B A method named getPerimeter() that returns the perimeter.

Draw the UML diagram for the class, and then implement the class. Write a test
program that creates two Rectangle objects—one with width 4 and height 40
and the other with width 3.5 and height 35.7. Display the width, height, area,
and perimeter of each rectangle in this order.

Sections 7.4-7.7

7.2

(The Stock class) Design a class named Stock to represent a company’s stock
that contains:

B A private string data field named symboT for the stock’s symbol.

B A private string data field named name for the stock’s name.

B A private float data field named previousClosingPriice that stores the stock
price for the previous day.

B A private float data field named currentPriice that stores the stock price for

the current time.

A constructor that creates a stock with the specified symbol, name, previous

price, and current price.

A get method for returning the stock name.

A get method for returning the stock symbol.

Get and set methods for getting/setting the stock’s previous price.

Get and set methods for getting/setting the stock’s current price.

A method named getChangePercent () that returns the percentage changed

from previousClosingPrice to currentPrice.

Draw the UML diagram for the class, and then implement the class. Write a test
program that creates a Stock object with the stock symbol INTC, the name Intel

www.cs.armstrong.edu/liang/py/test.html

Programming Exercises 237

Corporation, the previous closing price of 20.5, and the new current price of
20. 35, and display the price-change percentage.

7.3 (The Account class) Design a class named Account that contains:

B A private int data field named id for the account.

B A private float data field named balance for the account.

B A private float data field named annualInterestRate that stores the current
interest rate.

B A constructor that creates an account with the specified id (default 0), initial
balance (default 100), and annual interest rate (default 0).

B The accessor and mutator methods for id, balance, and annualInterestRate.

B A method named getMonthlyInterestRate() that returns the monthly
interest rate.

B A method named getMonthlyInterest() that returns the monthly interest.

B A method named withdraw that withdraws a specified amount from the
account.

B A method named depos-it that deposits a specified amount to the account.

Draw the UML diagram for the class, and then implement the class. (Hint: The
method getMonthlyInterest() is to return the monthly interest amount, not
the interest rate. Use this formula to calculate the monthly interest: balance *
monthlyInterestRate. monthlyInterestRate is annualInterestRate
/ 12. Note that annualInterestRate is a percent (like 4.5%). You need to
divide it by 100.)

Write a test program that creates an Account object with an account id of 1122, a
balance of $20,000, and an annual interest rate of 4.5%. Use the withdraw
method to withdraw $2,500, use the deposit method to deposit $3,000, and print
the id, balance, monthly interest rate, and monthly interest.

7.4 (The Fan class) Design a class named Fan to represent a fan. The class contains:

B Three constants named SLOW, MEDIUM, and FAST with the values 1, 2, and 3 to
denote the fan speed.

B A private int data field named speed that specifies the speed of the fan.

A private bool data field named on that specifies whether the fan is on (the

default is False).

A private float data field named radius that specifies the radius of the fan.

A private string data field named color that specifies the color of the fan.

The accessor and mutator methods for all four data fields.

A constructor that creates a fan with the specified speed (default SLOW), radius

(default 5), color (default blue), and on (default False).

Draw the UML diagram for the class and then implement the class. Write a test
program that creates two Fan objects. For the first object, assign the maximum
speed, radius 10, color yellow, and turn it on. Assign medium speed, radius 5,
color blue, and turn it off for the second object. Display each object’s speed,
radius, color, and on properties.

*7.5 (Geometry: n-sided regular polygon) An n-sided regular polygon’s sides all have
the same length and all of its angles have the same degree (i.e., the polygon is
both equilateral and equiangular). Design a class named RegularPolygon that
contains:

B A private int data field named n that defines the number of sides in the polygon.

B A private float data field named s1ide that stores the length of the side.

B A private float data field named x that defines the x-coordinate of the center of
the polygon with default value 0.

238 Chapter 7 Objects and Classes

*7.6

*1.7

B A private float data field named y that defines the y-coordinate of the center of
the polygon with default value 0.

B A constructor that creates a regular polygon with the specified n (default 3),
side (default 1), x (default 0), and y (default 0).

B The accessor and mutator methods for all data fields.

B The method getPerimeter () that returns the perimeter of the polygon.

B The method getArea() that returns the area of the polygon. The formula for

n X s?

N
4 X tan<>
n

Draw the UML diagram for the class, and then implement the class. Write a test pro-
gram that creates three RegularPolygon objects, created using RegularPolygon(),
using RegularPolygon(6, 4) and RegularPolygon(10, 4, 5.6, 7.8).For
each object, display its perimeter and area.

computing the area of a regular polygon is Area =

(Algebra: quadratic equations) Design a class named QuadraticEquation for a
quadratic equation ax> + bx + x = 0. The class contains:

B The private data fields a, b, and c that represent three coefficients.

H A constructor for the arguments for a, b, and c.

B Three get methods for a, b, and c.

B A method named getDiscriminant () that returns the discriminant, which is
b? — 4ac.

The methods named getRoot1() and getRoot2 () for returning the two roots
of the equation using these formulas:

_ —b + Vb?* — dac —b — Vb* — 4dac

and r, =
2a 2a

r

These methods are useful only if the discriminant is nonnegative. Let these meth-
ods return O if the discriminant is negative.

Draw the UML diagram for the class, and then implement the class. Write a test
program that prompts the user to enter values for a, b, and ¢ and displays the result
based on the discriminant. If the discriminant is positive, display the two roots. If
the discriminant is 0, display the one root. Otherwise, display “The equation has
no roots.” See Exercise 4.1 for sample runs.

(Algebra: 2 X 2 linear equations) Design a class named LinearEquation for a
2 X 2 system of linear equations:

ax + by = ¢ _ed = bf _af —ec
cx +dy=f x_ad—bc y_ad—bc

The class contains:

B The private data fields a, b, c, d, e, and f with get methods.

B A constructor with the arguments for a, b, c, d, e, and f.

B Six get methods for a, b, ¢, d, e, and f.

B A method named isSolvable() that returns true if ad — bc is not 0.

B The methods getX() and getY () that return the solution for the equation.

Draw the UML diagram for the class, and then implement the class. Write a test
program that prompts the user to enter a, b, c, d, e, and f and displays the result.
If ad — bc is 0, report that “The equation has no solution.” See Exercise 4.3 for
sample runs.

Programming Exercises 239

*7.8 (Stopwatch) Design a class named StopWatch. The class contains:

B The private data fields startTime and endTime with get methods.

B A constructor that initializes startTime with the current time.

B A method named start() that resets the startTime to the current time.

B A method named stop () that sets the endTime to the current time.

B A method named getElapsedTime() that returns the elapsed time for the
stop watch in milliseconds.

Draw the UML diagram for the class, and then implement the class. Write a test
program that measures the execution time of adding numbers from 1 to
1,000,000.

**7.9 (Geometry: intersection) Suppose two line segments intersect. The two endpoints
for the first line segment are (x1, y1) and (x2, y2) and for the second line segment
are (x3, y3) and (x4, y4). Write a program that prompts the user to enter these
four endpoints and displays the intersecting point. (Hint: Use the
LinearEquation class from Exercise 7.7.)

Enter the endpoints of the first 1line segment: 2.0, 2.0, 0, O I~Enter g
Enter the endpoints of the second Tine segment: 0, 2.0, 2.0, 0 I~Enter
The intersecting point is: (1.0, 1.0)

*7.10 (The Time class) Design a class named T-ime. The class contains:

B The private data fields hour, minute, and second that represent a time.

B A constructor that constructs a Time object that initializes hour, minute, and
second using the current time.

B The get methods for the data fields hour, minute, and second, respectively.

B A method named setTime(elapseTime) that sets a new time for the object
using the elapsed time in seconds. For example, if the elapsed time is 555550
seconds, the hour is 10, the minute is 19, and the second is 12.

Draw the UML diagram for the class, and then implement the class. Write a test
program that creates a Time object and displays its hour, minute, and second.
Your program then prompts the user to enter an elapsed time, sets its elapsed
time in the Time object, and displays its hour, minute, and second. Here is a

sample run:

Current time is 12:41:6

Enter the elapsed time: 55550505 IuEnter E
The hour:minute:second for the elapsed time is 22:41:45

(Hint: The initializer will extract the hour, minute, and second from the elapsed
time. The current elapsed time can be obtained using time.time(), as shown in
Listing 2.7, ShowCurrentTime.py.)

