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Preface to the 2nd Edition

Encouraged by a very positive response to the first edition of the book, we prepared

the second edition. It is a modified version which intends to bring slightly different

and deeper insight into certain areas of multimedia signals. In the first part of this

new edition, special attention is given to the most relevant mathematical trans-

formations used in multimedia signal processing. Some advanced robust signal

processing concepts are included, with the aim to serve as an incentive for research

in this area. Also, a unique relationship between different transformations is

established, opening new perspectives for defining novel transforms in certain

applications. Therefore, we consider some additional transformations that could

be exploited to further improve the techniques for multimedia data processing.

Another major modification is made in the area of compressive sensing for multi-

media signals. Besides the standard reconstruction algorithms, several new

approaches are presented in this edition providing efficient applications to multi-

media data. Moreover, the connection between the compressive sensing and robust

estimation theory is considered. The chapter “Multimedia Communications” is not

included because it did not harmonize with the rest of the content in this edition and

will be a subject of a stand-alone publication. In order to enable a comprehensive

analysis of images, audio, and video data, more extensive and detailed descriptions

of some filtering and compression algorithms are provided compared to the first

edition.

This second edition of the book is composed of eight chapters:

Chapter 1—Mathematical transforms, Chapter 2—Digital audio, Chapter 3—Dig-

ital data storage and compression, Chapter 4—Digital image, Chapter 5—Digital

video, Chapter 6—Compressive sensing, Chapter 7—Digital watermarking, and

Chapter 8—Telemedicine. As described above, the chapter entitled “Mathematical

transforms” (Chap. 1) and the chapter entitled “Compressive sensing” (Chap. 6)

have been significantly modified and supplemented by advanced approaches and

algorithms. In order to facilitate the understanding of the concepts and algorithms,

the authors have put in efforts to additionally enrich information in other chapters

as well.
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Each chapter ends with a section of examples and solved problems that may be

useful for additional mastering and clarification of the presented material. Also,

these examples are used to draw attention to certain interesting applications.

Besides the examples from the previous editions, the second edition contains

some advanced problems as a complement to the extended theoretical concepts.

A considerable number of Matlab codes are included in the examples, so that the

reader can easily reconstruct most of the presented techniques.

Regardless of the efforts that the authors made to correct errors and ambiguities

from the first edition, the authors are aware that certain errors may appear in this

second edition as well, since the content was changed and extended. Therefore, we

appreciate any and all comments made by the readers.

Further, the authors gratefully acknowledge the constructive help of our col-

leagues during the preparation of this second edition, particularly to the help of

Prof. Dr. Ljubiša Stanković and Dr. Milica Orlandić. Also, we are thankful to the

Ph.D. students Miloš Brajović, Andjela Draganić, Stefan Vujović, and Maja

Lakičević.

Finally, we would like to extend our gratitude to Prof. Dr. Moeness Amin whose

help was instrumental together with the help of Prof. Dr. Sridhar Krishnan to

publish the first edition of this book. Prof. Dr. Zdravko Uskoković and Prof.

Dr. Victor Sucic also contributed to the success of the first edition.

Podgorica, Montenegro Srdjan Stanković

Podgorica, Montenegro Irena Orović

Pittsburgh, USA Ervin Sejdić

July 2015
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Introduction

Nowadays, there is an intention to merge different types of data into a single vivid

presentation. By combining text, audio, images, video, graphics, and animations,

we may achieve a more comprehensive description and better insight into areas,

objects, and events. In the past, different types of multimedia data were produced

and presented by using a separate device. Consequently, integrating different data

types was a demanding project by itself. The process of digitalization brings new

perspectives and the possibility to make a universal data representation in binary

(digital) format. Furthermore, this creates the possibility of computer-based multi-

media data processing, and now we may observe computer as a multimedia device

which is a basis of modern multimedia systems.

Thus, Multimedia is a frequently used word during the last decade and it is

mainly related to the representation and processing of combined data types/media

into a single package by using the computer technologies. Nevertheless, one should

differentiate between the term multimedia used within certain creative art disci-

plines (assuming a combination of different data for the purpose of efficient

presentation) and the engineering aspect of multimedia, where the focus is towards

the algorithms for merging, processing, and transmission of such complex data

structures.

When considering the word etymology, we may say that the term multimedia is

derived from the Latin word multus, meaning numerous (or several), and medium,

which means the middle or the center.

The fundamentals of multimedia systems imply creating, processing, compres-

sion, storing, and transmission of multimedia data. Hence, the multimedia systems

are multidisciplinary (they include certain parts from different fields, especially

digital signal processing, hardware design, telecommunications and computer

networking, etc.).

The fact that the multimedia data can be either time-dependent (audio, video,

and animations) or space-dependent (image, text, and graphics) provides additional

challenges in the analysis of multimedia signals.
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Most of the algorithms in multimedia systems have been derived from the

general signal processing algorithms. Hence, a significant attention should be

paid to the signal processing theory and methods which are the key issues in further

enhancing of multimedia applications. Finally, to keep up with the modern tech-

nologies, the multimedia systems should include advanced techniques related to

digital data protection, compressive sensing, signal reconstruction, etc.

Since the multimedia systems are founded on the assumption of integrating the

digital signals represented in the binary form, the process of digitalization and its

effect on the signal quality will be briefly reviewed next.

Analog to Digital Signal Conversion

The process of converting analog to digital signals is called digitalization. It can be

illustrated by using the following scheme:

The sampling of an analog signal is performed by using the sampling theorem

which ensures the exact signal reconstruction from its digital samples. The

Shannon-Nyquist sampling theorem defines the maximal sampling interval (the

interval between successive samples) as follows:

T � 1

2 fmax

;

where fmax represents the maximal signal frequency. According to the analog signal

nature, the discrete signal samples may have any value from the set of real numbers.

It means that, in order to represent the samples with high precision in the digital

form, a large number of bits are required. Obviously, this is difficult to realize in

practice, since the limited number of bits is available for representing signal

samples. The number of bits per sample defines the number of quantization

intervals, which further determines a set of possible values for digital samples.

Hence, if the value of the sample is between two quantization levels, it is rounded to

the closer quantization level. The original values of samples are changed and the

changes are modeled as a quantization noise. The signal, represented by n bits, will
have 2n quantization levels. As illustrations, let us observe the examples of 8-bit

and 16-bit format. In the first case the signal is represented by 256 quantization

levels, while in the second case 65536 levels are available.

Working with digital signals brings several advantages. For instance, due to the

same digital format, different types of data can be stored in the same storage media,

transmitted using the same communication channels, and processed and displayed
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by the same devices, which is inapplicable in the case of an analog data format.

Also, an important property is robustness to noise. Namely, the digital values “0”

and “1” are associated with the low (e.g., 0 V) and high voltages (e.g., 5V). Usually

the threshold between the values 0 and 1 is set to the average between their

corresponding voltage levels. During transmission, a digital signal can be corrupted

by noise, but it does not affect the signal as long as the digital values are preserved,

i.e., as long as the level of “1” does not become the level of “0” and vice versa.

However, the certain limitations and drawbacks of the digital format should be

mentioned as well, such as quantization noise and significant memory require-

ments, which further requires the development of sophisticated masking models

and data compression algorithms.

In order to provide a better insight into the memory requirements of multimedia

data, we can mention that text requires 1.28 Kb per line (80 characters per line,

2 bytes per character), stereo audio signal sampled at 44100 Hz with 16 bits per

sample requires 1.41 Mb, and a color image of size 1024� 768 requires 18.8 Mb

(24 bits per pixel are used), while a video signal with the TV resolution requires

248.8 Mb (resolution 720� 576, 24 bits per pixel, 25 frames per second).
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Chapter 1

Mathematical Transforms Used
for Multimedia Signal Processing

Various mathematical transformations are used for multimedia signal processing

due to the diverse nature of these signals. Specifically, multimedia signals can be

time-dependent, i.e., the content changes over time (audio, video) or time-

independent media (text, images). In addition to the Fourier analysis, the time-

frequency and wavelet transforms are often used. In some cases, other advanced

methods (e.g., the Hermite projection method) may be of interest as well. In this

chapter, we consider the fundamentals of the commonly used signal transforma-

tions together with some advanced signal processing approaches.

1.1 Fourier Transform

The Fourier transform is one of the basic mathematical transformations used for

multimedia signal processing. Moreover, many other mathematical transformations

are based on the Fourier transform.

To understand the Fourier transform, let us consider a simple example involving

a sinusoidal signal, f(t)¼ cos(ω1t), as shown in Fig. 1.1a.

The considered signal is completely defined by its frequency, initial phase, and

amplitude. The frequency and the amplitude can be obtained by using the Fourier

transform as depicted in Fig. 1.1b. Also, we may observe from Fig. 1.1b that a

sinusoid is represented by two peaks in the frequency domain. This occurs due to

the nature of the Fourier transform. Namely, symmetrical components at negative

frequencies appear for real signals. Hence, the signal is often transformed into its

analytical form before processing.

Consider the signal in Fig. 1.2a. It is more beneficial to represent the signal in the

frequency domain, since the signal consists of two sine waves of different frequen-

cies and amplitudes (Fig. 1.2b).
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The time domain representation can be especially difficult to interpret for signals

corrupted by noise (e.g., white Gaussian noise as shown in Fig. 1.3a). As shown in

Fig. 1.3b, it is easier to interpret the signal parameters in the frequency domain

representation. Specifically, the energy of certain type of noise can be scattered

Fig. 1.1 Signal representations in: (a) the time domain; (b) the frequency domain

Fig. 1.2 Representations of a multicomponent signal: (a) the time domain representation, (b) the
frequency domain representation

Fig. 1.3 Signal representation (obtained using Matlab): (a) the time domain; (b) the frequency

domain
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across all frequencies, while the signal is concentrated at the frequencies of the

sinusoidal components.

Let us introduce themathematical definitionof theFourier transform for a signal f(t):

F ωð Þ ¼
ð1

�1
f tð Þe� jωtdt: ð1:1Þ

The inverse Fourier transform is used to obtain the time domain representation of

the signal:

f tð Þ ¼ 1

2π

ð1
�1

F ωð Þe jωtdω: ð1:2Þ

Next, we briefly review some of the Fourier transform properties.

Linearity: The Fourier transform of a linear combination of signals is equal to the

linear combination of their Fourier transforms:

ð1
�1

α f tð Þ þ βg tð Þð Þe� jωtdt ¼ α

ð1
�1

f tð Þe� jωtdtþ β

ð1
�1

g tð Þe� jωtdt

¼ αF ωð Þ þ βG ωð Þ:
ð1:3Þ

In other words, FT α f tð Þ þ βg tð Þf g ¼ αFT f tð Þf g þ βFT g tð Þf g, where FT denotes

the Fourier transform.

Time shift: Shifting the signal f(t) by t0 in the time domain results in multiplying the

Fourier transform with a phase factor:

ð1
�1

f t� t0ð Þe� jωtdt ¼ e� jωt0F ωð Þ: ð1:4Þ

Frequency shift: Modulating the signal with a complex exponential function shifts

the Fourier transform F(ω) along the frequency axis:

ð1
�1

e jω0t f tð Þ� �
e� jωtdt ¼ F ω� ω0ð Þ: ð1:5Þ

Convolution: The Fourier transform of convolution of two functions f(t) and g(t) is
equal to the product of the Fourier transforms of the individual signals:

FT f tð Þ*g tð Þf g ¼ FT

ð1
�1

f τð Þg t� τð Þdτ
8<
:

9=
; ¼ F ωð ÞG ωð Þ: ð1:6Þ
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On the other hand, the Fourier transform of the product of two signals equals to

convolution of their Fourier transforms:

FT f tð Þ � g tð Þf g ¼ F ωð Þ*ωG ωð Þ; ð1:7Þ

where *ω denotes the convolution in frequency domain.

1.1.1 Discrete Fourier Transform

Given that discrete signals are mainly used in applications, it is necessary to

introduce the Fourier transform in its discrete form. Specifically, for a limited

duration discrete signal (with N samples) illustrated in Fig. 1.4, the discrete Fourier

transform is given by:

DFT kð Þ ¼
XN�1

n¼0

f nð Þe� j2πN nk: ð1:8Þ

The inverse discrete Fourier transform is defined as:

f nð Þ ¼ 1

N

XN�1

k¼0

DFT kð Þe j2πN nk: ð1:9Þ

It should be mentioned that computationally efficient algorithms known as the Fast

Fourier Transform (FFT) algorithms have been derived to calculate discrete Fourier

transform and its inverse.

To become more familiar with the Fourier transform, we recommend consider-

ing problems found at the end of this chapter.

Fig. 1.4 Finite duration

discrete signal
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1.1.2 Discrete Cosine Transform

Beside the Fourier transform, the discrete cosine transform (DCT) is used in many

applications with real signals. The DCT is real-valued transform and represents the

positive part of the spectrum. The most commonly used form of DCT (DCT-II

which is usually referred simply as DCT) is defined:

DCT kð Þ ¼ c kð Þ
XN�1

n¼0

f nð Þ cos 2nþ 1ð Þkπ
2N

, k ¼ 0, . . . ,N � 1; ð1:10Þ

where the normalization coefficient c(k) is:

c kð Þ ¼
ffiffiffiffiffiffiffiffiffi
1=N

p
, k ¼ 0ffiffiffiffiffiffiffiffiffi

2=N
p

, k ¼ 1, ::,N � 1;

(

and f(n) represents a signal with N being its length.

The inverse DCT is given by:

f nð Þ ¼
XN�1

k¼0

c kð ÞDCT kð Þ cos 2nþ 1ð Þkπ
2N

, n ¼ 0, . . . ,N � 1: ð1:11Þ

1.2 Filtering in the Frequency Domain

The frequency domain representation of signals is suitable for signal filtering,

which can be done by using low-pass, high-pass, and/or band-pass filters. The

ideal forms of these filters are defined as follows (Fig. 1.5):

Low-pass filter:

H ωð Þ ¼ 1, for ωj j < ωL,

0, otherwise:

�
ð1:12Þ

High-pass filter:

H ωð Þ ¼ 1, for ωj j > ωH,

0, otherwise:

�
ð1:13Þ

Band-pass filter:

H ωð Þ ¼ 1, for ωL < ωj j < ωH,

0, otherwise:

�
ð1:14Þ
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Filtering in the frequency domain is simply performed by multiplying the Fourier

transform of the signal with the filter transfer function. Then, the time domain

representation of the filtered signal (g(t)) can be obtained by the inverse Fourier

transform of their product:

G ωð Þ ¼ F ωð ÞH ωð Þ,

g tð Þ ¼ 1

2π

ð1
�1

G ωð Þe jωtdω :
ð1:15Þ

1.3 Time-Frequency Signal Analysis

Time-frequency analysis is used to represent signals with a time-varying spectral

content, since the Fourier transform does not provide sufficient information about

these signals. Specifically, the Fourier transform provides information about the

frequency content of the signal, but there is no information about the time instants

when spectral components appear. For example, using the Fourier transform to

analyze a speech signal, we obtain the spectral content of different sounds, but not

their timing.

Using a simple example, let us illustrate the advantages of using the time-

frequency analysis in comparison to the Fourier transform of the signal. For

example, Fig. 1.6 depicts that the amplitude spectra (the amplitude of the Fourier

transforms) of two different signals can be almost the same.

Hence, to obtain more information about these signals, it is necessary to use a

representation from which one can follow temporal changes of the spectrum. Such a

representation can be obtained by using the time-frequency analysis, as illustrated

in Fig. 1.7 (the temporal changes of the spectrum are depicted, but not the energy

distribution of spectral components).

Fig. 1.5 Frequency domain representation of filters: (a) a low-pass filter, (b) a high-pass filter, (c)
a band-pass filter
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Time-frequency distributions also provide information about the energy distri-

bution around the instantaneous frequency. It is important to note that there is no

single time-frequency distribution that is optimal for all types of signals. That is,

different time-frequency distributions are used depending on the application and on

the signal type. The most commonly used distributions are the spectrogram and the

Wigner distribution. The spectrogram is the squared module of the short-time

Fourier transform, while the Wigner distribution is a quadratic distribution and

exhibits significant drawbacks when applied to multicomponent signals that are

often found in practical applications.

Fig. 1.6 Comparing frequency domain representations of two different signals: (a) a sum of two

sinusoids with equal duration, (b) a composition of two sinusoids appearing at different time

instants, (c) the Fourier transform for the first signal, (d) the Fourier transform for the second

signal

Fig. 1.7 (a) The ideal time-frequency representation of the sum of sinusoids from Fig. 1.6a, (b)
the ideal time-frequency representation of the time-shifted sinusoids from Fig. 1.6b
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1.4 Ideal Time-Frequency Representation

Before we consider various time-frequency representations, let us introduce an

ideal time-frequency representation. Consider a signal defined as:

f tð Þ ¼ Ae jϕ tð Þ; ð1:16Þ

where A is the amplitude, and ϕ(t) is the phase of the signal. Note that the first phase
derivative has the physical meaning and represents the instantaneous frequency,

i.e., ω¼ϕ0(t). Therefore, the ideal time-frequency representation should concen-

trate energy along the instantaneous frequency of the signal and can be written in

the form:

ITF t;ωð Þ ¼ 2πA2δ ω � ϕ0 tð Þð Þ: ð1:17Þ

1.5 Short-Time Fourier Transform

The Short-Time Fourier transform (STFT) of a signal f(t) is defined as:

STFT t;ωð Þ ¼
ð1

�1
w τð Þ f tþ τð Þe� jωτdτ; ð1:18Þ

where w(t) is a window function. It provides the time-frequency representation by

sliding the window and calculating the local spectrum for each windowed part of

the signal as illustrated in Fig. 1.8.