This page intentionally left blank

MORE ON STRINGS
AND SPECIAL METHODS

Objectives

To learn how to create strings (§8.2.1).

B To use the Ten, min, and max functions to obtain the length of a string or

the smallest or largest character in a string (§8.2.2).

B To access string elements by using the index operator ([]) (§8.2.3).

m To get a substring from a larger string by using the slicing

str[start : end] operator (§8.2.4).

To concatenate strings by using the + operator and to duplicate strings
by using the * operator (§8.2.5).

To use the in and not 1in operators to determine whether a string

is contained within another string (§8.2.6).

To compare strings by using comparison operators (==, !=, <, <=, >,
and >=) (§8.2.7).

B To iterate characters in a string by using a for loop (§8.2.8).

B To test strings by using the methods isalnum, isalpha, isdigit,

isidentifier, islower, isupper, and isspace (§8.2.9).

To search for substrings by using the methods endswith, startswith,
find, rfind, and count (§8.2.10).

To convert strings by using the methods capitalize, lower, upper,
title, swapcase, and replace (§8.2.11).

To strip whitespaces from the left and/or right of a string by using
the methods Tstrip, rstrip, and strip (§8.2.12).

To format strings by using the methods center, 1just, rjust, and
format (§8.2.13).

To apply strings in the development of applications (CheckPalindrome,
HexToDecimalConversion) (§§8.3-8.4).

B To define special methods for operators (§8.5).

To design the Rational class for representing rational numbers (§8.6).

CHAPTER

242 Chapter 8 More on Strings and Special Methods

8.1 Introduction

fKey The focus of this chapter is on class design using Python’s str class as an example
6 Point and exploring the role of special methods in Python.

The preceding chapter introduced the important concepts of objects and classes. You learned
how to define classes as well as how to create and use objects. The str class is not only useful
for processing strings, but it is also a good example of class design. This class was introduced
in Chapter 3. We will discuss the str class in depth in this chapter.

The special methods play an important role in Python. This chapter will also introduce
special methods and operator overloading, and design classes using special methods.

8.2 The str Class

fKey A str object is immutable; that is, its content cannot be changed once the string is
6 Point created.

In Chapter 7, you learned how to define the classes Loan and BMI and create objects from
these classes. You will frequently use the classes that come with the Python library to develop
u programs. This section introduces the Python str class.

Strings are fundamental in computer science, and processing strings is a common task in
programming. Strings are the objects of the str class. So far, you have used strings in input
and output. The input function returns a string from the keyboard and the print function
displays a string on the monitor.

VideoNote
String methods

8.2.1 Creating Strings

You can create strings by using the constructor, as follows:

sl
s2

str() # Create an empty string object
str("Welcome") # Create a string object for Welcome

Python provides a simple syntax for creating a string object by using a string value. For

example,
sl ="" # Same as sl = str()
s2 = "Welcome" # Same as s2 = str("Welcome")

A string object is immutable: once it is created, its contents cannot be changed. To opti-
mize performance, Python uses one object for strings that have the same content. As
shown in Figure 8.1, both s1 and s2 refer to the same string object and have the same id
number.

>>> sl = "Welcome"
>>> s2 = "Welcome" 1 s str

>>> id(sl) s —
505408902 str object for "Welcome"
>>> d(s2) s2

505408902

>>>

FiGure 8.1 Strings with the same content are actually the same object.

This behavior is true for all immutable objects in the Python library. For example, int is
an immutable class. Two int objects with the same value actually share the same object, as
shown in Figure 8.2.

>>>y = 10 :int

>>> ido) X e
35747680 int object for 10

>>> id(y) Y

8.2 The str Class 243

35747680

>>>

Ficure 8.2 All immutable objects with the same content are stored in one object.

8.2.2 Functions for Strings

Several of Python’s built-in functions can be used with strings. You can use the Ten function Ten
to return the number of the characters in a string, and the max and min functions (introduced max
in Chapter 3) to return the largest or smallest character in a string. Here are some examples: min

1 >>> s = "Welcome"
2 >>> len(s)

3 7

4 >>> max(s)

5 'o'

6 >>> min(s)

7 'W'

8 >>>

2

Since s has 7 characters, Ten(s) returns 7 (line 3). Note that the lowercase letters have a
higher ASCII value than the uppercase letters, so max(s) returns o (line 5) and min(s)

returns W (line 7).

Here is another example:

s = input("Enter a string: ")

if Ten(s) % 2 ==

print(s, "contains an even number of characters")

else:

print(s, "contains an odd number of characters')

If you enter computer when running the code, it displays

computer contains an even number of characters

8.2.3 Index Operator []

A string is a sequence of characters. A character in the string can be accessed through the
index operator using the syntax:

s[index]

The indexes are 0 based; that is, they range from 0 to Ten(s) -1, as shown in Figure 8.3. 0 based

0 1 2 3 4 5 6 7 8 9 10
s~>| Plr|o|lg|r|a|m | m|i|n | g |
s[0] s[1] s[10]

FiGure 8.3 The characters in a string can be accessed via an index operator.

244 Chapter 8 More on Strings and Special Methods

2

slicing operator

For example,

>>> s = "Welcome"

>>> for i in range(0, len(s), 2):
print(s[i], end = '")

Wloe

>>>

In the for loop, i1is 0, 2, 4, and 6. So, s[0], s[2], s[4], and s[6] are displayed.

Python also allows the use of negative numbers as indexes to reference positions relative to
the end of the string. The actual position is obtained by adding the length of the string with the
negative index. For example,

>>> s = "Welcome"
>>> s[-1]

s[-2]

ouvi hw N B
\
v
Vv

Inline 2, s[-1] isthe same as s[-1 + Ten(s)], which is the last character in the string. In
line 4, s[-2] is the same as s[-2 + Ten(s)], which is the second last character in the string.

Note that since strings are immutable, you cannot change their contents. For example, the
following code is illegal:

s[2] = 'A'

8.2.4 The Slicing Operator [start : end]

The slicing operator returns a slice of the string using the syntax s[start : end]. The slice
is a substring from index start to index end - 1. For example,

1 >>> s = "Welcome"
2 >>> s[l1 : 4]
3 'elc'

s[1 : 4] returns a substring from index 1 to index 3.
The starting index or ending index may be omitted. In this case, by default the starting
index is 0 and the ending index is the last index. For example,

>>> s = "Welcome"
>>> s[: 6]
'Welcom'

>>> s[4 :]

'ome'

>>> s[1 : -1]
'elcom'

>>>

cCONOYUVIT A WN R

8.2 The str Class

Inline 2, s[: 6] is the same as s[0 : 6], which returns a substring from index 0 to
index 5.Inline4, s[4 :]isthesameas s[4 : 7], which returns a substring from index 4
to index 6. You can also use a negative index in slicing. For example, in line 6, s[1 : -1]is
the sameass[1 : -1 + len(s)].

t‘ Note

If index (i or j) in the slice operation s[1 : 7j] is negative, replace the index with
Ten(s) + dndex.If j > Tlen(s), jissetto len(s).If i >= 7, thesliceis
empty.

8.2.5 The Concatenation (+) and Repetition (*) Operators

You can join, or concatenate, two strings by using the concatenation operator (+). You can
also use the repetition operator (*) to concatenate the same string multiple times. Here are
some examples:

1 >>> sl = "Welcome"

2 >>> s2 = "Python"

3 >>>s3 =5s1+"to" + s2
4 >>> s3

5 'Welcome to Python'

6 >>> s4 =3 * sl

7 >>> s4

8 'WelcomeWelcomeWelcome'
9 >>> s5 =51%*3
10 >>> s5
11 'WelcomeWelcomeWelcome'
12 >>>

Note that 3 #* sland sl * 3 have the same effect (lines 6-11).

8.2.6 The inand not in Operators

You can use the in and not 1n operators to test whether a string is in another string. Here are
some examples:

>>> sl = "Welcome"
>>> "come" in sl
True

>>> "come" not in sl
False

>>>

Here is another example:

s = input("Enter a string: ")
if "Python" 1in s:
print("Python™, "is in", s)

negative index

concatenation operator

repetition operator

=

N

245

246 Chapter 8 More on Strings and Special Methods

else:
print("Python", "is not in'", s)

If you run the program by entering We'lcome to Python as the string, the program should
display

python is in Welcome to Python.