The STFT is a linear transform. In other words, the STFT of a multicomponent

signal: f tð Þ ¼
XM
m¼1

f m tð Þ, is equal to the sum of the STFTs of the individual

components:

STFT t;ωð Þ ¼
XM
m¼1

STFT fm t;ωð Þ: ð1:19Þ

This is an important feature of STFT, since many practical signals are the

multicomponent ones. As previously mentioned, the spectrogram is the squared

module of the STFT:

SPEC t;ωð Þ ¼ ��STFT t;ωð Þ��2: ð1:20Þ
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In practical application, the discrete version of the STFT is used:

STFT n; kð Þ ¼
XN=2�1

m¼�N=2

w mð Þx nþ mð Þe� j2πmk=N; ð1:21Þ

where N is the length of the signal, n and k are discrete time and frequency

parameters, respectively.

Unlike the STFT, the spectrogram is a real-valued function. The main drawback

of STFT (and the spectrogram) is the fact that the time-frequency resolution highly

depends on the window width. Specifically, we obtain good time resolution (and

poor frequency resolution) using a narrow window. On the other hand, a wider

window enhances the frequency resolution, but decreases the time resolution. To

illustrate this trade-off between time and frequency resolutions, let us consider the

following example:

f tð Þ ¼ δ t� t1ð Þ þ δ t� t2ð Þ þ e jω1t þ e jω2t: ð1:22Þ

Fig. 1.8 An illustration of the STFT calculations
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The ideal time-frequency representation of f(t) is illustrated in Fig. 1.9.

Using the definition of the STFT, we obtain the following time-frequency

representation:

STFT t;ωð Þ ¼ w t1 � tð Þe� jω t1�tð Þ þ w t2 � tð Þe� jω t2�tð Þ

þW ω� ω1ð Þe jω1t þW ω� ω2ð Þe jω2t;
ð1:23Þ

where W(ω) is the Fourier transform of the window function. Figure 1.10 clearly

shows how the time-frequency representation depends of the window function

(length and type). When using the rectangular window, the product of time and

frequency resolutions for the considered example is D�d¼ 4π, where d is the

window width in the time domain, while D is the window width in the frequency

domain. Hence, increasing the resolution in one domain decreases the resolution in

other domain.

According to the uncertainty principle, it is not possible to arbitrarily concen-

trate a signal in time and frequency domain. The more concentrated the signal is

in the time domain, the wider band it occupies in the frequency domain.

Fig. 1.9 Ideal time-

frequency representation of

signal f(t)

Fig. 1.10 Illustration of the uncertainty principle (T1 and T2 are window widths in the time

domain)
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Generally, the uncertainty principle in signal processing states that for any

function satisfying w tð Þ ffiffi
t

p ! 0 as t ! �1, the product of measures of duration

in time and frequency is:

MTMW � 1

2
; ð1:24Þ

where:

MT ¼

ð1
�1

τ2 w τð Þj j2dτð1
�1

w τð Þj j2dτ
, Mw ¼

ð1
�1

ω2 W ωð Þj j2dωð1
�1

W ωð Þj j2dω
:

The lowest product is obtained for the Gaussian window function: MTMW ¼ 1

2
. In

addition, Fig. 1.11 demonstrates time-frequency representations using wide and

narrow windows of two multicomponent signals: the first one consists of two

sinusoids and a linear-frequency modulated signal, i.e., chirp (Fig. 1.11a), while

the second consists of three sinusoids of short duration and a chirp (Fig. 1.11b). The

ideal time-frequency representations are presented as well.

Using a narrow window, we achieve a good time resolution for sinusoidal signal

components as shown in the second column of Fig. 1.11. Using a wide window, a

good frequency resolution of these components is achieved, but the time resolution

is significantly decreased. Notice that the time-frequency resolution of the chirp

component is poor in both cases.

Fig. 1.11 Spectrograms of multicomponent signals: (a) two sinusoids and chirp, (b) three

sinusoids and chirp
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1.5.1 Window Functions

The window functions are important for localization of signals in the time-

frequency domain. Some of the most commonly used windows are: Rectangular,

Gaussian, Hann(ing), Hamming and Blackman, defined as follows:

1. Rectangular window: w τð Þ ¼ 1, for τj j < T
0, otherwise

�
2. Gaussian window: w τð Þ ¼ e�τ2=α2 (it localizes signal in time although it is not

time-limited).

3. Hann(ing) window: w τð Þ ¼ 0:5 1þ cos πτ=Tð Þð Þ, for τj j < T
0, otherwise

�
4. Hamming window: w τð Þ ¼ 0:54þ 0:46 cos πτ=Tð Þ�, for τj j < T

0, otherwise

�
5. Blackman window:

w τð Þ ¼ 0:42þ 0:5 cos πτ=Tð Þ þ 0:08 cos 2πτ=Tð Þ�, for τj j < T
0, otherwise

�

1.6 Wigner Distribution

In order to improve the localization of a signal in the time-frequency domain, a

number of quadratic distributions are introduced. A common requirement is that

they meet the marginal conditions, which will be discussed in the sequel.

Given a time-frequency representation P(t,ω), the signal energy within the

region t, tþ Δtð Þ, ω , ωþ Δωð Þ½ � is equal to:

P t;ωð ÞΔω
2π

Δt: ð1:25Þ

Projections of the distribution on time and frequency axes provide the spectral

energy density and the instantaneous power of the signal, respectively:

ð1
�1

P t;ωð Þdt ¼ F ωð Þj j2,

1

2π

ð1
�1

P t;ωð Þdω ¼ f tð Þj j2:
ð1:26Þ

These conditions are known as marginal conditions (Fig. 1.12).
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The signal energy can be obtained as:

1

2π

ð1
�1

ð1
�1

P t;ωð Þdωdt¼
ð1

�1
f tð Þj j2dt ¼ Ex: ð1:27Þ

One of the distributions that satisfy marginal conditions is the Wigner distribution,

which originated from the quantum mechanics. The distribution is defined as:

WD t;ωð Þ ¼
ð1

�1
R t; τð Þe� jωτdτ ¼

ð1
�1

f tþ τ

2

� �
f * t� τ

2

� �
e� jωτdτ; ð1:28Þ

where:

R t; τð Þ ¼ f tþ τ

2

� �
f * t� τ

2

� �
;

is the local auto-correlation function. In real applications, we use a windowed

version of the Wigner distribution:

PWD t;ωð Þ ¼
ð1

�1
w

τ

2

� �
w* �τ

2

� �
f tþ τ

2

� �
f * t� τ

2

� �
e� jωτdτ; ð1:29Þ

which is often referred as the pseudo Wigner distribution (PWD). A window

function does not play a significant role for PWD as for the STFT

(or spectrogram). For example, it is possible to use a wider window and to keep

good time resolution. A discrete version of the PWD can be defined in the form:

PWD n; kð Þ ¼
XN=2�1

m¼�N=2

w mð Þw* �mð Þx nþ mð Þx* n� mð Þe� j4πmk=N; ð1:30Þ

t

ω
P(t,ω)

f(t )2

ω

ωF ( (2

Fig. 1.12 Calculation

of marginal conditions
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where n and k are discrete time and frequency parameters, respectively. Note that

for the realization of the discrete PWD, the signal should be oversampled by the

factor of 2 (sampled at a twice higher sampling rate than required by the sampling

theorem).

The Wigner distribution is a real-valued function and satisfies the marginal

conditions. Let us consider the Wigner distribution of delta pulse, a sinusoidal

signal and a linear frequency modulated signal. For the delta pulse:

f tð Þ ¼ Aδ t� t1ð Þ; ð1:31Þ

the Wigner distribution equals to:

WD t;ωð Þ ¼ 2πA2δ t� t1ð Þ: ð1:32Þ

For sinusoidal and chirp signals, we still obtain the ideal representation by using the

Wigner distribution:

f tð Þ ¼ Ae jω1t

WD t;ωð Þ ¼ 2πA2δ ω� ω1ð Þ ;
f tð Þ ¼ Ae jat2=2

WD t;ωð Þ ¼ 2πA2δ ω� atð Þ
:

However, for a multicomponent signal f tð Þ ¼
XM
m¼1

f m tð Þ, the Wigner distribution is:

WD t;ωð Þ ¼
XM
m¼1

WD fm fm t;ωð Þ þ
XM
m¼1

XM
n ¼ 1

m 6¼ n

WD fm f n t;ωð Þ: ð1:33Þ

Therefore, the Wigner-distribution of a multicomponent signal equals to the

sum of Wigner distributions of all signal components (auto-terms) and of qua-

dratic terms obtained by multiplying different signal components ( fm and fn,
m 6¼n), called cross-terms. Hence, the Wigner distribution can be useless for the

time-frequency representation of multicomponent signals, since it can yield the

time-frequency components that do not exist in the analyzed signal. For example,

the Wigner distribution of a multicomponent signal, whose spectrogram is shown

in Fig. 1.11a, is shown in Fig. 1.13a. The presence of strong cross-terms is

obvious and they diminish the accuracy of the representation. However, if the

cross-terms are removed, a concentrated representation is obtained as shown in

Fig. 1.13b.

In order to reduce or completely eliminate the cross-terms, many distributions

have been defined over the years. One such distribution is the S-method (SM),
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which combines good properties of the spectrogram and of the Wigner distribution.

The SM is defined as:

SM t;ωð Þ ¼ 1

π

ð1
�1

P θð ÞSTFT t,ωþ θð ÞSTFT* t,ω� θð Þdθ; ð1:34Þ

where P(θ) represents a finite frequency domain window function. A discrete

version of the S-method is given by:

SM n; kð Þ ¼
XLd
i¼�Ld

P ið ÞSTFT n, k þ ið ÞSTFT* n, k � ið Þ

¼ STFT n; kð Þj j2 þ 2 � Re
XLd
i¼1

STFT n, k þ ið ÞSTFT* n, k � ið Þ
( )

;

ð1:35Þ

where the parameter Ld determines the frequency window length. As we increase

the value of Ld (starting from Ld¼ 0 which corresponds to the spectrogram), we

gradually approach toward the Wigner distribution. In order to avoid the presence

of cross-terms, the value of Ld should be less than half of the distance between two

auto-terms. Note that the SM is suitable for hardware implementation, and does not

require oversampling of the signal.

Let us consider the previous example and its time-frequency representations

obtained with the SM, for various values of Ld (Fig. 1.14).
In many real applications, Ld¼ {3, 4 or 5} can provide satisfactory results, since

it eliminates the cross-terms and provides good concentration of the auto-terms,

which almost equals the concentration achieved by the Wigner distribution.

Fig. 1.13 (a) The Wigner distribution of a multicomponent signal, (b) auto-terms of the Wigner

distribution
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In addition, we consider the time-frequency representation of a speech signal

obtained using the spectrogram and the SM, as shown in Fig. 1.15.

The time-frequency representation obtained with the SM provides better tem-

poral and frequency resolution, which allows us to obtain more accurate description

and analysis of speech components.

Fig. 1.14 The time-frequency representations of a multicomponent signal obtained by using SM

for different values of window width (defined as 2Ld+ 1)
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1.7 Time-Varying Filtering

For nonstationary signals, the time-varying filtering provides more efficient

processing compared to the approaches performed in either the time or frequency

domain separately. The time-varying filtering has been defined as:

H x tð Þf g ¼
ð1

�1
h t, t� τð Þx τð Þdτ; ð1:36Þ

where h(t,τ) is the impulse response of the time-varying system H. In order to get

undistorted frequency modulated signals, when time-varying filtering is applied, a

slightly modified relation is used:

H x tð Þf g ¼
ð1

�1
h tþ τ

2
, t� τ

2

� �
x tþ τð Þdτ: ð1:37Þ

The optimal system form can be obtained by minimizing the mean squared error:

Hopt ¼ arg min
H

E
�� f tð Þ � H x tð Þf g��2	 


; ð1:38Þ

where x(t)¼ f(t)+ν(t), f(t) is a signal and ν(t) is a noise. The time-varying transfer

function in the Wigner distribution framework has been defined as theWeyl symbol

mapping of the impulse response into the time-frequency plane:

LH t;ωð Þ ¼
ð1

�1
h tþ τ

2
, t� τ

2

� �
e� jωτdτ: ð1:39Þ

Fig. 1.15 The spectrogram and the SM of speech signal
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Assuming that the signal and noise are uncorrelated, the optimal filter in the time-

frequency domain is defined by:

LH t;ωð Þ ¼ WDff t;ωð Þ
WDff t;ωð Þ þWDνν t;ωð Þ ¼ 1�WDνν t;ωð Þ

WDxx t;ωð Þ ; ð1:40Þ

where WDxx t;ωð Þ ¼ WDff t;ωð Þ þWDνν t;ωð Þ. This form corresponds to the well-

known Wiener filter in the stationary cases. Observe that:

WDνν t;ωð Þ ¼ 0 ) LH t;ωð Þ ¼ 1, while WDff t;ωð Þ ¼ 0 ) LH t;ωð Þ ¼ 0. Here,

WD represents the mean value of the Wigner distributions for different realizations

of the signal and noise. As a consequence of averaging, the cross-terms will be

significantly reduced, as well as the noise. However, in practice the time-varying

filtering should be often performed on a single noisy realization. It means that a

cross-terms free distribution should be used (e.g., the S-method) for

multicomponent signals instead of the Wigner distribution. The approximate filter,

based on the cross-terms free distribution and a single realization, provides satis-

fying results in many real applications.

Let us now observe a case when we can assume that the Wigner spectrum of the

observed signal f(t) lies inside a time-frequency region R, while the noise is mainly

outside this region (there might be a small amount of noise inside R that is negligible

compared to the noise outside R). Then the support function can be defined as:

LH t;ωð Þ ¼ 1, for t;ωð Þ 2 R,
0, for t;ωð Þ =2 R:

�
ð1:41Þ

In numerical implementations, the lag window w(τ) is introduced in the filtering

definition leading to the pseudo form of the Eq. (1.36):

H x tð Þf g ¼
ð1

�1
h tþ τ

2
, t� τ

2

� �
w τð Þx tþ τð Þdτ: ð1:42Þ

By using the Parseval’s theorem, the previous form of time-varying filtering can be

written in the form:

H x tð Þf g ¼ 1

2π

ð1
�1

LH t;ωð ÞSTFT t;ωð Þdω: ð1:43Þ

1.8 Robust Statistics in the Time-Frequency Analysis

In the presence of impulse noise or heavy-tailed noises, the standard time-frequency

representations and distributions do not provide satisfactory results. Namely, the

standard time-frequency distributions, which are based on the standard Fourier
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transform of the signal or its autocorrelation function, are optimal for the case of

signals corrupted by Gaussian noise. However, the standard form is not optimal for

the case of impulse or heavy-tailed disturbances. Therefore, more optimal forms of

time-frequency distributions for these types of signals can be derived by applying

the concept of robust estimation theory developed by Huber.

Generally, the Fourier transform can be defined as a solution of the minimization

problem:

X kð Þ ¼ argmin
μ

I k; μð Þf g; ð1:44Þ

where:

I k; μð Þ ¼
XN�1

n¼0

F ε k; μð Þf g ¼
XN�1

n¼0

ε k; μð Þj jL ¼
XN�1

n¼0

x nð Þe� j2πnk=N � μ
�� ��L: ð1:45Þ

The value of X(k) is equal to the value of μ that minimizes I(k,μ). The function F{ε}
is called the loss function of error ε. The loss function is usually obtained using the

maximum likelihood (ML) approach where the form of F corresponds to the

probability density function (pdf) of noise:

F εf g ¼ �log pν εð Þ: ð1:46Þ

For instance, let us observe the case of Gaussian noise with the pdf given in the

form:

pν εð Þ � e� εj j2 : ð1:47Þ

According to Eqs. (1.46) and (1.47), the loss function will be of the form:

F εf g ¼ εj j2; ð1:48Þ

or in other words we have:

I k; μð Þ ¼
XN�1

n¼0

x nð Þe� j2πnk=N � μ
�� ��2: ð1:49Þ

The minimization procedure is applied as follows:

∂I k; μð Þ
∂μ*

¼ 0 ) 2
XN�1

n¼0

x nð Þe� j2πnk=N � μ
� �

¼ 0

) μ ¼ 1

N

XN�1

n¼0

x nð Þe� j2πnk=N:

ð1:50Þ
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Note that this form corresponds to the standard Fourier transform definition:

X kð Þ ¼ 1

N

XN�1

n¼0

x nð Þe� j2πnk=N: ð1:51Þ

In practice, the ML estimation approach is very sensitive to the assumed pdf model.