8.2.7 Comparing Strings

You can compare strings by using the comparison operators (==,!=, >, >=, <, and <=, intro-
duced in Section 4.2). Python compares strings by comparing their corresponding characters,
and it does this by evaluating the characters’ numeric codes. For example, a is larger than A
because the numeric code for a is larger than the numeric code for A. See Appendix B, The
ASCII Character Set, to find the numeric codes for characters.

Suppose you need to compare the strings s1 ("Jane") with s2 ("Jake"). The first two
characters (J vs. J) from s1 and s2 are compared. Because they are equal, the second two
characters (a vs. a) are compared. Because they are equal, the third two characters (n vs. k)
are compared. Since n has a greater ASCII value than k, s1 is greater than s2.

Here are some examples:

>>> "green" == "glow"
E False

>>> "green" != "glow"

True
>>> "green" > "glow"
True
>>> "green" >= "glow"
True
>>> "green" < "glow"
False
>>> "green" <= "glow"
False

>>> "ab" <= "abc
True

>>>

Here is another example:

1 sl = input("Enter the first string: ")
2 s2 = input("Enter the second string: ")
3 4if s2 < sl:

4 sl, s2 = s2, sl

5
6

print("The two strings are 1in this order:", sl, s2)

If you run the program by entering Peter and then John, sl is Peter and s2 is John
(lines 1-2). Since s2 < sl is True (line 3), they are swapped in line 4. Therefore the pro-
gram displays the following message in line 6.

The two strings are in this order: John Peter

8.2 The str Class

8.2.8 lterating a String

A string is iterable. This means that you can use a for loop to traverse all characters in
the string sequentially. For example, the following code displays all the characters in the
string s:

for ch 1in s:
print(ch)

You can read the code as “for each character ch in s, print ch.”

The for loop does not use indexes to access characters. However, you still have to use
indexes if you wish to traverse the characters in the string in a different order. For example,
the following code displays the characters at odd-numbered positions in the string:

for i 1in range(0, len(s), 2):
print(s[i])

The code uses variable 1 as the index for string s. 1 is initially 0, then increment by 2 suc-
cessively, before it reaches or exceeds Ten(s). For each value 1, s[1] is printed.

8.2.9 Testing Strings

The str class has many useful methods. The methods in Figure 8.4 test the characters in the
string.

str

isalnum(): bool Returns True if characters in this string are alphanumeric
and there is at least one character.

isalpha(): bool Returns True if characters in this string are alphabetic
and there is at least one character.

isdigit(): bool Returns True if this string contains only number characters.

isidentifier(): bool Returns True if this string is a Python identifier.

isTower(): bool Returns True if all characters in this string are lowercase
lettters and there is at least one character.

isupper(): bool Returns True if all characters in this string are uppercase
lettters and there is at least one character.

isspace(): bool Returns True if this string contains only whitespace characters.

FIGURE 8.4 The str class contains these methods for testing its characters.

Here are some examples of using the string testing methods:

>>> s = "welcome to python"
>>> s.isalnum()
False

>>> "Welcome".isalpha()

True

>>> "2012".isdigit()

True

>>> "first Number".isidentifier()
False

O 00 N O Ul B W N =

for loop

iterable

247

248 Chapter 8 More on Strings and Special Methods

10 >>> s.islower()
11 True

12 >>> s.isupper()
13 False

14 >>> s.isspace()
15 False

16 >>>

s.isalnum() returns False (line 2), because s contains spaces, which are not letters or
numerals. Welcome contains all letters (line 4), so "Welcome".isalpha() returns True.
Since 2012 contains all numerals, "2012".1isdigit() returns True (line 6). And because
first Number contains a space, it is not an identifier, so "' first Number".isidentifier()
returns False (line 8).

Here is another example:

s = "2011"
if s.isdigitQ:
print(s, "is a numeric string')

The code displays

2011 is a numeric string

8.2.10 Searching for Substrings

You can search for a substring in a string by using the methods in Figure 8.5.

str

endswith(sl: str): bool Returns True if the string ends with the substring s1.

startswith(sl: str): bool Returns True if the string starts with the substring s1.

find(sl): int Returns the lowest index where s1 starts in this string, or -1 if
sl is not found in this string.

rfind(sl): int Returns the highest index where s1 starts in this string, or -1 if
sl is not found in this string.

count(substring): int Returns the number of non-overlapping occurrences of this
substring.

FiGure 8.5 The str class contains these methods for searching substrings.

string search methods Here are some examples of using the string search methods:

>>> s = "welcome to python"
E >>> s.endswith("thon")
True

>>> s.startswith('"good")
False

o v AW N R

>>> s.find("come")

8.2 The str Class 249

10
11
12
13
14

>>>
=1l
>>>
17
>>>

>>>

s.find("become")

s.rfind("o")

s.count("o")

Since come is found in string s at index 3, s. find("come") returns 3 (line 7). Because
the first occurrence of substring o from the right is at index 17, s.rfind("o") returns 17
(line 11). In line 8, s. find("become') returns -1, since become is not in s. In line 12,
s.count("o") returns 3, because o appears three times in s.

Here is another example:

S

input("Enter a string: ")
if s.startswith("comp™):

print(s, "begins with comp')

if s.endswith("er'"):
print(s, "ends with er")

print('e', "appears", s.count('e'), "time in", s)

If you enter computer when running the code, it displays

computer begins with comp
computer ends with er
e appears 1 time in computer

8.2.11
You can make a copy of a string by using the methods shown in Figure 8.6. These methods
let you control the capitalization of letters in the string’s copy, or to replace the string
entirely.

Converting Strings

str

capitalize(): str
Tower(): str
upper(): str
title(): str
swapcase(): str

replace(old, new): str

Returns a copy of this string with only the first character capitalized.
Returns a copy of this string with all letters converted to lowercase.
Returns a copy of this string with all letters converted to uppercase.
Returns a copy of this string with the first letter capitalized in each word.

Returns a copy of this string in which lowercase letters are converted to
uppercase and uppercase to lowercase.

Returns a new string that replaces all the occurrences of the old string
with a new string.

FiGure 8.6 The str class contains these methods for converting letter cases in strings and for replacing one string with
another.

250 Chapter 8 More on Strings and Special Methods

The capitalize() method returns a copy of the string in which the first letter in the
string is capitalized. The Tower () and upper () methods return a copy of the string in
which all letters are in lowercase or uppercase. The title() method returns a copy of the
string in which the first letter in each word is capitalized. The swapCase () method returns
a copy of the string in which the lowercase letters are converted to uppercase and the upper-

case letters are converted to lowercase. The replace(old,

new) method returns a new

string that replaces the substring o'ld with substring new. Here are some examples of using

these methods:

1 >>> s = "welcome to python"
E 2 >>> sl = s.capitalize()

3 >>> sl

4 'Welcome to python'

5 >>> s2 = s.titleQ)

6 >>> s2

7 'Welcome To Python'

8 >>> s = "New England"

9 >>> s3 = s.lower()
10 >>> s3
11 'new england'
12 >>> s4 = s.upper()

13 >>> s4

14 'NEW ENGLAND'

15 >>> s5 = s.swapcase()
16 >>> s5

17 'nEW eNGLAND'

18 >>> s6 = s.replace("England”, "Haven")
19 >>> s6

20 'New Haven'

21 >>> s

22 'New England'

23 >>>

t— Note

As stated earlier, a string is immutable. None of the methods in the str class changes
the contents of the string; instead, these methods create new strings. As shown in the
preceding script, s is still New England (lines 21-22) after applying the methods
s.lower(), s.upper(), s.swapcase(), and s.replace("England",
"Haven")

8.2.12 Stripping Whitespace Characters from a String

You can use the methods in Figure 8.7 to strip whitespace characters from the front, end, or
both the front and end of a string. Recall that the characters ' ', \t, \f, \r, and \n are called

the whitespace characters (Section 3.5).

str

Istrip(Q: str Returns a string with the leading whitespace characters removed.

rstrip(): str Returns a string with the trailing whitespace characters removed.

strip(Q: str Returns a string with the starting and trailing whitespace characters

removed.

FiGure 8.7 The str class contains these methods for stripping leading and trailing white-

Space characters.

Here are some examples of using the string stripping methods:

8.2 The str Class

1 >>> s =" Welcome to Python\t"
2 >>> sl = s.Istrip(Q
3 >>> sl
4 'Welcome to Python\t'
5 >>> s2 = s.rstrip()
6 >>> s2
7 ' Welcome to Python'
8 >>> s3 = s.strip(Q)
9 >>> s3
10 'Welcome to Python'
11 >>>

In line 2, s.Tstrip() strips the whitespace characters in s from the left. In line 5,
s.rstrip() strips the whitespace characters in s from the right. In line 8, s. strip () strips

the whitespace characters in s from both the left and right.

Note

The stripping methods only strip the whitespace characters in the front and end of a
string. The whitespace characters surrounded by non-whitespace characters are not
stripped.

Tip
It is a good practice to apply the strip() method on an input string to ensure that any
unwanted whitespace characters at the end of the input are stripped.

8.2.13 Formatting Strings

You can use the methods in Figure 8.8 to return a formatted string.

str

center(width): str
Tjust(width): str
rjust(width): str

Returns a string left justified in a field of the given width.
Returns a string right justified in a field of the given width.

format(items): str Formats a string.

Returns a copy of this string centered in a field of the given width.

FIGURE 8.8 The str class contains these formatting methods.

251

252 Chapter 8 More on Strings and Special Methods

2

/éhuk
Point

MyProgramminglLab’

Here are some examples that use the center, 1just, and rjust methods:

O 00 N O v A W N R

R
[

>>> s = "Welcome"
>>> sl = s.center(11)
>>> sl

A}]

Welcome
>>> s2 = s.ljust(11l)
>>> s2

'Welcome !

>>> s3 = s.rjust(1l)
>>> S3

Welcome'
>>>

In line 2, s.center(11) places s in the center of a string with 11 characters. In line 5,
s.1just(11) places s at the left of a string with 11 characters. In line 8, s.rjust(11)
places s at the right of a string with 11 characters.

Section 3.6 introduced the format function for formatting a number or a string. The str
class has a format method, covered in Supplement II.C, which is very similar to the format
function.

8.1

8.2

Suppose that s1, s2, s3, and s4 are four strings, given as follows:

sl = "Welcome to Python"
s2 = sl

s3 = "Welcome to Python"
s4 = "to"

What are the results of the following expressions?

a. sl == s2 1. 4 * s4

b. s2.count('o") m. len(sl)

c. 1d(sl) == id(s2) n. max(sl)

d. id(sl) == id(s3) o. min(sl)

e. sl <= s4 p. s1[-4]

f. s2 >= s4 gq. sl.lower()

g. sl !=s4 r. sl.rfind('o")

h. sl.upper(Q s. sl.startswith("o")
i. sl.find(s4) t. sl.endswith("o")
j. s1[4] u. sl.isalphaQ

k. s1[4 : 8] v. sl + sl

Suppose that s1 and s2 are two strings. Which of the following statements or expres-
sions are incorrect?

sl = "programming 101"

s2 = "programming is fun"
s3 =51 + s2

s3 =sl1 - s2

sl == s2

sl >= s2

8.3 Case Study: Checking Palindromes 253

len(sl)
s1[0]

s1[: 5]
s1[5 :]

++ 0 =
o

8.3 What is the printout of the following code?

sl = "Welcome to Python"

s2 = sl.replace("o","abc")

print(sl)

print(s2)
8.4 Lletslbe" Welcome "ands2be" welcome "
statements:

. Write the code for the following

(a) Check whether s1 is equal to s2 and assign the result to a Boolean variable
isEqual.

(b) Check whether s1 is equal to s2, ignoring case, and assign the result to a
Boolean variable isEqual.

(c) Check whether s1 has the prefix AAA and assign the result to a Boolean variable b.
(d) Check whether s1 has the suffix AAA and assign the result to a Boolean variable b.
(e) Assign the length of s1 to a variable x.

(f) Assign the first character of s1 to a variable x.

(g) Create a new string s3 that combines s1 with s2.

(h) Create a substring of s1 starting from index 1.

(i) Create a substring of s1 from index 1 to index 4.

(j) Create a new string s3 that converts s1 to lowercase.

(k) Create a new string s3 that converts s1 to uppercase.

(1) Create a new string s3 that trims whitespace characters on both ends of s1.

(m) Replace e with E in s1.

(n) Assign the index of the first occurrence of character e in s1 to a variable x.

(o) Assign the index of the last occurrence of string abc in s1 to a variable x.

8.5 Does any method in the string object change the contents of the string?
8.6 Suppose string s is an empty string; what is Ten(s)?
8.7 How do you determine whether a character is in lowercase or uppercase?

8.8 How do you determine whether a character is alphanumeric?

8.3 Case Study: Checking Palindromes

This section presents a program that checks whether a string is a palindrome. 6 fKey

A string is a palindrome if it reads the same forward and backward. The words “mom,” “dad,” Point
and “noon,” for instance, are all palindromes.

The problem is to write a program that prompts the user to enter a string and reports
whether the string is a palindrome. One solution is to have the program check whether the first
character in the string is the same as the last character. If so, then the program can check
whether the second character is the same as the second-to-last character. This process contin-
ues until a mismatch is found or all the characters in the string are checked, except for the

middle character if the string has an odd number of characters.

254 Chapter 8 More on Strings and Special Methods

To implement this idea, use two variables, say Tow and high, to denote the position of two
characters at the beginning and the end in a string s, as shown in Listing 8.1 (lines 13 and 16).
Initially, Tow is 0 and high is Ten(s) - 1. If the two characters at these positions match,
increment Tow by 1 and decrement high by 1 (lines 22-23). This process continues until
(Tow >= high) or a mismatch is found.

LisTING 8.1 CheckPalindrome.py
1 def main(Q):

2 # Prompt the user to enter a string
input string 3 s = input("Enter a string: ") .strip(Q

4

5 if isPalindrome(s) :

6 print(s, "is a palindrome™)

7 else:

8 print(s, " is not a palindrome')

9

10 # Check if a string is a palindrome
11 def isPalindrome(s):

12 # The index of the first character in the string
low index 13 Tow = 0

14

15 # The index of the last character in the string
high index 16 high = len(s) - 1

17

18 while low < high:

19 if s[low] != s[high]:

20 return False # Not a palindrome

21
update indexes 22 Tow += 1

23 high -=1

24

25 return True # The string is a palindrome

26

27 main() # Call the main function

Enter a string: noon

noon is a palindrome

u

Enter a string: moon [“enter
moon 1is not a palindrome

-

The program prompts the user to enter a string into s (line 3), which uses the strip()
method to remove any starting and ending whitespace characters, and then invokes
isPalindrome(s) to determine whether s is a palindrome (line 5).

8.4 Case Study: Converting Hexadecimals to Decimals

fKey This section presents a program that converts a hexadecimal number into a decimal
€ point number:

Section 6.8 illustrates a program that converts a decimal number to hexadecimal format. How
do you convert a hex number into a decimal?

8.4 Case Study: Converting Hexadecimals to Decimals 255
Given a hexadecimal number h,h,_1h,—> ... hyhihy, the equivalent decimal value is
By X 16" + b,y X 16" + h, » X 162+ ... + hy X 16> + hy X 16" + hy X 16°
For example, the hex number AB8C is
10 X 16% + 11 X 16 + 8 X 16! + 12 x 16° = 43916
Our program will prompt the user to enter a hex number as a string and convert it into a
decimal by using the following function:
def hexToDecimal (hex):
A brute-force approach is to convert each hex character into a decimal number, multiply it
by 16’ for a hex digit at the 7’s position, and add all the items together to obtain the equivalent
decimal value for the hex number.
Note that:
By X 16" 4+ hy_y X 16"V + hy s X 1672 4+ ...+ hy X 16" + hy X 16°
=(...((hy, X 16 + h,_ 1) X 16 + h, 5) X 16 + ... + h)) X 16 + hy
This observation, known as Honer’s algorithm, leads to the following code for converting
a hex string to a decimal number:
decimalValue = 0
for i in range(lenChex)):
hexChar = hex[i]
decimalValue = decimalValue * 16 + hexCharToDecimal(ChexChar)
The following is a trace of the algorithm for hex number AB8C.
i hexChar hexCharToDecimal DecimalValue O\
(hexChar)
before the loop 0
after the Istiteration 0 A 10 10
after the 2nd iteration 1 B 11 10 * 16 + 11
after the 3rd iteration 2 8 8 (10 * 16 + 11) * 16 + 8
after the 4th iteration 3 C 12 ((10 * 16 + 11) * 16 + 8) * 16 + 12
Listing 8.2 shows the complete program.
LisTING 8.2 HexToDecimalConversion.py
1 def main(Q):
2 # Prompt the user to enter a hex number
3 hex = input("Enter a hex number: ").strip(Q input string
4
5 decimal = hexToDecimal Chex.upper()) hex to decimal
6 if decimal == None:
7 print("Incorrect hex number")
8 else:

256 Chapter 8 More on Strings and Special Methods

cannot convert

hex char to decimal

None

9 print("The decimal value for hex number",
10 hex, "1is", decimal)

11

12 def hexToDecimal(hex):

13 decimalValue = 0

14 for i 1in range(lenChex)):

15 ch = hex[i]

16 if "A" <= ch <= '"F' or '0' <= ch <= '"9":
17 decimalValue = decimalValue * 16 + \
18 hexCharToDecimal (ch)

19 else:

20 return None

21

22 return decimalValue

23

24 def hexCharToDecimal(ch):

25 if '"A'" <= ch <= '"F':

26 return 10 + ord(ch) - ord('A")

27 else:

28 return ord(ch) - ord('0")

29

30 main() # Call the main function

Enter a hex number: AB8C |uEnter
The decimal value for hex number AB8C is 43916

Enter a hex number: af71

The decimal value for hex number af71 is 44913

Enter a hex number: ax71

Incorrect hex number

The program reads a string from the console (line 3) and invokes the hexToDecimal func-
tion to convert a hex string to a decimal number (line 5). The characters can be entered in
either lowercase or uppercase, and the program converts them to uppercase before invoking
the hexToDecimal function.

The hexToDecimal function is defined in lines 12-22 to return an integer. The length of
the string is determined by invoking Ten(Chex) in line 14. This function returns None for an
incorrect hex number (line 20).

The hexCharToDecimal function is defined in lines 24-28 to return a decimal
value for a hex character. The character can be in either lowercase or uppercase.
Invoking hex.upper() converts the characters to uppercase. When invoking
hexCharToDecimal (ch), the character ch is already in uppercase. If ch is a letter
between A and F, the program returns a decimal value 10 + ord(ch) - ord('A")
(line 26). If ch is a digit, the program returns a decimal value ord(ch) - ord('0")
(line 28).

8.5 Operator Overloading and Special Methods 257

8.5 Operator Overloading and Special Methods

Python allows you to define special methods for operators and functions to perform Key
common operations. These methods are named in a specific way for Python to 6 Point
recognize the association.

In the preceding sections, you learned how to use operators for string operations. You can use
the + operator to concatenate two strings, the * operator to concatenate the same string multi-
ple times, the relational operators (==, !=, <, <=, >, and >=) to compare two strings, and the
index operator [] to access a character. For example,

1 sl = "Washington"
2 s2 = "California"
3 print("The first character 1in sl is", s1[0]) [1 operator
4 print("sl + s2 is", sl + s2) + operator
5 print("sl < s2?", sl < s2) < operator

The operators are actually methods defined in the str class. Defining methods for opera-
tors is called operator overloading. Operator overloading allows the programmer to use the
built-in operators for user-defined methods. Table 8.1 lists the mapping between the operators
and methods. You name these methods with two starting and ending underscores so Python
will recognize the association. For example, to use the + operator as a method, you would
define a method named __add_ . Note that these methods are not private, because they have
two ending underscores in addition to the two starting underscores. Recall that the initializer
inaclassisnamed __init__, which is a special method for initializing an object.

For example, you can rewrite the preceding code using the methods as follows:

1 sl = "Washington"

2 s2 = "California"

3 print("The first character in sl dis", sl.__getitem__(0))

operator overloading

__getitem__ method

TaABLE 8.1 Operator Overloading: Operators and Special Methods

Operator/Function Method Description

+ __add__(self, other) Addition
__mul__(self, other) Multiplication

- __sub__(self, other) Subtraction

/ __truediv__(self, other) Division

% __mod__(self, other) Remainder

< __1t__(self, other) Less than

<= __le__(self, other) Less than or equal to

== __eq__(self, other) Equal to

= __ne__(self, other) Not equal to

> __gt__(self, other) Greater than

>= __ge__(self, other) Greater than or equal to

[index] __getitem__(self, index) Index operator

in __contains__(self, value) Check membership

Ten __len__(self) The number of elements

str __str__(self) The string representation

258 Chapter 8 More on Strings and Special Methods

__add__ method
__1t__ method

__contains__ method
in operator

in operator
__contains__ method

Ten__ method

Ten method

Ten function
__Tlen__ method

print object

ﬁheck
Point

MyProgramminglLab’

K
Gﬁoi?l’;

VideoNote
Define classes

4 print("sl + s2 1is", sl.__add__(s2))
5 print("sl < s2?", sl.__1t__(s2))

sl. getitem__ (0) is the same as s1[0], s1. _add _(s2) is the same as s1 +
s2,andsl. 1t (s2) isthesameas sl < s2. Now you can see the advantages of oper-
ator overloading. Using operators greatly simplifies programs, making them easier to read
and maintain.

Python supports the in operator, which can be used to determine whether a character is in
a string or an element is a member of a container. The corresponding method is named
__contains__(self, e). You can use the method contains__ orthe in operator to
see if a character is in a string, as shown in the following code:

1 sl1 = "Washington"
2 print("Is W in s1?", '"W' in s1)
3 print("Is W in s1?", sl.__contains__('W'))

W in slisthesameassl. contains__ ('W").

If a class defines the ~_len _ (self) method, Python allows you to invoke the method
using a convenient syntax as a function call. For example, the ~_Ten__ method is defined in
the str class, which returns the number of characters in a string. You can use the method
__Ten__ or the function Ten to get the number of characters in a string, as shown in the fol-
lowing code:

1 sl = "Washington"
2 print("The length of sl 1is", len(sl))
3 print("The Tength of sl 1is", sl.__len__Q)

lTen(sl) isthesameassl. _len__ ().

Many of the special operators are defined in Python built-in types such as int and float.
For example, suppose i is 3 and j is 4. i.__add__(j) is the same as i + Jj and
i.__sub__(j)isthesameasi - j.

T Note

You can pass an object to invoke print(x). This is equivalent to invoking
print(x.__str__(Q) orprint(str(x)).

T Note

The comparison operators <, <=, ==, !=, >, and >= can also be implemented using the
__cmp__ (self, other) method. This method returns a negative integer if se’lf
< other, zero if self == other, and a positive integer if self > other. For two
objectsaand b,a < bucallsa.__Tt__(b) ifthe __Tt__ is available. If not, the
__cmp__ method is called to determine the order.

8.9 What is operator overloading?

8.10 What are the special methods for the operators +, -, *, /, %, ==, !=, <, <=, >,
and >=?

8.6 Case Study: The Rational Class

This section shows how to design the Rational class for representing and processing
rational numbers.

A rational number has a numerator and a denominator in the form a/b, where a is the numera-
tor and b is the denominator. For example, 1/3, 3/4, and 10/4 are rational numbers.

8.6 Case Study: The Rational Class 259

A rational number cannot have a denominator of 0, but a numerator of 0 is fine. Every inte-
ger 1 is equivalent to a rational number /1. Rational numbers are used in exact computations
involving fractions—for example, 1/3 = 0.33333.... This number cannot be precisely
represented in floating-point format using data type float. To obtain the exact result, we
must use rational numbers.

Python provides data types for integers and floating-point numbers but not for rational
numbers. This section shows how to design a class for rational numbers.

A rational number can be represented using two data fields: numerator and
denominator. You can create a rational number with a specified numerator and denominator
or create a default rational number with the numerator 0 and denominator 1. You can add,
subtract, multiply, divide, and compare rational numbers. You can also convert a rational
number into an integer, floating-point value, or string. The UML class diagram for the
Rational class is given in Figure 8.9.