Therefore, the imprecision in noise pdf modelling may significantly affect the

result. Therefore, we can conclude that the ML estimation approach provides

good results if the noise model is known in advance, which is a rare case. Hence,

the robust estimates from the Huber’s theory are introduced instead of ML esti-

mates. For instance, we can observe the worst case of noise and determine its robust

estimate. For a wide class of impulsive/heavy-tailed pdfs, the following loss

function is recommended (corresponding to the Laplacian pdf):

F εf g ¼ εj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 εf g þ Im2 εf g

p
; ð1:52Þ

which is usually considered in the simplified form as follows:

F εf g ¼ Re εð Þj j þ Im εð Þj j: ð1:53Þ

This form of the loss function leads to the robust M-Fourier transform. Since this

type of a loss function does not produce a closed-form solution, the iterative

procedures are used in calculation of the robust M-Fourier transform.

Let us consider the case of STFT. In analogy with the Fourier transform, the

standard STFT form is obtained as:

STFT n; kð Þ ¼ argmin
μ

I n; k; μð Þf g; ð1:54Þ

where:

I n; k; μð Þ ¼
XN=2�1

m¼�N=2

x nþ mð Þe� j2πmk=N � μ
�� ��2: ð1:55Þ

Note that, for the sake of simplicity, the rectangular window (with unit amplitude)

is assumed and thus w(m) is omitted. By applying the minimization procedure with

respect to μ as in Eq. (1.50), the standard STFT is obtained:

STFT n; kð Þ ¼
XN=2�1

m¼�N=2

x nþ mð Þe� j2πmk=N: ð1:56Þ
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In the case of the loss function F εf g ¼ εj j, the robust STFT can be obtained. As a

solution of the optimization problem Eq. (1.54), the nonlinear set of equations is

given by:

STFTM n; kð Þ ¼

XN=2�1

m¼�N=2

x nþ mð Þe� j2πmk=N
� ��

x nþ mð Þe� j2πmk=N � STFTM n; kð Þ�� ��
XN=2�1

m¼�N=2

1= x nþ mð Þe� j2πmk=N � STFTM n; kð Þ�� �� :

ð1:57Þ

This problem can be solved using an iterative procedure (for each n and each k),
which is computationally very demanding and limits the application. There are

alternative approaches for calculating the robust STFT in order to overcome the

drawbacks of the iterative procedure.

In the case of signals corrupted by impulse noise, the commonly used alternative

approach is based on median filter, obtained as a central element in the sorted

sequence. The median filter is considered in more detail in Chap. 4. In the case

of the STFT, we can observe the vector x nþ mð Þe� j2πmk=N for m¼ [�N/2, . . .,
N/2� 1], having independent real and imaginary part. Now, using the loss function

F εf g ¼ ��Re εð Þ��þ ��Im εð Þ�� and a marginal median filter form, we can define the

marginal median STFT form as follows:

STFTM n; kð Þ ¼ median Re
	
x nþ mð Þe� j2πmk=N , for m 2 �� N

2
,
N

2

�
 �

þ jmedian Im
	
x nþ mð Þe� j2πmk=N , for m 2 �� N

2
,
N

2

�
 �
:

ð1:58Þ

For cases when the noise is a mixture of Gaussian and impulse noise (or heavy-

tailed noise), the resulting pdf function would have a complex form which is not

suitable for practical applications. Hence, a more optimal form that can fit for

different types of noise is defined and it is known as the L-estimate robust

transform. The L-estimate STFT is defined as:

STFTL n; kð Þ ¼
XN�1

i¼0

ai gi n; kð Þ þ j � hi n; kð Þð Þ,

gi n; kð Þ 2 G n; kð Þ, hi n; kð Þ 2 H n; kð Þ;
ð1:59Þ
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where,

G n; kð Þ ¼ Re x nþ mð Þe� j2πmk=N
� �	 


: m 2 ��N

2
,
N

2

�
;

H n; kð Þ ¼ Im x nþ mð Þe� j2πmk=N
� �	 


: m 2 ��N

2
,
N

2

�
:

ð1:60Þ

The elements: gi(n, k) and hi(n, k) are sorted in non-decreasing order as: gi n; kð Þ
� giþ1 n; kð Þ and hi n; kð Þ � hiþ1 n; kð Þ, respectively. The coefficients ai can be

written in analogy with the α-trimmed filter (from the nonlinear digital filter

theory), as follows:

ai ¼
1

N 1� 2αð Þ þ 4α
, for i 2 Nα, . . . ,N � Nα½ �;

0, otherwise:

8<
: ð1:61Þ

where N is even, while the parameter α takes values within the range [0,1/2]. For

α¼ 0 the standard STFT is obtained, while for α¼ 1/2 we obtain the marginal

median STFT. Larger values of α provide better reduction of heavy-tailed noise,

while smaller values of α better preserve the spectral characteristics. Accordingly,

the choice of α should provide a good trade-off between these two requirements.

Similarly to the STFT, we can define robust forms of other time-frequency

representations/distributions. For example, the WD can be defined using the fol-

lowing optimization problem:

WD n; kð Þ ¼ argmin
μ

I n; k; μð Þf g ¼ argmin
μ

XN=2�1

m¼�N=2

F ε n; k; μð Þð Þ; ð1:62Þ

with the error function defined as:

ε n; kð Þ ¼ Re x nþ mð Þx* n� mð Þe� j4πkm=N
n o

� μ, m 2
h
� N

2
,
N

2

�� �
: ð1:63Þ

The median form of the WD can be calculated by the formula:

WDM n; kð Þ ¼ median Re
	
x nþ mð Þx* n� mð Þe� j4πkm=N



, m 2

h
� N

2
,
N

2

�� �
:

ð1:64Þ
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Similarly, the L-estimate WD can be calculated using:

WDL n; kð Þ ¼
XN�1

i¼0

aisi n; kð Þ, si n; kð Þ 2 S n; kð Þ,

S n; kð Þ ¼ Re
	
x nþ mð Þx* n� mð Þe� j4πkm=N

	 

: m 2

h
� N

2
,
N

2

�� ð1:65Þ

where the elements si(n,k) are sorted in non-decreasing order.

1.9 Wavelet Transform

1.9.1 Continuous Wavelet Transform

Wavelets are mathematical functions formed by scaling and translation of basis

functions ψ(t) in the time domain. ψ(t) is also called the mother wavelet and

satisfies the following conditions:

1. The total area under the curve ψ(t) is equal to zero:

ð1
�1

ψ tð Þdt ¼ 0: ð1:66Þ

2. The function has finite energy, i.e., it is square-integrable:

ð1
�1

ψ tð Þj j2dt < 1: ð1:67Þ

The wavelet is defined by:

ψa,b tð Þ ¼ 1ffiffiffiffiffiffi
aj jp ψ

t� b

a

 �
; ð1:68Þ

where a and b are two arbitrary real numbers used as scaling and translation

parameters, respectively. The factor
ffiffiffiffiffiffi
aj jp

also represents a normalization factor,

which allows the energy of the wavelet function to remain independent of param-

eter a. For the values 0<a<1, the basis function shrinks in time, while for a>1 it

spreads in time.
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The wavelet transform of the signal f(t) is mathematically described by the

expression:

W a; bð Þ ¼
ð1

�1
ψa,b tð Þ f tð Þdt: ð1:69Þ

W(a,b) is called the continuous wavelet transform (CWT), where a and b are

continuous variables and f(t) is a continuous function. The inverse wavelet trans-

form is obtained as:

f tð Þ ¼ 1

C

ð1
�1

ð1
�1

ψa,b tð ÞW a; bð Þdadb; ð1:70Þ

where:

C ¼
ð1

�1

Ψ ωð Þj j2
ω

dω; ð1:71Þ

and Ψ(ω) is the Fourier transform of ψ(t). The inverse continuous wavelet trans-

form exists if the parameter C is positive and finite.

1.9.2 Wavelet Transform with Discrete Wavelet Functions

In practical applications, the parameters a and b are discretized (i.e., scaling and

translation are performed in discrete steps). The discretization of parameter a is

done using powers of fixed dilation parameter a0>1:

a ¼ a� j
0 , where j 2 Z;

while for b we use:

b ¼ kb0a
� j
0 , k 2 Z, b0 > 0:

By using the discrete parameters a and b, we obtain the discretized family of

wavelets:

ψ j,k tð Þ ¼ a0
j=2ψ a j

0 t� kb0

� �
: ð1:72Þ
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The corresponding wavelet transform is then given by:

Wd
j,k ¼ a0

j=2

ð1
�1

f tð Þψ a j
0 t� kb0

� �
dt: ð1:73Þ

If a0¼ 2 and b0¼ 1 are used, we achieve the dyadic sampling. The corresponding

signal decomposition is called the dyadic decomposition. In such a case, the

discrete wavelet functions with the given parameters form a set of orthonormal

basis functions:

ψj,k tð Þ ¼ 2 j=2ψ 2 jt� k
� �

: ð1:74Þ

Therefore, the dyadic wavelet transform is calculated as:

Wd
j,k ¼ 2 j=2

ð1
�1

f tð Þψ 2 jt� k
� �

dt: ð1:75Þ

1.9.3 Wavelet Families

Wavelets are widely applied in image processing, biomedical signal processing,

audio signal processing, just to name a few. Let us mention some of the most

commonly used wavelets:

• The Haar wavelet is the oldest and the simplest wavelet.

• Daubechies wavelets represent a set of orthonormal wavelets of limited duration.

For example, Daubechies D4 wavelet has 4 coefficients; D8 has 8 coefficients, and

soon.Note that theHaarwavelet is actually theDaubechieswaveletof thefirst order.

• Bi-orthogonal wavelets are widely used in image compression. For example,

JPEG2000 compression algorithm is based on bi-orthogonal Le Gall (5,3) and

Cohen–Daubechies–Feauveau (CDF) (9,7) wavelets.

• The Mexican hat wavelet is a wavelet function that equals to the second

derivative of the Gaussian function.

• Symlets are symmetric wavelets, created as a modification of the Daubechies

wavelet.

• The Morlet wavelet is based on a modulated Gaussian function.

1.9.4 Multiresolution Analysis

The wavelet transform is generally based on the possibility to represent the com-

ponents of certain function at different resolution levels, which has been also
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known as the multiresolution analysis. Let us observe the multiresolution represen-

tation of a function f(t). We can write:

f tð Þ ¼ f J tð Þ þ
X1
j¼J

Δ f j tð Þ or f tð Þ ¼
X1
j¼�1

Δ f j tð Þ ; ð1:76Þ

where J denotes the lowest resolution scale. Hence, the function f(t) can be

represented as a sum of approximation at the certain scale (resolution) J and a

sum of details that are complement to the approximation fJ(t) at levels j>J. An
illustration of approximation functions and details at a few scales (J, J+ 1, J+ 2) for
a sinusoidal function f(t) is given in Fig. 1.16.

The multiresolution analysis can be extended to the decomposition of the Hilbert

space L2(R). According to Eq. (1.76) we may write:

L2 Rð Þ ¼ VJ tð Þ þ
X1
j¼J

ΔW j tð Þ; ð1:77Þ

where VJ denotes the approximation space at the resolution scale J, while the terms

in summation correspond to wavelet spaces for j�J. Therefore, we can say that the

Hilbert space can be observed as a composition of the approximation space VJ and

the infinite set of wavelet spaces Wj, ( j¼ J, . . ., 1).

Consequently, we might observe that the Hilbert space can be actually

represented as a decomposition of approximation spaces V j, j 2 ℤ and

. . . 	 V�2 	 V�1 	 V0 	 V1 	 V2 	 . . ., where each approximation space repre-

sents the scaled version (binary scaling that causes shrinking or dilation) of the

basic space V0. The approximation Vj+1 contains more details compared to Vj,

which are modelled by the wavelet space Wj: V jþ1 ¼ V j 
W j (Fig. 1.17), where


 denotes the orthogonal summation.

Now, we can expand the space L2(R) as follows:

L2 Rð Þ ¼ V0 
W0 
W1 
 . . . ð1:78Þ

or equivalently for an arbitrary starting scale J:

L2 Rð Þ ¼ VJ 
WJ 
WJþ1 
 . . . ð1:79Þ

or:

L2 Rð Þ ¼ . . .
W�2 
W�1 
W0 
W1 
W2 
 . . . ; ð1:80Þ

which represents the space as a composition of wavelet spaces alone.

The basic space V0 is generated using the scaling function φ(t). Hence, the basis
of the space V0 consists of the functions φ(t) and its translations φ(t-k).
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Consequently, a set of basis functions of the space Vj is composed of integer

translations and binary scaling of the function φ(t):

φ j,k tð Þ ¼ 2 j=2φ 2 jt� k
� �

, j, k 2 ℤ ð1:81Þ

Fig. 1.16 The approximation function fJ(t) and its details at levels J, J+ 1, and J + 2
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Having in mind that the shape of φj,k(t) changes with j, φ(t) is usually called a

scaling function. Similarly to approximation spaces, the wavelet space Wj is

generated by the scaled and translated wavelet functions:

ψ j,k tð Þ ¼ 2 j=2ψ 2 jt� k
� �

, j, k 2 ℤ: ð1:82Þ

A simple example of functions φ(t) and ψ(t) are the Haar scaling and the wavelet

function, given by:

φ tð Þ ¼ 1, 0 � t < 1

0, otherwise

�
ψ tð Þ ¼ 1, 0 � t < 0:5,

�1, 0:5 � t < 1:

�
ð1:83Þ

The Haar scaling functions and the wavelet functions of spaces V3, V2, and V1 are

illustrated in Fig. 1.18.

Since the spaces V0 and W0 are contained within the V1, then the functions φ tð Þ
2 V0 and ψ tð Þ 2 W0 belong also to the space V1. Consequently, φ(t) and ψ(t)

Fig. 1.17 Approximation

(scaling) and wavelet

spaces

j=3 j=2 j=1 j=0
V0V1

V3

W0

W1

V2

W2

V3=V2⊕W2

V2=V1⊕W1 V1=V0 ⊕ W0j (8t-k)

j (4t-k)

j  (2t-k) j  (t-k)

y (4t-k)

y (2t-k)

y  (t-k)

Fig. 1.18 An illustration of scaling functions and wavelets decomposition of V3, V2, and V1 (Haar

wavelets are used)
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can be represented using the basis/expansion function of space V1:

φ1,k tð Þ ¼ ffiffiffi
2

p
φ 2t� kð Þ, f or j ¼ 1:

In other words, we might say that the basis/expansion functions from a certain

space can be derived using the expansion functions from a double-resolution space.

The corresponding representation is called the dilation equation:

φ tð Þ ¼
X
k

s kð Þ
ffiffiffi
2

p
φ 2t� kð Þ; ð1:84Þ

while the wavelet equation is:

ψ tð Þ ¼
X
k

d kð Þ
ffiffiffi
2

p
φ 2t� kð Þ: ð1:85Þ

Starting from the coefficients s(k) (which satisfy certain conditions), we solve the

dilation equation to obtain the basis function φj,k(t) of space Vj. Then the coeffi-

cients d(k) should be determined (usually depending on the choice of s(k)), and
thus, the basis ψ j,k(t) of wavelet space Wj is determined.

1.9.4.1 Function decomposition into Multiresolution Subspaces

Generally speaking, a function f(t) can be expressed as a linear combination of

expansion functions as follows:

f tð Þ ¼
X
k

s kð Þφk tð Þ; ð1:86Þ

where s(k) are expansion coefficients and φk(t) are expansion functions. We assume

that the expansion functions are obtained using integer translation and binary

scaling of the function φ(t) given by φj,k(t) as in Eq. (1.81). Then the approximation

or projection of the function f(t) in the space Vj can be expressed as:

fj tð Þ ¼
X
k

s j kð Þφj,k tð Þ ¼
X
k

sj,kφj,k tð Þ; ð1:87Þ

where the expansion coefficients are defined as:

sj,k ¼ fj;φj,k

D E
¼
ð
t

f tð Þφj,k tð Þdt: ð1:88Þ

Furthermore, the details that remain after the approximation in Vj are modelled by:

Δ fj tð Þ ¼
X
k

dj kð Þψ j,k tð Þ ¼
X
k

dj,kψ j,k tð Þ; ð1:89Þ
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where the coefficients of the details are obtained as:

dj,k ¼ fj;ψ j,k

D E
¼
ð
t

f tð Þψ j,k tð Þdt: ð1:90Þ

Consequently, the approximation of the function f(t) on the finer scale j+ 1, can be

obtained as follows:

fjþ1 tð Þ ¼ fj tð Þ þ Δ fj tð Þ: ð1:91Þ

Therefore, we may observe that fj tð Þ ! f tð Þ for j ! 1. Note that if

f tð Þ 2 V j ) f tð Þ, f 2tð Þ, f t� kð Þ, f 2t� kð Þ 2 Vjþ1. Using Eqs. (1.87) and (1.89),

and for an arbitrary scale J, we can write the expression for the wavelet series

expansion of function f(t):

f tð Þ ¼
X
k

sJ,kφJ,k tð Þ þ
X1
j¼J

X
k

dj,kψ j,k tð Þ; ð1:92Þ

where sJ,k are called the approximation coefficients, while dj,k are called the detail

or wavelet coefficients.