Rational
-numerator: int The numerator of this rational number.
-denominator: int The denominator of this rational number.
Rational(numerator = 0: int, Creates a rational number with a specified numerator (default 0)
denominator = 1: int) and denominator (default 1).
__add__(secondRational: Returns the addition of this rational number with another.
Rational): Rational
__sub__(secondRational: Returns the subtraction of this rational number with another.
Rational): Rational
__mul__(secondRational: Returns the multiplication of this rational number with another.
Rational): Rational
__truediv__(secondRational: Returns the division of this rational number with another.
Rational): Rational
__1t__(secondRational: Compares this rational number with another.
Rational): bool
Also __le__, __eq__, __ne__,
__gt__, __ge__ are supported
_int__(Q: 1int Returns the numerator divided by denominator as an integer.
__float__(: float Returns the numerator divided by denominator as a float.
__str__(Q: str Returns a string in the form “numerator/denominator.” Returns

the numerator if the denominator is 1.

__getitem__(i) Returns numerator using [0] and denominator using [1].

FiGure 8.9 The UML diagram for the properties, initializer, and methods of the Rational class.

There are many equivalent rational numbers; for example, 1/3 = 2/6 = 3/9 =
4/12. For convenience, 1/3 is used to represent all rational numbers that are equivalent to
1/3. The numerator and the denominator of 1/3 have no common divisor except 1, so 1/3 is
said to be in lowest terms.

To reduce a rational number to its lowest terms, you need to find the greatest common divi-
sor (GCD) of the absolute values of its numerator and denominator and then divide both
numerator and denominator by this value. You can use the function for computing the GCD of
two integers n and d, as suggested in Listing 5.8, GreatestCommonDivisor.py. The numerator
and denominator in a Rational object are reduced to their lowest terms.

260 Chapter 8 More on Strings and Special Methods

import Rational

create Rational

invoke add
invoke subtract
invoke multiply
invoke divide

compare two numbers

get int value

index operator

As usual, we first write a test program to create Rational objects and test the functions in
the Rational class. Listing 8.3 is a test program.

LIsTING 8.3 TestRationalClass.py
import Rational
Create and initialize two rational numbers rl and r2.

1

2

3

4 rl = Rational.Rational(4, 2)
5 r2 Rational.Rational(2, 3)
6

7

8

9

Display results

print(rl, "+", r2, "=", rl + r2)

print(rl, "-", r2, "=", rl - r2)
10 print(rl, "#", r2, "=", rl * r2)
11 print(rl, "/", r2, "=", rl / r2)
12

13 print(rl, ">", r2, "is", rl > r2)
14 print(rl, ">=", r2, "is", rl >= r2)
15 print(rl, "<", r2, "is", rl < r2)
16 print(rl, "<=", r2, "is", rl <= r2)

17 print(rl, "==", r2, "is", rl == r2)
18 print(rl, "!=", r2, 7is", rl I= r2)
19

20 print("int(r2) is", int(r2))
21 print("float(r2) 1is", float(r2))

23 print("r2[0] 1is", r2[0])
24 print("r2[1] dis", r2[1])

+ 2/3 = 8/3

- 2/3 =4/3

* 2/3 = 4/3
/ 2/3 =3

> 2/3 1is True

>= 2/3 is True

< 2/3 is False

<= 2/3 1is False

== 2/3 is False

2 !=2/3 1is True

int(r2) is 0

float(r2) 1is 0.6666666666666666
r2[0] 1is 2

r2[1] is 3

NNNNNNNDNN

The program creates two rational numbers, rl and r2 (lines 4 and 5), and displays the
resultsof r1 + r2,rl - r2,rl * r2,andrl / r2 (lines 8-11). r1 + r2 isequivalent
torl.__add__(r2).

The print(rl) function prints the string returned from str(rl). Invoking str(rl)
returns a string representation for the rational number rl, which is the same as invoking
rl.__str__Q.

Invoking int(r2) (line 20) returns an integer for the rational number r2, which is the
same as invoking r2.__int__ ().

Invoking float(r2) (line 21) returns a float for the rational number r2, which is the
same as invoking r2.__float__(Q).

8.6 Case Study: The Rational Class

Invoking r2[0] (line 23) is the same as invoking r2. _getitem__ (0), which returns
the numerator from r2.
The Rational class is implemented in Listing 8.4.

LISTING 8.4 Rational.py

1 class Rational:

2 def __init__(self, numerator = 1, denominator = 0):
3 divisor = gcd(numerator, denominator)
4 self.__numerator = (1 if denominator > 0 else -1) \
5 * int(numerator / divisor)
6 self.__denominator = int(abs(denominator) / divisor)
7
8 # Add a rational number to this rational number
9 def __add__(self, secondRational):
10 n = self.__numerator * secondRational[l] + \
11 self.__denominator * secondRational[0]
12 d = self.__denominator * secondRational[1l]
13 return Rational(n, d)
14
15 # Subtract a rational number from this rational number
16 def __sub__(self, secondRational):
17 n = self.__numerator * secondRational[l] - \
18 self.__denominator * secondRational[0]
19 d = self.__denominator * secondRational[1]
20 return Rational(n, d)
21
22 # Multiply a rational number by this rational number
23 def __mul__(self, secondRational):
24 n = self.__numerator * secondRational[0]
25 d = self.__denominator * secondRational[1]
26 return Rational(n, d)
27
28 # Divide a rational number by this rational number
29 def __truediv__(self, secondRational):
30 n = self.__numerator * secondRational[l]
31 d = self.__denominator * secondRational[0]
32 return Rational(n, d)
33
34 # Return a float for the rational number
35 def __float__(self):
36 return self.__numerator / self.__denominator
37
38 # Return an integer for the rational number
39 def __int__(self):
40 return int(self.__float__Q)
41
42 # Return a string representation
43 def __str__(self):
44 if self.__denominator == 1:
45 return str(self.__numerator)
46 else:
47 return str(self.__numerator) + "/", self.__denominator)
48
49 def __1t__(self, secondRational):
50 return self.__cmp__(secondRational) < 0
51
52 def __le__(self, secondRational):
53 return self.__cmp__(secondRational) <= 0

initializer
gcd

initialize numerator

initialize denominator

subtract
a ¢ _ ad — bc
b T d~
multiply
x5 =
divide

a . ¢ _ ad
b T d T ke
float

int

str

Tt

262 Chapter 8 More on Strings and Special Methods

cmp

getitem

gcd

55 def __gt__(self, secondRational):

56 return self.__cmp__(secondRational) > 0
57

58 def __ge__(self, secondRational):

59 return self.__cmp__(secondRational) >= 0
60

61 # Compare two numbers

62 def __cmp__(self, secondRational):

63 temp = self.__sub__(secondRational)
64 if temp[0] > O:

65 return 1

66 elif temp[0] < O:

67 return -1

68 else:

69 return 0

70

71 # Return numerator and denominator using an index operator
72 def __getitem__(self, index):

73 if index ==

74 return self.__numerator

75 else:

76 return self.__denominator

77

78 def gcd(n, d):

79 nl = abs(n)

80 n2 = abs(d)

81 gcd = 1

82

83 k =1

84 while k <= nl and k <= n2:

85 if n1 % k == 0 and n2 % k == 0:

86 gcd = k

87 k += 1

88

89 return gcd

The rational number is encapsulated in a Rational object. Internally, a rational number is
represented in its lowest terms (lines 4—6), and the numerator determines its sign (line 4). The
denominator is always positive (line 6). The data fields numerator and denominator are
defined as private with two leading underscores.

The gcd () is not a member method in the Rational class, but a function defined in the
Rational module (Rational.py) (lines 78-89).

Two Rational objects can interact with each other to perform addition, subtraction, mul-
tiplication, and division operations. These methods return a new Rational object (lines
9-32). Note that secondRational[0] refers to the numerator of secondRational and
secondRational[1] refers to the denominator of secondRational. The use of the index
operator is supported by the = getitem(i)__ method (lines 72-76), which returns the
numerator and denominator of the rational number based on the index.

The __cmp__(secondRational) method (lines 62-69) compares this rational number
to the other rational number. It first subtracts the second rational from this rational and saves
the result in temp (line 63). The method returns -1, 0, or 1 if temp’s numerator is less than,
equal to, or greater than 0.

The comparison method 1t _, _le , gt , and __ge__ are implemented
using the _cmp__ method (lines 49-59). Note that the methods = _ne__and __eq__ are
not implemented explicitly, but they are implicitly implemented by Python if the ~_cmp_
method is available.