The wavelet decomposition of a signal can be described by using a set of

coefficients, each providing the information about time and frequency localization

of the signal. However, the uncertainty principle prevents us from a precise

localization in both time and frequency. For example, the Haar wavelet is well

localized in time, but supports a wide frequency band. The Mexican wavelet is

well localized in the frequency domain, but not in the time domain.

We can conclude that the multiresolution analysis allows the discrete wavelet

transform to decompose the signal into different subbands. The subbands at lower

frequencies have a better frequency resolution and a poor time resolution, while the

subbands at higher frequencies have a better time resolution and a poor frequency

resolution, as illustrated in Fig. 1.19.

Fig. 1.19 Time-frequency

representation of wavelet
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1.9.5 Haar Wavelet

The Haar wavelet is the oldest and simplest type of wavelet function, given in the

form:

ψ tð Þ ¼
1, 0 � t < 0:5,

�1, 0:5 � t < 1:

(
ð1:93Þ

The Haar wavelet is not continuous, and therefore not differentiable. Hence, the

discontinuity of the wavelet function can cause small approximation smoothness

in certain cases. However, this property can be an advantage for analysis of the

transient signals (signals with steep and sudden transitions).

Let us consider its scaled and shifted version, in the form:

ψ j,k tð Þ ¼ 2
j
2ψ 2 jt� k
� �

,

j ¼ 0, � 1, � 2, . . . , k ¼ 0, � 1, . . . , 2 j � 1,
ð1:94Þ

where the scaling parameter is a¼ 2�j, while the translation parameter is b¼ 2�jk.
The parameter j represents the scale. Greater j values shrink the basis function in

time. In addition, for each scale the basis function translates in time by k, as
depicted in Fig. 1.20.

Note that the Haar wavelets are orthogonal functions:

< ψ
j,k ,ψ j0,k0 >¼

ð1
�1

ψ
j,k tð Þψ

j0,k0 tð Þdt ¼
1, f or j ¼ j0, k ¼ k0

0, otherwise :

�
ð1:95Þ

Fig. 1.20 The wavelet functions
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Recall that the Haar scaling function φ(t) is given by:

φ tð Þ ¼ 1, 0 � t < 1

0, otherwise

�
: ð1:96Þ

According to Eq. (1.92), the Haar wavelets and scaling function can be used to

represent the function f(t) as follows:

f tð Þ ¼
X
k

sJ,kφJ,k tð Þ þ
X1
j¼J

X
k

d j,kψ j,k tð Þ ¼
X1
j¼�1

X
k

d j,kψ j,k tð Þ; ð1:97Þ

where dj,k denotes the Haar wavelet coefficients. Assume that we have a certain

continuous function f(t), and we need to consider just a set of its samples that will

be used for the Haar wavelet decomposition. In order to use the discrete values of

f, the samples on the scale j can be taken as the mean values on the interval

[2�jk, 2�j(k+ 1)] of length 2�j, and we have that:

m j,k ¼ 1

2� j

ð2� j kþ1ð Þ

2� jk

f tð Þdt substitute
t ¼ τ þ 2� jk

������� ¼ 2 j

ð2� j

0

f τ þ 2� jk
� �

dτ

¼ 2 j

ð2� j

0

f tþ 2� jk
� �

dt

ð1:98Þ

The previous relation can be written as follows (for t ¼ 2� jk) 2 jt� k ¼ 0; while

for t ¼ 2� j k þ 1ð Þ )2jt�k¼ 1):

m j,k ¼ 2 j

ð1
�1

f tð Þφ 2 jt� k
� �

dt ¼ 2 j=2

ð1
�1

2 j=2 f tð Þφ 2 jt� k
� �

dt )

m j,k ¼ 2 j=2s j,k;

where according to Eq. (1.88): s j,k ¼< f ,φ j,k >¼
ð1

�1
f tð Þ2 j=2φ 2 jt� k

� �
dt.

Therefore, mj,k¼ 2j/2sj,k is the mean value of function f within the k-th time

interval [2�jk, 2�j(k+ 1)], while sj,k are assumed to be the approximation coefficients

at scale j. In other words if f is scaled by 2j/2 then themean valuesmj,kwill correspond

to the approximation coefficients sj,k. In the sequel, we will show that the approx-

imation coefficients at scale j can be used to derive approximation and detail

coefficients at scale j-1. Since, the number of translations is twice higher at scale

j (due to the narrower interval) than at scale j-1 (because k ¼ 0, � 1, . . . , 2 j � 1),
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we may write sj,2k at scale j, while at scale j-1 we can use the notation sj-1,k. Consider
now the difference between two adjacent samples at scale j:

s j, 2k � s j, 2kþ1 ¼
ð1

�1
f tð Þ2 j=2 φ 2 jt� 2k

� �� φ 2 jt� 2k þ 1ð Þ� �� �
dt: ð1:99Þ

The difference between the scaling functions is:

φ 2 jt� 2k
� �� φ 2 jt� 2k þ 1ð Þ� � ¼ 1� 0 ¼ 1, 2 jt� 2k

� � 2 �0, 1�
0� 1 ¼ �1, 2 jt� 2k þ 1ð Þ� � 2 �0, 1�

�

¼
1, t 2 � 2k

2 j ,
2k þ 1

2 j

�
�1, t 2 � 2k þ 1

2 j ,
2k þ 2

2 j

�
8><
>:

¼
1, t 2 �2� j�1ð Þk,

2k þ 1

2 j

�
�1, t 2 � 2k þ 1

2 j , 2� j�1ð Þ k þ 1ð Þ�:
8><
>:

Therefore, we have:

φ 2 jt� 2k
� �� φ 2 jt� 2k þ 1ð Þ� � ¼ ψ 2 j�1t� k

� �
; ð1:100Þ

and the difference between the mean values can be expressed as:

sj, 2k � sj, 2kþ1 ¼
ð1

�1
f tð Þ2 j=2ψ 2 j�1t� k

� �
dt ¼ ffiffiffi

2
p ð1

�1
f tð Þ 2 j�1ð Þ=2ψ 2 j�1t� k

� �h i
dt

¼ ffiffiffi
2

p
dj�1,k;

ð1:101Þ

or,

1ffiffiffi
2

p sj, 2k � sj, 2kþ1

� � ¼ dj�1,k: ð1:102Þ

Furthermore, let observe the sum of the approximation coefficients:

sj, 2k þ sj, 2kþ1 ¼
ð1

�1
f tð Þ2 j=2 φ 2 jt� 2k

� �þ φ 2 jt� 2k þ 1ð Þ� �� �
dt: ð1:103Þ
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The sum of the scaling functions is:

φ 2 jt� 2k
� �þ φ 2 jt� 2k þ 1ð Þ� � ¼ 1þ 0 ¼ 1, 2 jt� 2k

� � 2 �0, 1�
0þ 1 ¼ 1, 2 jt� 2k þ 1ð Þ� � 2 �0, 1�

�

¼
1, t 2 � 2k

2 j ,
2k þ 1

2 j

�
1, t 2 � 2k þ 1

2 j ,
2k þ 2

2 j

�
8><
>:

¼ 1, t 2 �2� j�1ð Þk, 2� j�1ð Þ k þ 1ð Þ�n
¼ φ 2 j�1t� k

� �
Finally, we may write:

sj, 2k þ sj, 2kþ1 ¼
ð1

�1
f tð Þ2 j=2φ 2 j�1t� k

� �
dt

¼ ffiffiffi
2

p ð1
�1

f tð Þ 2 j�1ð Þ=2φ 2 j�1t� k
� �h i

dt ¼ ffiffiffi
2

p
s j�1,k;

ð1:104Þ

or equivalently:

1ffiffiffi
2

p s j, 2k þ s j, 2kþ1

� � ¼ s j�1,k: ð1:105Þ

Let us illustrate how this simplified algorithm can be used to decompose a row of

image pixels:

f¼ {10, 12, 14, 16, 18, 20, 22, 24}.

There are n¼ 8 elements in the row of image pixels representing the samples

of function f. Therefore,
ffiffiffi
n

p ¼ ffiffiffi
8

p ¼
ffiffiffiffiffi
23

p
¼

ffiffiffiffiffi
2 j

p
, i.e., we consider j¼ 3. First we

can scale the function f by 2j/2¼
ffiffiffiffiffi
2 j

p
:

f scaled ¼
10ffiffiffi
8

p 12ffiffiffi
8

p 14ffiffiffi
8

p 16ffiffiffi
8

p 18ffiffiffi
8

p 20ffiffiffi
8

p 22ffiffiffi
8

p 24ffiffiffi
8

p :

The decomposition procedure is based on applying Eqs. (1.102) and (1.105)

sequentially within the three steps. In order to simplify the notation, let us use the

symbols A and B for the approximation coefficients on different scales:

sj�1,k ¼ sj, 2k þ sj, 2kþ1ffiffiffi
2

p ¼ 1ffiffiffi
2

p Aþ Bð Þ; dj�1,k ¼ sj, 2k � sj, 2kþ1ffiffiffi
2

p ¼ 1ffiffiffi
2

p A� Bð Þ:
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Step I:
A B A B A B A B
10ffiffiffi
8

p 12ffiffiffi
8

p 14ffiffiffi
8

p 16ffiffiffi
8

p 18ffiffiffi
8

p 20ffiffiffi
8

p 22ffiffiffi
8

p 24ffiffiffi
8

p

Aþ Bð Þ=
ffiffiffi
2

p
:

22ffiffiffi
8

p ffiffiffi
2

p 30ffiffiffi
8

p ffiffiffi
2

p 38ffiffiffi
8

p ffiffiffi
2

p 46ffiffiffi
8

p ffiffiffi
2

p ¼
22

4

30

4

38

4

46

4

A� Bð Þ=
ffiffiffi
2

p
:

�2ffiffiffi
8

p ffiffiffi
2

p �2ffiffiffi
8

p ffiffiffi
2

p �2ffiffiffi
8

p ffiffiffi
2

p �2ffiffiffi
8

p ffiffiffi
2

p ¼
�1

2

�1

2

�1

2

�1

2

Therefore, after the first decomposition level we have:

22

4

30

4

38

4

46

4

�1

2

�1

2

�1

2

�1

2

Step II:

Aþ Bð Þ=
ffiffiffi
2

p
:

A B A
22

4

30

4

38

4

B
46

4

52

4
ffiffiffi
2

p 84

4
ffiffiffi
2

p ¼ 13ffiffiffi
2

p 21ffiffiffi
2

p

A� Bð Þ=
ffiffiffi
2

p
:

�8

4
ffiffiffi
2

p �8

4
ffiffiffi
2

p ¼ �2ffiffiffi
2

p �2ffiffiffi
2

p

After the second decomposition level we have:

13ffiffiffi
2

p 21ffiffiffi
2

p �2ffiffiffi
2

p �2ffiffiffi
2

p �1

2

�1

2

�1

2

�1

2

Step III:

(A +B)/
ffiffiffi
2

p
:

A B

13ffiffiffi
2

p 21ffiffiffi
2

p
34ffiffiffi
2

p ffiffiffi
2

p ¼ 17
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(A�B)/
ffiffiffi
2

p
:

�8ffiffiffi
2

p ffiffiffi
2

p ¼ �4

After the third decomposition level, the resulting sequence is obtained:

17 �4
�2ffiffiffi
2

p �2ffiffiffi
2

p �1

2

�1

2

�1

2

�1

2

Alternatively, we can apply even simpler procedure. First, we find the mean

value of pairs. Then we calculate pixel differences representing the coefficients of

details.

10 12 14 16 18 20 22 24

11 15 19 23
-1 -1 -1 -1

(A+B)/2 

(A-B)/2

Mean values
Details coefficients

Clearly, the newly created pixel vector {11, 15, 19, 23, �1, �1, �1, �1} can be

used to completely reconstruct the image row. In the next level, we use 4 mean

values and obtain 2 new mean and 2 new detail coefficients.

19 23

13 21
-2 -2

(A+B)/2 

(A-B)/2

11 15

Mean values

Details coefficients

The new vector has the values {13, 21, �2, �2, �1, �1, �1, �1}.

Then carry out the decomposition of the remaining two mean values, from which

we get a vector {17,�4, �2, �2, �1, �1, �1, �1}. The last step is the wavelet

transform normalization by using the parameter 2�j/2:

17ffiffiffiffiffi
20

p ;
�4ffiffiffiffiffi
20

p ;
�2ffiffiffiffiffi
21

p ;
�2ffiffiffiffiffi
21

p ;
�1ffiffiffiffiffi
22

p ;
�1ffiffiffiffiffi
22

p ;
�1ffiffiffiffiffi
22

p ;
�1ffiffiffiffiffi
22

p
� �

:

The same procedure can be applied to every image row, and thus the whole

image can be decomposed. The mean values produce a lower resolution image from

which the details are removed.

1.9.6 Daubechies Orthogonal Filters

The Daubechies filter family is often used for the construction of orthogonal

discrete wavelets. Suppose that the filter bank consists of the analysis filters h and
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g and the synthesis filters h0 and g0 of the length N (N is even). The impulse

responses of filters are then given by:

h ¼ h 0ð Þ, h 1ð Þ, . . . , h N � 1ð Þð Þ,
g ¼ g 0ð Þ, g 1ð Þ, . . . , g N � 1ð Þð Þ,
h0 ¼ h0 0ð Þ, h0 1ð Þ, . . . , h0 N � 1ð Þð Þ,
g0 ¼ g0 0ð Þ, g0 1ð Þ, . . . , g0 N � 1ð Þð Þ:

The Daubechies filters satisfy the following conditions:

1. The vector h is normalized;

2. For each integer that satisfies 1 � n < N=2, the vector formed by the first 2n
elements of h should be orthogonal to the vector containing the last 2n elements

of the same h;
3. The filter h0 is the flipped version of h;
4. Vector g is formed based on h0 by multiplying the vector elements with �1 on

even positions;

5. Vector g0 is obtained from h by inverting the sign of the elements on odd

positions;

6. The frequency response of the filter is equal to
ffiffiffi
2

p
for ω ¼ 0:

H 0ð Þ ¼
ffiffiffi
2

p
:

7. The k-th derivative of the filter is equal to zero for ω ¼ π:

H kð Þ πð Þ ¼ 0 f or k ¼ 0, 1, 2, . . . ,
N

2
� 1:

Suppose that the length of the filters is N ¼ 4. Then, by using the above conditions

we get:

Condition 1: h2 0ð Þ þ h2 1ð Þ þ h2 2ð Þ þ h2 3ð Þ ¼ 1,

Condition 2: h 0ð Þh 2ð Þ þ h 1ð Þh 3ð Þ ¼ 0,

Condition 3: h0 ¼ h 3ð Þ, h 2ð Þ, h 1ð Þ, h 0ð Þð Þ,
Condition 4: g ¼ h 3ð Þ, � h 2ð Þ, h 1ð Þ, � h 0ð Þð Þ,
Condition 5: g0 ¼ �h 0ð Þ, h 1ð Þ, � h 2ð Þ, h 3ð Þð Þ.
Condition 6: The filter h in the frequency domain can be written in the form of

Fourier series:

H ωð Þ ¼ h 0ð Þ þ h 1ð Þe� jω þ h 2ð Þe�2 jω þ h 3ð Þe�3 jω:

It is necessary to construct a filter that satisfies the condition H 0ð Þ ¼ ffiffiffi
2

p
. If we set

ω ¼ 0, we get:
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ffiffiffi
2

p
¼ h 0ð Þ þ h 1ð Þ þ h 2ð Þ þ h 3ð Þ:

The last condition is related to the k-th derivatives of the filter.

Condition 7:

H 0ð Þ ωð Þ¼ h 0ð Þþh 1ð Þe� jωþh 2ð Þe�2 jωþh 3ð Þe�3 jω

H 0ð Þ πð Þ¼ 0

�
h 0ð Þ�h 1ð Þþh 2ð Þ�h 3ð Þ¼ 0

H 1ð Þ ωð Þ¼� jh 1ð Þe� jω�2 jh 2ð Þe�2 jω�3 jh 3ð Þe�3 jω

H 1ð Þ πð Þ¼ 0

�
�h 1ð Þþ2h 2ð Þ�3h 3ð Þ¼ 0

Hence, a system of equations is obtained which can be used to calculate the

coefficients:

h2 0ð Þ þ h2 1ð Þ þ h2 2ð Þ þ h2 3ð Þ ¼ 1

h 0ð Þh 2ð Þ þ h 1ð Þh 3ð Þ ¼ 0

h 0ð Þ þ h 1ð Þ þ h 2ð Þ þ h 3ð Þ ¼ ffiffiffi
2

p
h 0ð Þ � h 1ð Þ þ h 2ð Þ � h 3ð Þ ¼ 0

� h 1ð Þ þ 2h 2ð Þ � 3h 3ð Þ ¼ 0

The system has two solutions. The first solution represents the coefficients of a

low-pass analysis filter (Table 1.1), and the second solution represents the coeffi-

cients of a low-pass synthesis filter.

1.9.7 Filter Banks

Using the multiresolution analysis, a signal can be decomposed into two parts: one

representing the approximation of the original signal and the other containing

information about the details. Thus, in analogy with the formula Eq. (1.92) from

the multiresolution analysis, the signal can be represented as:

f m tð Þ ¼
X
n

αmþ1,nφmþ1,n þ
X
n

βmþ1,nψmþ1,n; ð1:106Þ

where αm+1,n are the approximation coefficients at resolution 2m+1, while βm+1,n are
the coefficients of details. The functions φm+1,n and ψm+1,n represent the scaling and

wavelet function, respectively. In multiresolution analysis, the decomposition of

signals using the discrete wavelet transform can be expressed in terms of finite

impulse response filters (FIR filters) for computation of the wavelet coefficients.

Table 1.1 Coefficients of the

Daubechies D4 low-pass

analysis filter h

h(0) h(1) h(2) h(3)

�0.12941 0.224144 0.836516 0.482963
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The recursive realization of discrete wavelet transform in different levels can be

written as:

αm,n fð Þ ¼
X
k

h2n�kαm�1,k fð Þ,

βm,n fð Þ ¼
X
k

g2n�kαm�1,k fð Þ; ð1:107Þ

where h and g are low-pass and high-pass filters (Fig. 1.21) often referred to as

analysis filters: hi ¼ 21=2
ð
φ x� ið Þφ 2xð Þdx, gi ¼ �1ð Þih�iþ1:

Since h and g are defined from the orthonormal basis functions, they provide

exact reconstruction:

αm�1, i fð Þ ¼
X
n

h2n�iαm,n fð Þ þ
X
n

g2n�iβm,n fð Þ: ð1:108Þ

Theoretically, for many orthonormal basis wavelet functions, there is a large

number of filters that can be used for their implementation. In practice, finite

impulse response filters (FIR filters) are used to implement the wavelets efficiently.

The orthonormal wavelet functions may have infinite support causing the filters

h and g to have infinitely many taps. For efficient implementation, it is preferred to

have filters with small number of taps, achieved using bi-orthogonal basis

functions.

Synthesis filters (h0 and g0) are used for the signal reconstruction. Namely the

signal decomposition is done by using Eq. (1.107), while the reconstruction is given

by the following expression:

αm�1, i fð Þ ¼
X
n

αm,n fð Þh0
2n�i þ

X
n

βm,n fð Þg0
2n�i: ð1:109Þ

Fig. 1.21 Analysis filters
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If (h0,g0)¼ (h,g) holds, the filters are orthogonal. Otherwise, they are bi-orthogonal.
Figure 1.22 illustrates the concept of filter banks. The input signal α(0,n) is filtered
in parallel by a low-pass filter h and a high-pass filter g. The signal is down-sampled

(by simply dropping the alternate output samples in each stream) after passing

through the filters. Therefore, the output from the analysis filters at the first level of

decomposition is given by:

# α 1;nð Þð Þ¼ . . . ,α 1, �6ð Þ,α 1, �4ð Þ,α 1, �2ð Þ,α 1;0ð Þ,α 1;2ð Þ,α 1;4ð Þ,α 1;6ð Þ, . . .ð Þ:

Before passing through the synthesis filters, the signal has to be up-sampled:

" α 1;nð Þð Þ¼ . . . ,α 1, �6ð Þ,0,α 1, �4ð Þ,0,α 1, �2ð Þ,0,α 1;0ð Þ,0,α 1;2ð Þ,0,a 1;4ð Þ,0,α 1;6ð Þ, . . .ð Þ:

1.9.8 Two-Dimensional Signals

The two-dimensional discrete wavelet transform is generally used to decompose

two-dimensional signals (e.g., images). Consider the two-dimensional separable scal-

ing and wavelet functions. They can be represented as the product of one-dimensional

functionsφ x; yð Þ ¼ φ xð Þφ yð Þandψ x; yð Þ ¼ ψ xð Þψ yð Þ, enabling the application of the
one-dimensional discrete wavelet transform separately to the rows and columns of a

two-dimensional matrix. Several different approaches to analyze two-dimensional

signals using the discrete wavelet transform are described below.

• Standard wavelet decomposition

The first step of decomposition involves creating a low-frequency subband L1

and a high-frequency subband H1. The same procedure is then carried out over

low-frequency subband L1 by forming subbands L2 and H2. We continue this

procedure until we reach a desired number of subbands. The second step involves

the same procedure for the columns. The end result is a low-pass coefficient in the

upper left corner. The decomposition is illustrated in Fig. 1.23.

Fig. 1.22 Wavelet decomposition and reconstruction of signals using a filter bank
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• Quincunx decomposition

This decomposition uses each low-frequency subband on the level j (Lj) and

divides it into subbands Lj+1 and Hj+1 (subbands on the level j+ 1). Figure 1.24

illustrates the Quincunx decomposition.

• Pyramidal wavelet decomposition

The most commonly used decomposition method in practical applications is the

pyramidal decomposition as shown in Fig. 1.25. Suppose that the image dimensions

areM�N. Initially, the one-dimensional wavelet transform is performed for image

rows and subbands L1 and H1 are obtained. Then the wavelet transform is

Fig. 1.23 Standard wavelet decomposition

Fig. 1.24 Quincunx decomposition
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performed for each column resulting in four subbands LL1, LH1,, HL1, HH1 with

dimensions equal to M/2�N/2. The LL1 subband represents a version of the

original image with lower resolution. The LL1 subband is then further decomposed

into subbands LL2, LH2, HL2, and HH2. If further decomposition is needed, it would

be based on the low-pass subbands LLj.

• Uniform wavelet decomposition

This decomposition is initially performed for rows and columns, producing the four

subbands. Then, the same procedure is repeated for each subband and 16 new subbands

are obtained. Figure 1.26 illustrates this process for two levels of decomposition.

Fig. 1.25 The pyramidal wavelet decomposition

Fig. 1.26 The uniform

wavelet decomposition
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1.10 Signal Decomposition Using Hermite Functions

Projecting signals using the Hermite functions is widely used in various image and

signal processing applications (e.g., image filtering, texture analysis, speaker iden-

tification). The Hermite functions allow us to obtain good localization of the signals

in both the signal and transform domains. These functions are defined as follows:

ψ p nð Þ ¼ �1ð Þ pen2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p p!

ffiffiffi
π

pp d p e�n2
� �
dn p

¼ e�n2H p nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p p!

ffiffiffi
π

pp ; ð1:110Þ

where Hp(n) is the p-th order Hermite polynomial. The definition of Hermite

function can be done using the recursive formulas:

Ψ 0 nð Þ ¼ 1ffiffiffi
π4

p e�n2=2, Ψ 1 nð Þ ¼
ffiffiffi
2

p
nffiffiffi
π4

p e�n2=2,

Ψ p nð Þ ¼ n

ffiffiffiffi
2

p

r
Ψ p�1 nð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
p� 1

p

r
Ψ p�2 nð Þ, 8 p � 2:

ð1:111Þ

The Hermite functions are often calculated at the roots of the Hermite poly-

nomials. The first few Hermite functions are illustrated in Fig. 1.27.

If ni and nj are roots of Hermite polynomial HN+1(n) such that ni 6¼ n j then:

XN
p¼0

ψ p nið Þψ p n j

� � ¼ 0; ð1:112Þ

Fig. 1.27 An illustration

of the first few Hermite

functions
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and,

XN
p¼0

ψ2
p nið Þ ¼ N þ 1ð Þψ2

N nið Þ: ð1:113Þ

The normalized Hermite functions satisfy the bound:

ψ p nð Þ�� �� � 0:816, for allnand p: ð1:114Þ

The Hermite functions form an orthogonal basis in the underlying signal space:

XN�1

n¼0

ψ p nð Þψq nð Þ ¼ 0, p 6¼ q
1, p ¼ q

�
: ð1:115Þ

1.10.1 One-Dimensional Signals and Hermite Functions

Assume that X is a discrete one-dimensional signal (of length M ) that will be

expanded by using the Hermite functions. The first step in the Hermite projection

method is to remove the baseline, defined as:

x ið Þ ¼ X 1ð Þ þ X Mð Þ � X 1ð Þ
M

� i; ð1:116Þ

where i¼ 1, . . ., M. The baseline is then subtracted from the original signal:

f ið Þ ¼ X ið Þ � x ið Þ: ð1:117Þ

Then, the decomposition by using N Hermite functions is defined as follows:

f ið Þ ¼
XN�1

p¼0

c pψ p ið Þ; ð1:118Þ

where the coefficients cp are obtained as:

c p ¼
ð1

�1
f ið Þψ p ið Þdi: ð1:119Þ

The Gauss-Hermite quadrature technique can be used to calculate the Hermite

expansion coefficients, as follows:

c p � 1

M

XM
m¼1

μ p
M�1 xmð Þ f xmð Þ; ð1:120Þ
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where the points xm (m¼ 1, . . ., M ) are obtained as zeros of an M-th order Hermite

polynomial: HM xð Þ ¼ �1ð ÞMex2 dM e�x2
� �
dxM . Hence, the values of the function f should

be calculated at the zeros of Hermite polynomial. The Hermite polynomials of

orders from 1 to 10, as well as the corresponding zeros, are given in the Table 1.2.

In the examples we will use the samples at the available time instants, not

necessarily the zeros of the Hermite polynomial.

The constants μ p
M�1 xmð Þ can be obtained using the Hermite functions:

μ p
M�1 xmð Þ ¼ ψ p xmð Þ

ψM�1 xmð Þð Þ2 : ð1:121Þ

Figure 1.28 depicts the original signal whose length is equal to 126 samples, and three

reconstructed signals using 126, 90 and 70 Hermite functions, respectively. In the first

case, the reconstructed signal is approximately equal to the original signal. However,

the signal can be successfully reconstructed with a smaller number of Hermite func-

tions (while losing some finer details). The fact that the signal can be representedwith a

fewer number of Hermite coefficients, makes them attractive for signal compression.

1.10.2 Hermite Transform and its Inverse Using Matrix
Form Notation

Based on the Gauss-quadrature rule, the direct Hermite transform can be also

defined in the matrix form as follows:

C¼Hf; ð1:122Þ

Table 1.2 Hermite polynomials of orders 1–10 and the corresponding zeros

Hermite Polynomials Zeros

H1 xð Þ ¼ 2x 0

H2 xð Þ ¼ 4x2 � 2 �0.707

H3 xð Þ ¼ 8x3 � 12x �1.2247, 0

H4 xð Þ ¼ 16x4 � 48x2 þ 12 �1.6507, �0.5246

H5 xð Þ ¼ 32x5 � 160x3 þ 120x �2.0202, �0.9586, 0

H6 xð Þ ¼ 64x6 � 480x4 þ 720x2 � 120 �2.3506, �1.3358, �0.4361

H7 xð Þ ¼ 128x7 � 1344x5 þ 3360x3 � 1680x �2.6520, �1.6736, �0.8163, 0

H8 xð Þ ¼ 256x8 � 3584x6 þ 13440x4 � 13440x2 þ 1680 �2.9306, �1.9817, �1.1572,

�0.3812

H9 xð Þ ¼ 512x9 � 9216x7 þ 48384x5 � 80640x3 þ 30240x �3.1910, �2.2666, �1.4686,

�0.7236, 0

H10 xð Þ ¼ 1024x10 � 23040x8 þ 161280x6�
403200x4 þ 302400x2 � 30240

�3.4362, �2.5327, �1.7567,

�1.0366, �0.3429
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where C is the vector of Hermite coefficients, H is the Hermite transform matrix.

Without loss of generality, we assume that the number of samples is equal to the

number of Hermite functions used for expansion: M¼N. Thus, f is a signal of

length N, which is represented using N Hermite functions and corresponding

coefficients. In the expanded form, Eq. (1.122) can be written as follows:

Fig. 1.28 (a) The original
signal of length

126 samples, (b) the
reconstructed signal with

126 functions, (c) the
reconstructed signal with

90 functions, (d) the
reconstructed signal with

70 functions

46 1 Mathematical Transforms Used for Multimedia Signal Processing



C 0ð Þ
C 1ð Þ
. . .

C N � 1ð Þ

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C

¼ 1

N

ψ0 0ð Þ
ψN�1 0ð Þð Þ2

ψ0 1ð Þ
ψN�1 1ð Þð Þ2 . . .

ψ0 N � 1ð Þ
ψN�1 N � 1ð Þð Þ2

ψ1 0ð Þ
ψN�1 0ð Þð Þ2

ψ1 1ð Þ
ψN�1 1ð Þð Þ2 . . .

ψ1 N � 1ð Þ
ψN�1 N � 1ð Þð Þ2

. . . . . . . . . . . .

ψN�1 0ð Þ
ψN�1 0ð Þð Þ2

ψN�1 1ð Þ
ψN�1 1ð Þð Þ2 . . .

ψN�1 N � 1ð Þ
ψN�1 N � 1ð Þð Þ2

2
6666666664

3
7777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

f 0ð Þ
f 1ð Þ
. . .

f N � 1ð Þ

2
66664

3
77775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
f

Note that in order to simplify the notations, the argument xn (zeros of the N-th
order Hermite polynomials in H and f) is replaced by the corresponding order

number n. The inverse Hermite transform can be written as:

f ¼ΨC; ð1:123Þ

or equivalently:

f 0ð Þ
f 1ð Þ
. . .

f N � 1ð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
f

¼
ψ0 0ð Þ ψ1 0ð Þ . . . ψN�1 0ð Þ
ψ0 1ð Þ ψ1 1ð Þ . . . ψN�1 1ð Þ
. . . . . . . . . . . .

ψ0 N � 1ð Þ ψ1 N � 1ð Þ . . . ψN�1 N � 1ð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ψ

C 0ð Þ
C 1ð Þ
. . .

C N � 1ð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C

where Ψ is the inverse Hermite transform matrix.

Now, regarding the energy condition we might introduce a rough experimentally

obtained approximation as follows:

Ck k22 ¼ C0j j2 þ . . .þ CN�1j j2 ¼ 1

N

XN�1

n¼0

f nð Þ ψ0 nð Þ
ψN�1 nð Þð Þ2

�����
�����
2

þ . . .þ
XN�1

n¼0

f nð Þ ψN�1 nð Þ
ψN�1 nð Þð Þ2

�����
�����
2

0
@

1
A

�

XN�1

n¼0

f nð Þj j2

XN�1

n¼0

ψN�1 nð Þj j2
: ð1:124Þ

In other words, we can approximate the energy of coefficients in the Hermite

domain as:

Ck k22 �
fk k22

ψN�1k k22
: ð1:125Þ

The notation �k k22 represents the squared ‘2 -norm: αk k22 ¼
X
i

αij j2.
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1.10.3 Two-Dimensional Signals and Two-Dimensional
Hermite Functions

For two-dimensional signals such as images, we use the two-dimensional Hermite

functions defined as follows:

Ψ kl x; yð Þ ¼ �1ð Þkþlex
2=2þy2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþlk!l!π
p

dk e�x2
� �
dxk

dl e�y2
� �
dyl

: ð1:126Þ

Some examples of two-dimensional Hermite functions are illustrated in Fig. 1.29.

Two-dimensional functions can be evaluated as a composition of

one-dimensional Hermite functions:

Ψ kl x; yð Þ ¼ Ψ k xð ÞΨ l yð Þ ¼ �1ð Þkex2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kk!

ffiffiffi
π

pq dk e�x2
� �
dxk

�1ð Þley2=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ll!

ffiffiffi
π

pq dl e�y2
� �
dyl

:

Next we consider the Hermite projection method along one coordinate. For the

two-dimensional signal of size M1�M2, the signal baseline is defined as:

by xð Þ ¼ F 1; yð Þ þ F M1; yð Þ � F 1; yð Þ
M1

� x; ð1:127Þ

where F(x,y) is a two-dimensional signal, and x¼ 1, . . .,M1 and y¼ 1, . . .,M2. The
baseline by(x) is calculated for a fixed value of y. The corresponding matrix b(x,y)
contains all vectors by(x) for y¼ 1, . . .,M2. Then, we subtract the baselines from the

original signal:

Fig. 1.29 The examples of two-dimensional Hermite functions: (a) Ψ 00(x, y), (b) Ψ 24(x, y),
(c) Ψ 44(x, y)
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f x; yð Þ ¼ F x; yð Þ � b x; yð Þ: ð1:128Þ

The signal decomposition using N Hermite functions is defined as follows:

f y xð Þ ¼
XN�1

p¼0

c pψ p xð Þ; ð1:129Þ

where f y xð Þ ¼ f x; yð Þ is valid for fixed y. The coefficients are equal to:

c p ¼
ð1

�1
f y xð Þψ p xð Þdx: ð1:130Þ

Using the Gauss-Hermite quadrature rule, the coefficients can be calculated as

follows:

c p � 1

M1

XM1

m¼1

μ p
M1�1 xmð Þ f y xmð Þ; ð1:131Þ

where constants μ p
M1�1 xmð Þ can be obtained by using Hermite functions as in the

one-dimensional case.