You have used the str, int, and float functions to convert an object to a str, int, or
float. The methods __str__ () int__(,and __float__ () are implemented in the

[J—

Programming Exercises 263

Rational class (lines 35-47) to return a str object, int object, or float object from a
Rationalobject.

8.11 Wil the program work if you replace line 63 in Rational.py with the following code? ﬁﬁeck

. Point
temp = self - secondRational om

MyProgramminglLab’
8.12 Will the program work if you replace the __str__ method in lines 43-47 as follows?

def __str__(self):
if self.__denominator ==
return str(self[0])
else:
return str(self[0]) + "/" + str(self[1])

KEy TERMS

concatenation operator 245 operator overloading 257
index operator 260 repetition operator 245
iterable 247 slicing operator 244

CHAPTER SUMMARY

I. A string object is immutable. Its contents cannot be changed.

2. You can use the Python functions 1en, min, and max to return the length of a string,
and the minimum and maximum elements in a string.

3. You can use the index operator [] to reference an individual character in a string.

4. You can use the concatenate operator + to concatenate two strings, the repetition
operator * to duplicate strings, the slicing operator [:] to get a substring, and the
in and not 1in operators to check whether a character is in a string.

5. The comparison operators (==, ! =, <, <=, >, and >=) can be used to compare two strings.

6. You can use a for loop to iterate all characters in a string.

7. You can use the methods such as endswith, startswith, isalpha, isTlower,
isupper, lower, upper, find, count, replace, and strip on a string object.

8. You can define special methods for overloading the operators.

TEST QUESTIONS

Do test questions for this chapter online at www.cs.armstrong.edu/liang/py/test.html.

PROGRAMMING EXERCISES MyProgramminglab’

Sections 8.2-8.4

*8.1 (Check SSN) Write a program that prompts the user to enter a Social Security
number in the format ddd-dd-dddd, where d is a digit. The program displays
Valid SSN for a correct Social Security number or Invalid SSN otherwise.

www.cs.armstrong.edu/liang/py/test.html

264 Chapter 8 More on Strings and Special Methods

**8.2

**8.3

8.4

**8.5

*8.6

*8.7

(Check substrings) You can check whether a string is a substring of another string
by using the find method in the str class. Write your own function to implement
find. Write a program that prompts the user to enter two strings and then checks
whether the first string is a substring of the second string.

(Check password) Some Web sites impose certain rules for passwords. Write a
function that checks whether a string is a valid password. Suppose the password
rules are as follows:

B A password must have at least eight characters.
B A password must consist of only letters and digits.
B A password must contain at least two digits.

Write a program that prompts the user to enter a password and displays valid
password if the rules are followed or invalid password otherwise.

(Occurrences of a specified character) Write a function that finds the number of
occurrences of a specified character in a string using the following header:

def count(s, ch):

The str class has the count method. Implement your method without using the
count method. For example, count ("Welcome", 'e') returns 2. Write a test
program that prompts the user to enter a string followed by a character and dis-
plays the number of occurrences of the character in the string.

(Occurrences of a specified string) Write a function that counts the occurrences of a
specified non-overlapping string s2 in another string s1 using the following header:

def count(sl, s2):

For example, count("system error, syntax error", "error") returns
2. Write a test program that prompts the user to enter two strings and displays the
number of occurrences of the second string in the first string.

(Count the letters in a string) Write a function that counts the number of letters in
a string using the following header:

def countLetters(s):

Write a test program that prompts the user to enter a string and displays the num-
ber of letters in the string.

(Phone keypads) The international standard letter/number mapping for telephones is:

Write a function that returns a number, given an uppercase letter, as follows:

def getNumber(uppercaselLetter):

Write a test program that prompts the user to enter a phone number as a string. The
input number may contain letters. The program translates a letter (uppercase or
lowercase) to a digit and leaves all other characters intact. Here is a sample run of
the program:

Programming Exercises 265

Enter a string: 1-800-Flowers |-enter E

1-800-3569377

Enter a string: 1800fTowers E

18003569377

*8.8 (Binary to decimal) Write a function that parses a binary number as a string into a
decimal integer. Use the function header:

def binaryToDecimal(binaryString):

For example, binary string 10001 is 17 (1 X 2* + 0 X 2° + 0 X 2>+ 0 X 2
+ 1 = 17). So, binaryToDecimal ("10001") returns 17.

Write a test program that prompts the user to enter a binary string and displays the
corresponding decimal integer value.

*%8.9 (Binary to hex) Write a function that parses a binary number into a hex number.
The function header is:

def binaryToHex(binaryValue):

Write a test program that prompts the user to enter a binary number and displays
the corresponding hexadecimal value.

**8.10 (Decimal to binary) Write a function that parses a decimal number into a binary
number as a string. Use the function header:

def decimalToBinary(value):

Write a test program that prompts the user to enter a decimal integer value and dis-
plays the corresponding binary value.

Section 8.5
*8.11 (Reverse a string) Write a function that reverses a string. The header of the func-
tion is:

def reverse(s):

Write a test program that prompts the user to enter a string, invokes the reverse
function, and displays the reversed string.

*8.12 (Bioinformatics: find genes) Biologists use a sequence of letters A, C, T, and G to
model a genome. A gene is a substring of a genome that starts after a triplet ATG
and ends before a triplet TAG, TAA, or TGA. Furthermore, the length of a gene
string is a multiple of 3 and the gene does not contain any of the triplets ATG, TAG,
TAA, and TGA. Write a program that prompts the user to enter a genome and dis-
plays all genes in the genome. If no gene is found in the input sequence, the pro-
gram displays no gene 1is found. Here are the sample runs:

Enter a genome string: TTATGTTTTAAGGATGGGGCGTTAGTT IuEnter g
TTT
GGGCGT

266 Chapter 8 More on Strings and Special Methods

2

Enter a genome string: TGTGTGTATAT I~Enter
no gene is found

*8.13

**8.14

**8.15

(Longest common prefix) Write a method that returns the longest common prefix
of two strings. For example, the longest common prefix of distance and
disinfection is dis. The header of the method is:

def prefix(sl, s2)

If the two strings have no common prefix, the method returns an empty string.

Write a main method that prompts the user to enter two strings and displays their
common prefix.

(Financial: credit card number validation) Rewrite Exercise 6.29 using a string
input for a credit card number.

(Business: check ISBN-10) An ISBN-10 (International Standard Book Number)
consists of 10 digits: d,d,dsd,dsded;dgdod,o. The last digit, d, is a checksum,
which is calculated from the other nine digits using the following formula:

@ X1 +d X2+d; X3 +dyX4d+dsx5
FdgX6+d XT+dg X8+dyX9%I11

If the checksum is 10, the last digit is denoted as X, according to the ISBN con-
vention. Write a program that prompts the user to enter the first 9 digits as a string
and displays the 10-digit ISBN (including leading zeros). Your program should
read the input as a string. Here are sample runs:

Enter the first 9 digits of an ISBN-10 as a string:
013601267 [=ener

The ISBN-10 number is 0136012671

Enter the first 9 digits of an ISBN-10 as a string:
013031997 [-enter

The ISBN-10 number is 013031997X

**8.16

(Business: check ISBN-13) ISBN-13 is a new standard for identifying books. It
uses 13 dlglts d1d2d3d4d5d6d7d8d9d10d11d12d13. The last dlglt, d13, is a CheCkSUm,
which is calculated from the other digits using the following formula:

10 — (dy + 3dy + dy + 3dy + ds + 3dg + dy + 3dg + do + 3dyo + dyy + 3dp) % 10

If the checksum is 10, replace it with 0. Your program should read the input as a
string. Here are sample runs:

Enter the first 12 digits of an ISBN-13 as a string:
978013213080 |~emer

The ISBN-13 number is 9780132130806

Programming Exercises 267

Enter the first 12 digits of an ISBN-13 as a string: .
978013213079 [=emer g

The ISBN-13 number is 9780132130790

Section 8.6

**8.17 (The Point class) Design a class named Point to represent a point with x- and y-
coordinates. The class contains:

B Two private data fields x and y that represent the coordinates with get methods.

B A constructor that constructs a point with specified coordinates with default
point (0, 0).

B A method named distance that returns the distance from this point to another
point of the Point type.

B A method named isNearBy(pl) that returns true if point pl is close to this
point. Two points are close if their distance is less than 5.

B Implement the _str__ method to return a string in the form (X, y).