To illustrate this concept, the original image and three versions of reconstructed

images are shown in Fig. 1.30.

1.11 Generalization of the Time-Frequency Plane Division

Recall the definition of the discrete form of the STFT:

STFT n; kð Þ ¼
XN=2�1

m¼�N=2

x nþ mð Þe� j2πkm=N; ð1:132Þ

where N is the length of a rectangular window, while k¼ [�N/2, . . ., N/2� 1]. The

previous relation can be defined in the matrix form. First, let us define the N�N
DFT matrix that corresponds to one windowed signal part:
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W . ð1:133Þ

The nonoverlapping rectangular windows are assumed. Now, let us create the total

transform matrix as follows:

W ¼ IM=N WN ¼
WN 0 . . . 0

0 WN . . . 0

. . . . . . . . . 0

0 0 . . . WN

2
664

3
775; ð1:134Þ

where I is identity matrix of size (M/N�M/N ), 0 is N�N zero matrix,M is the total

length of the signal, while  denotes the Kronecker product. The STFT can be

defined using transform matrix W as:

STFT ¼ Wx ¼ WW�1
M X; ð1:135Þ

Fig. 1.30 (a) The original image, reconstructed image by using Hermite projection method along

the rows with: (b) 100 Hermite functions, (c) 80 Hermite functions, (d) 60 Hermite functions
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where x is a time domain signal vector of size M� 1, X is a Fourier transform

vector of size M� 1, while STFT is a column vector containing all STFT vectors

STFTNi (ni), i¼ 0,1, . . ., K.
If the windows are not rectangular, then the window function needs to be

included in the STFT calculation as follows:

STFT ¼ WHx; ð1:136Þ

where:

H ¼ IM=N HN ¼
HN 0 . . . 0

0 HN . . . 0

. . . . . . . . . . . .
0 0 . . . HN

2
664

3
775; ð1:137Þ

while the matrix HN is a diagonal N�N matrix with the window values on the

diagonal: HN m;mð Þ ¼ w mð Þ, m ¼ �N=2, . . . ,N=2� 1:
In the case of windows with variable length over time (time-varying windows),

the smaller matrices within W or H will be of different sizes. Without loss of

generality, assume a set of K rectangular windows of sizes N1, N2, . . ., NK instead of

WN we will have:WN1
,WN2

, . . . , WNK
, where K is the number of nonoverlapping

windows used to represent the entire signal. Since the time-varying nonoverlapping

STFT corresponds to a decimation-in-time DFT scheme, its calculation is more

efficient than the DFT calculation of the entire signal. Note that there is a large

number of combinations of time-varying nonoverlapping windows and conse-

quently a large number of nonoverlapping STFTs. Then the STFT calculated

using time-varying windows WNi
, i¼ 1, . . ., K can be written as:

STFT ¼ Wx ¼
W

N1
0 . . . 0

0 WN2
. . . 0

. . . . . . . . . . . .
0 0 . . . WNK

2
664

3
775

x 0ð Þ
x 1ð Þ
. . .
x Mð Þ

2
664

3
775: ð1:138Þ

The zero matrices are denoted by 0. An illustration of the STFT with time-varying

windows is shown in Fig. 1.31a). The signal length is M¼ 8 samples, while:

W ¼
W2 0 0 0
0 W4 0 0

0 0 W1 0

0 0 0 W1

2
664

3
775: ð1:139Þ

Note that forW2 (matrix of size 2� 2, with elements calculated form¼ {�1,0} and

k¼ {�1,0}), two signal samples (x(0), x(1)) are captured by the window. The

window should be centered at the middle point, but in this case n¼ 1 is used as a

central point. Thus, we obtained two STFT points: STFT2(1,�1) and STFT2(1,0).

1.11 Generalization of the Time-Frequency Plane Division 51



The index denotes the window size, i.e., the number of samples captured by the

window, the first coordinate is the central time sample, while the second coordinate

is the frequency k.
Accordingly, for W4 (matrix of size 4� 4, with elements calculated for m¼

{�2,�1,0,1}, k¼ {�2,�1,0,1}), which capture the next 4 samples on the positions

n¼ {2,3,4,5}, we have: STFT4(4,�2), STFT4(4,�1), STFT4(4,0), STFT4(4,1).

Note that the central point is n¼ 4. Similarly for n¼ 6 and W1 (only one value

for k), we have STFT1(6,0), and for n¼ 7 and W1 we obtain STFT1(7,0).

The STFT may use frequency-varying windows as well, which is illustrated in

Fig. 1.31b), but also the time-frequency-varying window (Fig. 1.31c).

1.12 Examples

1.1. (a) If the maximal signal frequency is fmax¼ 4 KHz, what should be the

maximal sampling interval T0 according to the sampling theorem?

Fig. 1.31 The STFTs calculated using: (a) time-varying window, (b) frequency-varying window,
(c) time-frequency-varying window. The time index is on the horizontal axis, while the frequency

index is on the vertical axis
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(b) For the signals whose sampling intervals are given as T1¼ 2�T0 and

T2¼ T0/2, specify the maximal values of signal frequency having in

mind that the sampling theorem has to be satisfied?

Solution:

(a) For the known maximal signal frequency, the sampling interval can be

calculated according to the relation:

T0 � 1

2 � fmax

¼ 1

2 � 4 � 103 ¼ 125μs:

(b) For the sampling interval T1¼ 2�T0, we have:

fmax �
1

2 � T1

¼ 1

2 � 2 � T0

¼ 1

2 � 2 � 125 � 10�6
¼ 2KHz:

In the case T2¼ T0/2, the maximal frequency of the considered signal

can be calculated as:

fmax �
1

2 � T0=2
¼ 1

2 � 125 � 10�6=2
¼ 8KHz:

1.2. Plot the Fourier transform of the signal y¼ sin(150πt), t2(�1,1), by using

Matlab. The sampling interval should be set as: T¼ 1/1000.

Solution:

Firstly, we should check if the sampled signal satisfies the sampling theorem,

i.e., we check if the condition f � fmax is satisfied.
The maximal frequency of the signal is: fmax� 1/(2 T)¼ 500Hz, while the

sinusoidal signal frequency is obtained as: 2π f ¼ 150π ) f ¼ 75Hz, and
satisfies the condition f � fmax.

For the calculation of the Fourier transform coefficients, we use fft Matlab

function. In order to position the zero-frequency to the center of the array, the

fftshift function is used as well. Matlab code is given in the sequel:

t¼�1:1/1000:1;

y¼sin(150*pi*t);

F¼fft(y);

F¼fftshift(F);

plot(abs(F))

1.3. Calculate the Fourier transform of the signal y¼ sin(150�π�t), t¼�5:0.001:5.

Is the same sampling interval appropriate to satisfy the sampling theorem
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even for signals: y¼ sin(600�π�t), y¼ sin(1800�π�t)? If the answer is yes, plot
the spectra of the considered signals by using Matlab.

Solution:

fmax ¼
1

2 � Δt ¼
1

2 � 0:001 ¼ 500Hz

ω1 ¼ 2π f 1 ¼ 150π ) f 1 ¼ 150=2 ¼ 75Hz

ω2 ¼ 2π f 2 ¼ 600π ) f 2 ¼ 600=2 ¼ 300Hz

In the third case the sampling theorem is not satisfied:

ω3 ¼ 2π f 3 ¼ 1800π ) f 3 ¼ 1800=2 ¼ 900Hz

f3>fmax

Matlab code:

t¼�5:0.001:5;

y1¼sin(150*pi*t);

F1¼fft(y1);

plot (abs(F1))

y2¼sin(600*pi*t);

F2¼fft(y2);

1.4. Consider the signal y¼ sin(150�π�t) with an additive white Gaussian noise

(zero mean value μ¼ 0, and variance σ2¼ 1) and plot (in Matlab) the

illustration of its spectrum via the Fourier transform calculation.

Solution:

y¼sin(150*pi*t);

noise¼randn(1,length(y));

yn¼y+noise;

F¼fftshift(fft(yn));

plot (abs(F))

1.5. Design a simple low-pass filter with a cutoff frequency fc¼ 1102,5 Hz for the

signal having 44000 samples, sampled at the frequency 22050 Hz.

Solution:

Let us denote the signal by y, while fs¼ 22050 Hz represents the sampling

frequency. The maximal signal frequency is: fmax¼ fs/2¼ 11025 Hz. The

Fourier transform of y contains 44000 coefficients: 22000 coefficients are

located at the positive and 22000 coefficients at negative frequencies

(Fig. 1.32).
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Hence, the following proportion holds:

fmax: fc¼ 22000: n

and consequently we obtain that n¼ 2200.

The corresponding filter transfer function in the frequency domain can be

defined as:

H¼ [zeros(1,22000–2200) ones(1,4400) zeros(1,22000–2200)];

In order to obtain the filtered signal, the Fourier transform of y should be

multiplied by the filter function H, and then the inverse DFT should be

performed.

1.6. Make the illustrations of the Fourier transform (using only the absolute

values) and the ideal time-frequency representation if the signal is given in

the form:

(a) ya ¼ e jω1t þ e jω2t; t 2 0; 2ð Þ;

(b) yb ¼ y1 þ y2, y1 ¼ e jω1t for t 2 0; 1ð Þ, y2 ¼ e jω2tfor t 2 1; 2ð Þ:

We may assume that ω1<ω2.

Solution is shown in Fig. 1.33.

Fig. 1.32 Illustration

of the filter function

Fig. 1.33 The Fourier

transform and the ideal

time-frequency distribution

for signal: (a) ya, (b) yb
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1.7. Based on the ideal time-frequency representation of a certain signal f(t),
define each of the signal components and signal itself. Unit amplitudes and

zero initial phases are assumed (Fig. 1.34).

Solution:

The analytic form of signal f(t) can be defined as:

f tð Þ ¼
e jω1t þ e jω2t, t 2 0; t1ð Þ
e jω3t, t 2 t1; t2ð Þ
e jω1t þ e jω3t, t 2 t2; t3ð Þ

8<
: :

1.8. Consider a constant-frequency modulated signal and demonstrate in Matlab

how the window width influences the resolution of the spectrogram. The

signal is given in the form:

f nð Þ ¼ e j15nT , n ¼ 1, . . . , 127
e j5nT , n ¼ 128, . . . , 256

�
, where T ¼ 0:25:

Solution:

The discrete version of the considered signal can be created in Matlab as

follows:

T¼0.25;

for n¼1:256

if n<128; f(n)¼exp(j*15*n*T);

else

f(n)¼exp(j*5*n*T);

end

end

Fig. 1.34 An ideal time-

frequency representation of

signal f(t)

56 1 Mathematical Transforms Used for Multimedia Signal Processing



The spectrogram calculation in Matlab can be done by using the inbuilt

function spectrogram as follows:

[s,F,T]¼spectrogram(f,w,N_overlap);

imagesc(T,F,abs(s))

Hereby, to change the window widthw in a few realizations one should take,

for instance, the following values: w¼ 32, w¼ 64, w¼ 128 (Fig. 1.35). The

parameter N_overlap specifies the number of overlapping samples between

two windowed segments of f. It should be an integer smaller than window size

w (for integer value of w), e.g., N_overlap¼w-1 is used in this example.

1.9. Write the Matlab code which calculates the S-method. The signal should

be loaded from the separate file signal.m, and it is defined as:

f tð Þ ¼ e j 2 sin πtð Þþ11πtð Þ þ e j2π t2þ3tð Þ. The signal length is N¼ 128 samples,

t¼�2:2 with sampling interval Δt¼ 4/N, the window width is M¼ 128

samples, while Ld¼ 5. The Gaussian window should be used.

Solution:

The Matlab file signal.m creates the signal:

function f¼signal(t)
f¼ exp(-j*8*(cos(1*pi*t) + 12*pi*t)) + exp(j*2*pi*(6*t.^2-16*t));

The Matlab code for the S-method calculation is given in the sequel.

Fig. 1.35 The spectrograms for different window widths
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clear all

f¼[];

M¼128; %window width

N¼128; %TF distribution is calculated for N¼128 samples, while the

signal length is equal to M/2+N+M/2¼N+M (in addition to the

observed N samples included are M/2 samples (half of the window

width) from the left and M/2 samples to the right from the

observed N samples)

t¼-1:2/N:1-2/N;

Ld¼5; % parameter which determines the frequency domain

% window width in the S-method calculation

% signal

for m¼-M/2:1:M/2-1;

tau¼2*m/N;

f¼[f;signal(t+tau)];

end

% Calculating STFT and Spectrogram (SPEC)

for i¼1:N

w¼gausswin(length(f(:,1)),3); % Gaussian window

STFT(:,i)¼fftshift(fft(f(:,i).*w));

SPEC(:,i)¼abs(STFT(:,i)).^2;

end

% Calculating the S-method (SM)

SFP¼STFT;

SFN¼STFT;

SM¼SPEC;

for L¼1:Ld

SFP¼[zeros(1,N);SFP(1:N-1,:)];

SFN¼[SFN(2:N,:);zeros(1,N)];

SM¼SM+2*real([SFP.*conj(SFN)]);

end

% Plotting the spectrogram and the S-method

figure(1),imagesc(abs(SPEC))

figure(2),imagesc(abs(SM)) (Fig. 1.36)

1.10. Observe a general form of a constant amplitude signal with a phase function

ϕ(t): f tð Þ ¼ Ae jϕ tð Þ. Prove that the second and higher phase derivatives cause
the spreading of the concentration around the instantaneous frequency in the

case of the STFT?
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Solution:

The STFT of the signal f(t) is defined as:

STFT t;ωð Þ ¼
ð1
�1

f tþ τð Þw τð Þe� jωτdτ ¼
ð1
�1

A � e jϕ tþτð Þw τð Þe� jωτdτ: ð1:140Þ

By applying the Taylor series expansion to the phase function, we obtain:

ϕ tþ τð Þ ¼ ϕ tð Þ þ ϕ0 tð Þτ þ ϕ00 tð Þτ2=2!þ . . . ð1:141Þ

The short-time Fourier transform can be rewritten in the form:

STFT t;ωð Þ ¼ Ae jϕ tð Þ
ð1
�1

e jϕ0 tð Þτw τð Þe j ϕ00 tð Þτ2=2!þ...ð Þe� jωτdτ:

We can further develop the above expression as:

STFT t;ωð Þ ¼ Ae jϕ tð ÞFT e jϕ0 tð Þτ
n o

*ω FT w τð Þf g*ω FT e jϕ00 tð Þτ2=2!þ...
n o

:

Finally, we obtain the STFT in the form:

STFT t;ωð Þ ¼ 2πAe jϕ tð Þδ ω� ϕ0 tð Þð Þ*ω W ωð Þ*ω FT e jϕ00 tð Þτ2=2!þ...
n o

: ð1:142Þ

Note that the last term in the expression for the STFT contains second and

higher phase derivatives, and thus, wemay conclude that this termwill produce

spreading of the concentration around the instantaneous frequency ω¼ϕ0(t).

Fig. 1.36 The spectrogram (left) and the S-method (right)
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1.11. For the signal from the previous example, analyze and derive the influence of

the higher order phase derivatives in the case of the Wigner distribution.

Solution:

The Wigner distribution is defined as:

WD t;ωð Þ ¼
ð1

�1
f tþ τ=2ð Þ f * t� τ=2ð Þe� jωτdτ

¼
ð1

�1
A2e jϕ tþτ=2ð Þe� jϕ t�τ=2ð Þe� jωτdτ:

ð1:143Þ

The Taylor series expansion of the moment phase function results in:

ϕ tþ τ=2ð Þ � ϕ t� τ=2ð Þ ¼ ϕ tð Þ þ ϕ0 tð Þτ=2þ
X1
k¼2

ϕ kð Þ tð Þ τ=2ð Þk=k!
 !

�

� ϕ tð Þ � ϕ0 tð Þτ=2þ
X1
k¼2

�1ð Þkϕ kð Þ tð Þ τ=2ð Þk=k!�
 !

By using the Taylor series expansion terms in the definition of the Wigner

distribution, we obtain:

WD t;ωð Þ ¼ A2

ð1
�1

e

jϕ0 tð Þτþ2

X1
k¼1

ϕ 2kþ1ð Þ tð Þ
2k þ 1ð Þ!

τ

2

� �2kþ1

� jωτ

 !
dτ; ð1:144Þ

or in other words:

WD t;ωð Þ ¼ 2πA2δ ω� ϕ0 tð Þð Þ*ω FT e

2 j

X1
k¼1

ϕ 2kþ1ð Þ

2k þ 1ð Þ!
τ
2ð Þ2kþ1

8>><
>>:

9>>=
>>;: ð1:145Þ

Hence, we may see that only the odd phase derivatives are included in the

spread factor, causing inner-interferences and spreading of the concentration

in the time-frequency domain.

1.12. Consider a signal in the form:x tð Þ ¼ f ktð Þe jAt
2

2

� �
* 1ffiffiffiffiffiffiffiffi

2π jB
p e jt

2

2B, where * denotes

the convolution. Prove that the Wigner distribution of x(t) is equal to the

Wigner distribution of f(t) in the rotated coordinate system:
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WDx t;ωð Þ ¼ WD f t cos α� ω sin α,ω cos αþ t sin αð Þ;

where k ¼ 1= cos α, B ¼ sin α= cos α, A ¼ � sin α cos α.

Solution:

The signal x(t) can be written as a convolution of two signals:

x tð Þ ¼ f 1 tð Þ* f 2 tð Þ;

where f 1 tð Þ ¼ f ktð Þe jAt2=2 and f 2 tð Þ ¼ 1ffiffiffiffiffiffiffiffi
2π jB

p e jt2=2B.

It means that the Fourier transform of x(t) can be written as:

X ωð Þ ¼ F1 ωð ÞF2 ωð Þ ¼ F1 ωð Þe jBω2=2; ð1:146Þ

where,

F2 ωð Þ ¼ FT
1ffiffiffiffiffiffiffiffiffiffiffi
2π jB

p e jt2=2B

� �
¼ e jBω2=2: ð1:147Þ

Furthermore, the Wigner distribution of x(t) can be obtained by using X(ω)
as follows:

WDx t;ωð Þ ¼
ð1

�1
X ωþ θ=2ð ÞX* ω� θ=2ð Þe jθtdθ

¼
ð1

�1
F1 ωþ θ=2ð ÞF2 ωþ θ=2ð ÞF1

* ω� θ=2ð ÞF2
* ω� θ=2ð Þe jθtdθ

¼
ð1

�1
F1 ωþ θ=2ð ÞF1

* ω� θ=2ð Þe� jB ωþθ=2ð Þ2=2þ jB ω�θ=2ð Þ2=2e jθtdθ

¼
ð1

�1
F1 ωþ θ=2ð ÞF1

* ω� θ=2ð Þe�jBωθe jθtdθ

Hence, the following relation holds:

WDx t;ωð Þ ¼ WD f 1 t� Bω,ωð Þ: ð1:148Þ
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Furthermore, we calculate the Wigner distributionWD f 1 t;ωð Þ of the signal
f1(t) as follows:

WD f 1 t;ωð Þ ¼
ð1

�1
f k tþ τ=2ð Þð Þ f * k t� τ=2ð Þð Þe jA tþτ=2ð Þ2=2e� jA t�τ=2ð Þ2=2e� jωτdτ

¼
ð1

�1
f k tþ τ=2ð Þð Þ f * k t� τ=2ð Þð ÞejAtτe� jωτdτ

¼
ð1

�1
f k tþ τ=2ð Þð Þ f * k t� τ=2ð Þð Þe� jkτ ω�Atð Þ=kð Þdτ:

The Wigner distribution WD f 1 t;ωð Þ can be thus expressed as:

WD f 1 t;ωð Þ ¼ WD f kt,ω=k � Atð Þ: ð1:149Þ

Consequently, from Eqs. (1.148) and (1.149) we have:

WDx t;ωð Þ ¼ WD f kt� B ω=k � Aktð Þ,ω=k � Aktð Þ; ð1:150Þ

or

WDx t;ωð Þ ¼ WD f 1þ BAð Þkt� Bω=k,ω=k � Akt½ �:

By substituting the given parameters: k¼ 1/cos α, B¼ sin α/cos α, A¼ –sin

α cos α, we obtain:

WDx t;ωð Þ ¼ WD f t cos α� ω sin α,ω cos αþ t sin αð Þ: ð1:151Þ

The rotation of the coordinate system is defined as:

tr
ωr

� �
¼ cos α � sin α

sin α cos α

� �
t
ω

� �
:

1.13. By using the recursive procedure for the calculation of the Haar transform

(un-normalized Haar transform can be used), perform the first level

decomposition of a given 8� 8 image. Use the one-dimensional decomposi-

tion of image rows in the first step, and then the decomposition of image

columns.
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10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

10 10 10 10 26 10 10 10

18 18 18 18 26 18 18 18

10 10 10 10 26 10 10 10

Solution:

First we perform the first level decomposition along the image rows. Hence,

for each row, it is necessary to calculate the mean values and differences

(details). Then the resulted matrix should be used to perform the decompo-

sition along columns. The low-frequency image content is obtained in the

first quadrant, while the remaining parts contain image details.

Decomposition of rows Decomposition of columns

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

18 18 22 18 0 0 4 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

10 10 18 10 0 0 8 0

14 14 20 14 0 0 6 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 4 2 4 0 0 � 2 0

1.14. Consider the function f(t) in the form:

f tð Þ ¼ t2 þ t, 0 � t < 1,
0, otherwise:

�

By using the Haar wavelets calculate the expansion coefficients:

s j0 kð Þ ¼
ð
t

f tð Þφ j0,k
tð Þdt, d j kð Þ ¼

ð
t

f tð Þψ j,k tð Þdt, for j0 ¼ 0:
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Solution:

s0 0ð Þ ¼
ð1
0

t2 þ t
� �

φ0,0 tð Þdt ¼
ð1
0

t2 þ t
� �

dt ¼ t3

3

1

0

���� þ t2

2

1

0

���� ¼ 5

6

d0 0ð Þ ¼
ð1
0

t2 þ t
� �

ψ0,0 tð Þdt ¼
ð0:5
0

t2 þ t
� �

dt�
ð1
0:5

t2 þ t
� �

dt ¼ �0:5

d1 0ð Þ ¼
ð1
0

t2 þ t
� �

ψ1,0 tð Þdt ¼
ð0:25
0

t2 þ t
� � ffiffiffi

2
p

dt�
ð0:5

0:25

t2 þ t
� � ffiffiffi

2
p

dt ¼ � 3
ffiffiffi
2

p

32

d1 1ð Þ ¼
ð1
0

t2 þ t
� �

ψ1,1 tð Þdt ¼
ð0:75
0:5

t2 þ t
� � ffiffiffi

2
p

dt�
ð1

0:75

t2 þ t
� � ffiffiffi

2
p

dt ¼ � 5
ffiffiffi
2

p

32

f tð Þ ¼ 5

6
φ0,0 tð Þ|fflfflfflffl{zfflfflfflffl}
V0

þ � 1

2
ψ0,0 tð Þ

 �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

W0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V1¼V0
W0

þ � 3
ffiffiffi
2

p

32
ψ1,0 tð Þ � 5

ffiffiffiffiffi
32

p

32
ψ1,1 tð Þ

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V2¼V1
W1¼V0
W0
W1

þ . . .

1.15. Consider the signal illustrated below and perform the Haar wavelet decom-

position (e.g., unnormalized 3-level decomposition) (Fig. 1.37).

Solution (Fig. 1.38):

1.16. The signal in the form y ¼ sin πt=2ð Þ, t 2 �4, 4ð Þ, should be sampled using

the step T ¼ 1=2 and then quantized. Perform the Haar decomposition on the

resulting signal (up to the second level).

Solution (Fig. 1.39):

Fig. 1.37 The signal f(0)
before decomposition
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Fig. 1.38 Signal decomposition

Fig. 1.39 The original and quantized signal
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The first level of decomposition is shown in Fig. 1.40.

The second level decomposition is shown in Fig. 1.41.

1.17. Perform the Haar decomposition for a signal in the form: fj tð Þ ¼
X2 j�1

k¼0

akφj,k tð Þ,
where the scale is j ¼ 2; while the approximation coefficients a are given by:

a ¼ 2, � 1, 3, 4½ �. Recall that the details and approximation coefficients in the

case of discrete Haar transform are calculated as:

dk ¼ 1ffiffiffi
2

p a2k � a2kþ1ð Þand sk ¼ 1ffiffiffi
2

p a2k þ a2kþ1ð Þ:

Solution:

For j¼ 2, the signal fj(t) can be written as:

f 2 tð Þ ¼
X3
k¼0

akφ2,k tð Þ ¼ a0φ2,0 tð Þ þ a1φ2,1 tð Þ þ a2φ2,2 tð Þ þ a3φ2,3 tð Þ:

4 3 2 1 0 1 2 3 4- t

2

4

2 2

4

+

2

4
-

2 2

4
-

(1)y

4 3 2 1 0 1 2 3 4- t

2

4

2

4
-

(1) (0) (1)d y y=

2 2

4

-

( 2 2)

4

-

-- ----

- - --

-

+

Fig. 1.40 First level decomposition
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The basic scaling function is given by:

φ j,k tð Þ ¼ 2 j=2φ 2 jt� k
� � ¼ 2φ 4t� kð Þ, where j¼ 2 and k¼ 0, . . ., 2j�1.

Consequently, we have:

φ2,0 tð Þ ¼ 2φ 4tð Þ ¼ 2, t 2 0, 1=4ð Þ
0, otherwise

(
φ2,2 tð Þ ¼ 2φ 4t� 2ð Þ ¼ 2, t 2 1=2, 3=4ð Þ

0, otherwise

(

φ2,1 tð Þ ¼ 2φ 4t� 1ð Þ ¼ 2, t 2 1=4, 1=2ð Þ
0, otherwise

(
φ2,3 tð Þ ¼ 2φ 4t� 3ð Þ ¼ 2, t 2 3=4, 1ð Þ

0, otherwise

(

The function f2(t) is illustrated in Fig. 1.42.

The approximation on scale j¼ 1 is given by:

f 1 tð Þ ¼
X21�1

k¼0

s1,kφ1,k tð Þ ¼ s1,0φ1,0 tð Þ þ s1,1φ1,1 tð Þ

4 3 2 1 0 1 2 3 4 t

1 2

2

(2)y

1 2

2

4 3 2 1 0 1 2 3 4 t

2

4

2

4

(2) (1) (2)d y y
2 2

4

2 2

4

+

+

+

+

-

-

-

--

=

----

- -

-

Fig. 1.41 Second level decomposition
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The coefficients of the approximation are calculated as follows:

s1,0 ¼ 1ffiffiffi
2

p a0 þ a1ð Þ ¼ 1ffiffiffi
2

p 2� 1ð Þ ¼
ffiffiffi
2

p

2
;

s1,1 ¼ 1ffiffiffi
2

p a2 þ a3ð Þ ¼ 1ffiffiffi
2

p 3þ 4ð Þ ¼ 7
ffiffiffi
2

p

2
:

The scaling function on the scale j¼ 1 is of the form:

φ1,0 tð Þ ¼ ffiffiffi
2

p
φ 2tð Þ ¼

ffiffiffi
2

p
, t 2 0, 1=2ð Þ

0, otherwise

�

φ1,1 tð Þ ¼ ffiffiffi
2

p
φ 2t� 1ð Þ ¼

ffiffiffi
2

p
, t 2 1=2, 1ð Þ

0, otherwise

�

From the above equations we can write the function f1(t):

f 1 tð Þ ¼
ffiffiffi
2

p

2
φ1,0 tð Þ þ 7

ffiffiffi
2

p

2
φ1,1 tð Þ:

Furthermore, the details on the scale j¼ 1 are calculated as follows:

g1 tð Þ ¼
X21�1

k¼0

d1,kψ1,k tð Þ ¼ d1,0ψ1,0 tð Þ þ d1,1ψ1,1 tð Þ;

where d1,0 and d1,1 are:

2 ( )f t

1

2

3

2 2 4

5

2 3 6

7

2 4 8

0
1

2 ( 1) 2

1/ 4 2 / 4 3 / 4 1

=.

-
--

=.

=.

=.

Fig. 1.42 Illustration

of the function fj(t) on
the scale j¼ 2
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d1,0 ¼ 1ffiffiffi
2

p a0 � a1ð Þ ¼ 1ffiffiffi
2

p 2þ 1ð Þ ¼ 3
ffiffiffi
2

p

2
;

d1,1 ¼ 1ffiffiffi
2

p a2 � a3ð Þ ¼ 1ffiffiffi
2

p 3� 4ð Þ ¼ �
ffiffiffi
2

p

2
;

while ψ1,0(t) and ψ1,1(t) are defined using ψ j,k tð Þ ¼ 2 j=2ψ 2 jt� k
� �

:

ψ1,0 tð Þ ¼ 21=2ψ 2tð Þ ¼
ffiffiffi
2

p
, t 2 0, 1=4ð Þ

� ffiffiffi
2

p
, t 2 1=4, 1=2ð Þ

(

ψ2,1 tð Þ ¼ 21=2ψ 2t� 1ð Þ ¼
ffiffiffi
2

p
, t 2 1=2, 3=4ð Þ

� ffiffiffi
2

p
, t 2 3=4, 1ð Þ

(

The illustrations of the function f1(t) and details g1(t) are given in Fig. 1.43.
The approximation and details on the scale j¼ 0 are given by:

f 0 tð Þ ¼
X20�1

k¼0

s0,kφ0,k tð Þ ¼ s0,0φ0,0 tð Þ,

s0,0 ¼
ffiffiffi
2

p

2
s1,0 þ s1,1ð Þ ¼

ffiffiffi
2

p

2

ffiffiffi
2

p

2
þ 7

ffiffiffi
2

p

2

 �
¼ 4:

The basic scaling function is in the form:

φ0,0 tð Þ ¼ 1, t 2 0; 1ð Þ
0, otherwise

�
:

The details are defined by the function:

1( )f t

1

2

3

4

5

6

7

8

0
1/ 2 1

1( )g t

3 2
2

2

0 1/ 2 11/ 4 3 / 4

3 2
2

2

2
2

2

2
2 ( )

2

.

.

.

.

-

-

Fig. 1.43 Illustration of the function f1(t) and details g1(t) on the scale j¼ 1
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g0 tð Þ ¼
X20�1

k¼0

d0,kψ0,k tð Þ ¼ d0,0ψ0,0 tð Þ,

d0,0 ¼
ffiffiffi
2

p

2
s1,0 � s1,1ð Þ ¼

ffiffiffi
2

p

2

ffiffiffi
2

p

2
� 7

ffiffiffi
2

p

2

 �
¼ �3;

or in other words: g0 tð Þ ¼ �3ψ0,0 tð Þ. The illustrations of f0(t) and g0(t) are

given in Fig. 1.44.

1.18. Starting from the dilation equation:

φ tð Þ ¼
XN�1

k¼0

s kð Þ
ffiffiffi
2

p
φ 2t� kð Þ; ð1:152Þ

and using the filter coefficients h(k), where s kð Þ ¼ ffiffiffi
2

p
h kð Þ and

XN�1

k¼0

h kð Þ ¼ 1,

show that the Fourier transform Φ(ω) of scaling function φ(t) is equal to the

product of filter frequency responses:

Φ ωð Þ ¼
Y1
i¼1

H
ω

2i

 �
:

Solution:

The Fourier transform of the scaling function can be calculated as:

Φ ωð Þ ¼
ð1

�1
φ tð Þe� jωtdt ¼ 2

XN�1

k¼0

h kð Þ
ð1

�1
φ 2t� kð Þe� jωtdt

¼
XN�1

k¼0

h kð Þ
ð1

�1
φ xð Þe� jω xþkð Þ=2dx ¼

XN�1

k¼0

h kð Þe� jωk=2

ð1
�1

φ xð Þe� jωx=2dx:

ð1:153Þ

0 ( )f t

1

2

3

4

5

6

7

8

0
1

0 ( )g t

3

2

1

0

1

2

3

4

1

-
-
-

Fig. 1.44 Illustration of the function f0(t) and details g0(t) on the scale j¼ 0
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From Eq. (1.153) we may observe that:

Φ ωð Þ ¼ Φ
ω

2

� �XN�1

k¼0

h kð Þe� jωk=2 ¼ Φ
ω

2

� �
H

ω

2

� �
ð1:154Þ

Hence, by applying the recursion we obtain:

Φ ωð Þ ¼ H
ω

2

� �
H

ω

4

� �
. . .H

ω

2n

� �
Φ

ω

2n

� �
: ð1:155Þ

Having in mind that: limn!1 Φ ω
2n

� � ¼ Φ 0ð Þ ¼
ð1

�1
φ tð Þdt ¼ 1, the Fourier

transform of the scaling function is obtained in the form:

Φ ωð Þ ¼
Y1
i¼1

H
ω

2i

 �
: ð1:156Þ

1.19. Consider a case of Daubechies orthogonal filter of size N¼ 6 (6-tap filter).

Write the system of equations for the calculation of filter coefficients.