Draw the UML diagram for the class, and then implement the class. Write a test
program that prompts the user to enter two points, displays the distance between
them, and indicates whether they are near each other. Here are sample runs:

Enter two points x1, yl, x2, y2: 2.1, 2.3, 19.1, 19.2 IdE"ter 4
The distance between the two points is 23.97

The two points are not near each other

Enter two points x1, yl, x2, y2: 2.1, 2.3, 2.3, 4.2 |~Enter
The distance between the two points is 1.91

The two points are near each other

*8.18 (Geometry: The Circle2D class) Define the Circle2D class that contains:

B Two private float data fields named x and y that specify the center of the circle
with get/set methods.

B A private data field radius with get/set methods.

B A constructor that creates a circle with the specified x, y, and radius. The
default values are all 0.

B A method getArea() that returns the area of the circle.

B A method getPerimeter () that returns the perimeter of the circle.

B A method containsPoint(x, y) thatreturns True if the specified point (x,
y) is inside this circle (see Figure 8.10a).

B A method contains(circle2D) that returns True if the specified circle is
inside this circle (see Figure 8.10b).

B A method overlaps(circle2D) that returns True if the specified circle
overlaps with this circle (see Figure 8.10c).

B Implement the ~contains__(another) method that returns True if this
circle is contained in another circle.

268 Chapter 8

More on Strings and Special Methods

B Implementthe cmp_ , 1t , le , eq , ne_ , gt _,
__ge__ methods that compare two circles based on their radius.

(a) (b) (c)

FiIGUure 8.10 (a) A point is inside the circle. (b) A circle is inside another circle. (c) A circle
overlaps another circle.

Draw the UML diagram for the class, and then implement the class. Write a test
program that prompts the user to enter two circles with x- and y-coordinates and the
radius, creates two Circle2D objects c1 and c2, displays their areas and perime-
ters, and displays the result of c1.containsPoint(c2.getX(), c2.getY()),
cl.contains(c2), and cl.overlaps(c2). Here is a sample run:

Enter x1, yl, radiusl: 5, 5.5, 10 [-emer
Enter x2, y2, radius2: 9, 1.3, 10 [cener
Area for cl is 314.1592653589793
Perimeter for cl is 62.83185307179586
Area for c2 1is 314.1592653589793
Perimeter for c2 is 62.83185307179586
cl contains the center of c2? True

cl contains c2? False

cl overlaps c2? True

*8.19

(Geometry: The Rectangle2D class) Define the RectangleZD class that
contains:

B Two float data fields named x and y that specify the center of the rectangle
with get/set methods. (Assume that the rectangle sides are parallel to x- or y-
axes.)

B The data fields width and height with get/set methods.

B A constructor that creates a rectangle with the specified x, y, width, and
height with default values 0.

B A method getArea() that returns the area of the rectangle.

B A method getPerimeter () that returns the perimeter of the rectangle.

B A method containsPoint(x, y) thatreturns True if the specified point (x,
y) is inside this rectangle (see Figure 8.11a).

B A method contains(Rectangle2D) that returns True if the specified
rectangle is inside this rectangle (see Figure 8.11b).

B A method overlaps(Rectangle2D) that returns True if the specified
rectangle overlaps with this rectangle (see Figure 8.11c¢).

B Implement the contains__ (another) method that returns True if this
rectangle is contained in another rectangle.

® Implementthe cmp_, 1t , le , eq , ne , gt
__ge__ methods that compare two circles based on their areas.

Programming Exercises 269

" []

(a) (b) (©)

FiIGure 8.11 (a) A point is inside the rectangle. (b) A rectangle is inside another rectangle.
(c) A rectangle overlaps another rectangle.

Draw the UML diagram for the class, and then implement the class. Write a test pro-
gram that prompts the user to enter two rectangles with center x-, y-coordinates,
width, and height, creates two Rectangle2D objects rl and r2, displays their areas
and perimeters, and displays the result of rl.containsPoint(r2.getX(),
r2.getY()), rl.contains(r2), and rl.overlaps(r2). Here is a sample run:

Enter x1, yl, widthl, heightl: 9, 1.3, 10, 35.3 luEnter E
Enter x2, y2, width2, height2: 1.3, 4.3, 4, 5.3 |~Enter

Area for rl is 353.0

Perimeter for rl is 90.6

Area for r2 dis 21.2

Perimeter for r2 is 18.6

rl contains the center of r2? False
rl contains r2? False

rl overlaps r2? False

8.20 (Use the Rational class) Write a program that computes the following summa-
tion series using the Rational class:

*8.21 (Math: The CompTex class) Python has the complex class for performing com-
plex number arithmetic. In this exercise, you will design and implement your own
CompTex class. Note that the compex class in Python is named in lowercase, but
our custom CompTex class is named with C in uppercase.

A complex number is a number of the form a + bi, where a and b are real numbers
and i is V—1. The numbers a and b are known as the real part and the imaginary
part of the complex number, respectively. You can perform addition, subtraction,
multiplication, and division for complex numbers using the following formulas:
(a+ bi)+ (¢c +di)y=(a+c)+ b+ d)
a+bi—(c+diy=(a—c)+ b —di

(a + bi)*(c + di) = (ac — bd) + (bc + ad)i

(a + bi)l(c + di) = (ac + bd)/(c? + d*) + (bc — ad)il(¢* + d?)

You can also obtain the absolute value for a complex number using the following
formula:

la + bi| = Va* + b’

(A complex number can be interpreted as a point on a plane by identifying the (a,b)
values as the coordinates of the point. The absolute value of the complex number
corresponds to the distance of the point to the origin, as shown in Figure 8.12.)

270 Chapter 8 More on Strings and Special Methods

y-axis

2 + 3i

X-axis

FIGURE 8.12 Point (2, 3) can be written as a complex number (2 + 3i) and (3, —2) as

(3 — 2i).

Design a class named CompTlex for representing complex numbers and the meth-
ods add , sub_ , mul__, truediv__, and __abs__ for per-
forming complex-number operations, and override the ~_str__ method by

returning a string representation for a complex number. The ~_str__ method
returns (a + b1i) asa string. If b is 0, it simply returns a.

Provide a constructor CompTlex(a, b) to create a complex number a + bi with
the default value of 0 for a and b. Also provide the getRealPart() and
getImaginaryPart() methods for returning the real and imaginary parts of the
complex number, respectively.

Write a test program that prompts the user to enter two complex numbers and dis-

plays the result of their addition, subtraction, multiplication, and division. Here is
a sample run:

Enter the first complex number: 3.5, 6.5

Enter the second complex number: -3.5, 1 [Cemer

(3.5 + 6.51) + (-3.5 + 1) (0.0 + 7.51)

3.5 + 6.51) - (-3.5 + 1i) (7.0 + 5.51)

(3.5 + 6.51) * (-3.5 + 1i) = (-18.75 - 19.251)

3.5 + 6.51) / (-3.5 + 1i) (-0.43396226415 - 1.981132075471)
|(3.5 + 6.51)| = 4.47213595499958

GUI PROGRAMMING
USING TKINTER

Objectives

B To create a simple GUI application with Tkinter (§9.2).

B To process events by using callback functions that are bound to a widget’s
command option (§9.3).

B To use labels, entries, buttons, check buttons, radio buttons, messages, and
text to create graphical user interfaces (§9.4).

B To draw lines, rectangles, ovals, polygons, and arcs and display text strings
in a canvas (§9.5).

B To use geometry managers to lay out widgets in a container (§9.6).

B To lay out widgets in a grid by using the grid manager (§9.6.1).

To pack widgets side by side or on top of each other by using the pack
manager (§9.6.2).

To place widgets in absolute locations by using the place manager (§9.6.3).
To achieve a desired layout by using containers to group widgets (§9.7).
To use images in widgets (§9.8).

To create applications that contain menus (§9.9).

To create applications that contain popup menus (§9.10).

To bind a widget’s mouse and key events to a callback function for
processing events (§9.11).

To develop animations (§9.12).

B To use scroll bars to scroll through the contents of a text widget (§9.13).

To use standard dialog boxes to display messages and accept user input
(§9.14).

CHAPTER

272 Chapter 9 GUI Programming Using Tkinter

K
ke

what is Tkinter?

K
Gﬁoifl);;

create a window
create a label
create a button
place label
place button

event loop

9.1 Introduction

Tkinter enables you to develop GUI programs a