Solution:

Condition 1: h2 0ð Þ þ h2 1ð Þ þ h2 2ð Þ þ h2 3ð Þ þ h2 4ð Þ þ h2 5ð Þ ¼ 1 1ð Þ
Condition 2:h 0ð Þh 2ð Þ þ h 1ð Þh 3ð Þ þ h 2ð Þh 4ð Þ þ h 3ð Þh 5ð Þ ¼ 0 2ð Þ
Condition 3: h ¼ h 5ð Þ, h 4ð Þ, h 3ð Þ, h 2ð Þ, h 1ð Þ, h 0ð Þð Þ

h 0ð Þh 4ð Þ þ h 1ð Þh 5ð Þ þ h 2ð Þh 6ð Þ þ h 3ð Þh 7ð Þ ¼ 0

h 0ð Þh 4ð Þ þ h 1ð Þh 5ð Þ ¼ 0 3ð Þ

Condition 4: g ¼ h 5ð Þ, � h 4ð Þ, h 3ð Þ, � h 2ð Þ, h 1ð Þ, � h 0ð Þð Þ
Condition 5: g

0 ¼ �h 0ð Þ, h 1ð Þ, � h 2ð Þ, h 3ð Þ, � h 4ð Þ, h 5ð Þð Þ
Condition 6: H 0ð Þ ¼ ffiffiffi

2
p

H ωð Þ ¼
X5
k¼0

h kð Þe jkω ¼ h 0ð Þe0 þ h 1ð Þe jω þ h 2ð Þe j2ω þ h 3ð Þe j3ω þ h 4ð Þe j4ω þ h 5ð Þe j5ω

H 0ð Þ ¼ ffiffiffi
2

p ) h 0ð Þ þ h 1ð Þ þ h 2ð Þ þ h 3ð Þ þ h 4ð Þ þ h 5ð Þ ¼ ffiffiffi
2

p
4ð Þ

Condition 7: H kð Þ πð Þ ¼ 0, f or k ¼ 0, 1, . . . ,N=2� 1

H 0ð Þ πð Þ ¼ 0 ) h 0ð Þ � h 1ð Þ þ h 2ð Þ � h 3ð Þ þ h 4ð Þ � h 5ð Þ ¼ 0 5ð Þ
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H 1ð Þ ωð Þ ¼ jh 1ð Þe jω þ 2 jh 2ð Þe2 jω þ 3 jh 3ð Þe3 jω þ 4 jh 4ð Þe4 jω þ 5 jh 5ð Þe5 jω
H 1ð Þ πð Þ ¼ 0 ) h 1ð Þ � 2h 2ð Þ þ 3h 3ð Þ � 4h 4ð Þ þ 5h 5ð Þ ¼ 0 6ð Þ
H 2ð Þ ωð Þ ¼ �h 1ð Þe jω � 4h 2ð Þe2 jω � 9h 3ð Þe3 jω � 16h 4ð Þe4 jω � 25h 5ð Þe5 jω
H 2ð Þ πð Þ ¼ 0 ) h 1ð Þ � 4h 2ð Þ þ 9h 3ð Þ � 16h 4ð Þ þ 25h 5ð Þ ¼ 0 7ð Þ

The system of equations for the calculation of filter coefficients is given by:

h2 0ð Þ þ h2 1ð Þ þ h2 2ð Þ þ h2 3ð Þ þ h2 4ð Þ þ h2 5ð Þ ¼ 1 1ð Þ
h 0ð Þh 2ð Þ þ h 1ð Þh 3ð Þ þ h 2ð Þh 4ð Þ þ h 3ð Þh 5ð Þ ¼ 0 2ð Þ
h 0ð Þh 4ð Þ þ h 1ð Þh 5ð Þ ¼ 0 3ð Þ
h 0ð Þ þ h 1ð Þ þ h 2ð Þ þ h 3ð Þ þ h 4ð Þ þ h 5ð Þ ¼ ffiffiffi

2
p

4ð Þ
h 0ð Þ � h 1ð Þ þ h 2ð Þ � h 3ð Þ þ h 4ð Þ � h 5ð Þ ¼ 0 5ð Þ
h 1ð Þ � 2h 2ð Þ þ 3h 3ð Þ � 4h 4ð Þ þ 5h 5ð Þ ¼ 0 6ð Þ
h 1ð Þ � 4h 2ð Þ þ 9h 3ð Þ � 16h 4ð Þ þ 25h 5ð Þ ¼ 0 7ð Þ

A solution of the system is:

h(0)�0.332671, h(1)�0.806892, h(2)�459878, h(3)��0.135011,

h(4)�� 0.0854413, h(5)�0.0352263.

1.20. Determine the Hermite expansion coefficients, for a short discrete

one-dimensional signal X given below.

X ¼ 1332:4 1313:4 1148:4 1243:2 735:7 861:9 1261:1 1438:1 1443:9 1454:1½ �;

Solution:

The signal consists of M¼ 10 samples. After subtracting the baseline from

the original signal X, we obtained the following vector which is used for

Hermite expansion:

f ¼ �12:175 � 43:35 � 220:525 � 137:825 � 657:5 � 543:55 � 156:475 8:35 1:925 0½ �;

The zeros of the Hermite polynomial of order ten are (Table 1.2):

xm ¼ �3:4362 � 2:5327 � 1:7567 � 1:0366 � 0:3429 0:3429 1:0366 1:7567 2:5327 3:4362½ �;
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The first ten Hermite functions, calculated for xm, are given below:

ψ0 0:0021 0:0304 0:1605 0:4389 0:7082 0:7082 0:4389 0:1605 0:0304 0:0021

ψ1 � 0:0100 � 0:1089 � 0:3989 � 0:6434 � 0:3435 0:3435 0:6434 0:3989 0:1089 0:0100

ψ2 0:0328 0:2542 0:5871 0:3566 � 0:3830 � 0:3830 0:3566 0:5871 0:2542 0:0328

ψ3 � 0:0838 � 0:4368 � 0:5165 0:2235 0:3877 � 0:3877 � 0:2235 0:5165 0:4368 0:0838

ψ4 0:1753 0:5622 0:1331 � 0:4727 0:2377 0:2377 � 0:4727 0:1331 0:5622 0:1753

ψ5 � 0:3060 � 0:5098 0:3141 0:1100 � 0:3983 0:3983 � 0:1100 � 0:3141 0:5098 0:3060

ψ6 0:4471 0:2323 � 0:4401 0:3657 � 0:1382 � 0:1382 0:3657 � 0:4401 0:2323 0:4471

ψ7 � 0:5378 0:1575 0:1224 � 0:3044 0:3941 � 0:3941 0:3044 � 0:1224 � 0:1575 0:5378

ψ8 0:5058 � 0:4168 0:3041 � 0:1843 0:0617 0:0617 � 0:1843 0:3041 � 0:4168 0:5058

ψ9 � 0:3123 0:3491 � 0:3672 0:3771 � 0:3815 0:3815 � 0:3771 0:3672 � 0:3491 0:3123

Furthermore, the constants μ p
M�1 xmð Þ are calculated by using the Hermite

functions:

μ p
M�1 xmð Þ ¼ ψ p xmð Þ

ψ
M�1

xmð Þ� �2 , p ¼ 0, . . . , 9:

The obtained matrix is:

μ09 0:0210 0:2494 1:1904 3:0868 4:8662 4:8662 3:0868 1:1904 0:2494 0:0210

μ19 � 0:1022 � 0:8934 � 2:9573 � 4:5253 � 2:3598 2:3598 4:5253 2:9573 0:8934 0:1022

μ29 0:3362 2:0864 4:3533 2:5082 � 2:6317 � 2:6317 2:5082 4:3533 2:0864 0:3362

μ39 0:8598 � 3:5851 � 3:8294 1:5719 2:6636 � 2:6636� 1:5719 3:8294 3:5851 0:8598

μ49 1:7980 4:6137 0:9867 � 3:3244 1:6333 1:6333 � 3:3244 0:9867 4:6137 1:7980

μ59 � 3:1384 � 4:1838 2:3289 0:7735 � 2:7366 2:7366 � 0:7735 � 2:3289 4:1838 3:1384

μ69 4:5848 1:9062 � 3:2628 2:5718 � 0:9492 � 0:9492 2:5718 � 3:2628 1:9062 4:5848

μ79 � 5:5153 1:2929 0:9076 � 2:1412 2:7076 � 2:7076 2:1412 � 0:9076 � 1:2929 5:5153

μ89 5:1871 � 3:4203 2:2549 � 1:2959 0:4237 0:4237 � 1:2959 2:2549 � 3:4203 5:1871

μ99 � 3:2023 2:8647 � 2:7229 2:6520 � 2:6212 2:6212 � 2:6520 2:7229 � 2:8647 3:2023

The resulting vector of the Hermite expansion coefficients c is (for the sake of
simplicity the constants are written with two-decimal places):

c ¼ �701:61 90:30 140:84 77:5 �140:56 2:08 94:06 �54:75 �52:74 88:06½ �;

In order to verify the results, we can now reconstruct the signal using the

Hermite expansion coefficients c. The samples of reconstructed signal are

given below:

Xr ¼ 1332:4 1313:4 1148:4 1243:2 735:7 861:9 1261:1 1438:1½
1443:9 1454:1�;

Note that the reconstructed signal is equal to the original one.
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1.21. In this example, we provide the Matlab code for the Hermite projection

method, which is used to obtain the illustrations in Fig. 1.28. For the sake

of simplicity, instead of the signal values at zeros of Hermite polynomials

f(xm), we can use original signal values f(x).

Solution:

N¼126; % signal length

n¼70; % the number of Hermite functions

%thefunctionthatcalculatesthezerosoftheHermitepolynomial

xm¼hermite_roots(N);

% function that calculates Hermite functions

y¼psi(n,xm);

% Loading a one-dimensional signal

load sig1.mat

x¼signal1;

% Removing the baseline

i¼1:N;

baseline¼x(1)+(x(N)-x(1))/N.*i;

f¼x-baseline;

% Calculating Hermite coefficients

for i¼1:n

mi(i,:)¼y(i,:)./(y(N,:)).^2;

Mi(i)¼1/N*sum(mi(i,:).*f);

end

c¼Mi;

ff¼zeros(1,length(xm));

for ii¼1:length(xm)

for i¼1:n

ff(ii)¼ff(ii)+c(i)*y(i,ii);

end

end

% Signal reconstruction

ss¼ff+baseline;

figure,plot((ss))

Matlab function psi.m that is used for the recursive calculation of the

Hermite functions is given in the sequel:

function y¼psi(n,x);

Psi¼zeros(n,length(x));

psi0¼1./(pi^(1/4)).*exp(-x.^2/2);

psi1¼sqrt(2).*x./(pi^(1/4)).*exp(-x.^2/2);
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Psi(1,:)¼psi0; Psi(2,:)¼psi1;

for i¼2:180

Psi(i+1,:)¼x.*sqrt(2/i).*Psi(i,:)-sqrt((i-1)/(i)).*Psi(i-1,:);

end

y¼Psi;

1.22. Consider a signal with M¼ 16 samples, given by:

x nð Þ ¼ e� j2π4n=M, n ¼ 0, 1, . . . , 15:

Calculate the nonoverlapping STFTs using the following sets:

W¼{W4,W4,W8} and W¼{W2,W4,W4,W2,W1,W1}.

Compare these two different representations using the concentration mea-

sure (smaller μ means better concentration):

μ S n; kð Þð Þ ¼ Sk k1 ¼
X
n

X
k

S n; kð Þj j:

Solution:

The two considered transform matrices are given by:

W ¼
W4 0 0

0 W4 0

0 0 W8

2
4

3
5, W ¼

W2 0 . . . 0 . . . 0 0

0 W4 0

. . . W4 . . .
W2

0 W2 0

. . . W1 . . .
0 0 . . . 0 . . . W1

2
666666664

3
777777775

The corresponding nonoverlapping STFTs are shown in Fig. 1.45, where the

white color corresponds to zero value, and black color represents a maximal

(absolute) value of the component in one STFT.

Fig. 1.45 The nonoverlapping STFTs
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The measure of concentration in the first case is 256, while in the second

case μ¼ 295.76.

1.23. For a signal defined as follows:

x mð Þ ¼
e� j2π3n=8, n ¼ 0; . . . ; 7f g, m ¼ 0; . . . ; 7f g

0:25
e�n2H6 nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

266!
ffiffiffi
π

pq , n ¼ 0; . . . ; 7f g, m ¼ 8; . . . ; 15f g

8>><
>>:

where H6(n) is the 6th order Hermite polynomial, calculate a suitable repre-

sentation by combining the STFT and the Hermite transform (HT).

Solution:

It can be observed that the first part of the signal representation is a complex

sinusoid which can be efficiently represented by the Fourier transform.

The second half of the signal corresponds to the Hermite function of order 6:

ψ6 nð Þ ¼ e�n2H6 nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
266!

ffiffiffi
π

pq and thus the HT can be used to represent this part of signal.

The combined STFT and Hermite transform is then given by:

X¼Zx;

where the transform matrix Z is based on the combined STFT and HT and it

is given by:

Z ¼ W8 0

0 H8

� �
:

Note that W8 is 8� 8 Fourier transform matrix while H8 is 8� 8 Hermite

transform matrix. For the comparison we may also calculate the representa-

tion based on nonoverlapping STFTs using the matrix:

W ¼ W8 0
0 W8

� �
;

instead of combined matrix Z. The representation obtained using the STFT

with matrix W¼ {W8,W8} is given in Fig. 1.46a, while the representation

obtained using combined Fourier transform and Hermite transform basis is

shown in Fig. 1.46b.

As in the previous example, zero values within the representation are

illustrated using white color, while the maximal value of the representation

is illustrated using black color. Now, we may observe that the representation
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obtained using the STFT with matrix W¼ {W8,W8} (Fig. 1.46a) is well

concentrated for the first part of the signal resulting in only one non-zero

value STFT8(4,�3), which is not the case with the representation obtained for

the second part of signal defined by the time instants {8, 9, . . ., 15}. In the

case of combined representation shown in Fig. 1.46b, the concentration of

representation corresponding to the second part of the signal is improved

using H8 instead of W8 (note that only one non-zero component is obtained

given by H8(12,6), where according to the signal definition, the order of

Hermite function is 6, while the central instant is m¼ 12). The first part of the

signal is represented using W8 as in previous case. Thus, we kept the same

notations STFT8 (x,y) in Fig. 1.46b, although in this case it would be more

appropriate to use FT8 (Fourier transform) instead of STFT8.
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35. Stanković S, Orović I, Krylov A (2010) Video Frames Reconstruction based on Time-

Frequency Analysis and Hermite projection method. EURASIP Journal on Advances in Signal

Processing, Special Issue on Time-Frequency Analysis and its Application to Multimedia

signals, Article ID 970105, p. 11
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Chapter 2

Digital Audio

2.1 The Nature of Sound

The sound is created as a result of wave fluctuations around the vibrating material.

The propagation speed, frequency and sound pressure level are important sound

features. For example, the sound propagation speed through the air under normal

atmospheric conditions is 344 m/s. Since in this chapter we focus our attention to

specific types of audio signals such as speech and music, let us consider their

frequency characteristics. Music is defined as the sound that has a distinct period-

icity. Its frequency ranges from 20 Hz to 20 KHz, while in the case of speech the

frequency ranges from 50 Hz to 10 KHz. It is important to note that the human

auditory system is most sensitive to frequencies from 700 Hz to 6600 Hz.

Let us observe what affects the perception of sound in the human auditory

system. If we consider a closed room as shown in Fig. 2.1, the auditory system

receives direct and reflected waves. Reflected waves are delayed in comparison to

the direct waves. The number of reflected waves and their respective delays depend

on the geometry of the room.

The position of the sound source is perceived based on the delays between the

direct and reflected waves detected by left and right ear. The time delay between

two ears is about 0.7 ms. Here, it is interesting to mention some effects that appear

as a result of the stereo nature of the human auditory system. For example, if one

signal channel is delayed for 15 ms with respect to the other, it will be perceived as

a signal with lower amplitude, although both signals are actually of the same

amplitude. Hence, this effect can be reduced by increasing the amplitude of delayed

signal. However, the auditory system registers two different sounds if the delay

exceeds 50 ms.

The sound pressure level (SPL) is another key characteristic of audio signals.

The SPL is the ratio of the measured sound pressure to the reference pressure

(P0¼ 20 μPa). The reference pressure denotes the lowest sound pressure level that
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can be registered by the auditory system in a noise-free environment. The sound

pressure is calculated as follows:

SPL ¼ 20log10
P

P0

dB½ �: ð2:1Þ

In addition to these characteristics of acoustic signals, the Fletcher curve shown

in Fig. 2.2 is a measure of SPL over the frequency spectrum for which a listener

perceives a constant loudness when presented with pure steady tones. From

Fig. 2.2, it can be observed that the human auditory system has a nonlinear

sensitivity to the frequency.

2.2 Development of Systems for Storing and Playback
of Digital Audio

The first system for audio recording and playback dates back to 1877 (the Edison

phonograph). The first gramophone dates back to 1893. Electrical playback systems

began replacing mechanical systems in 1925. The broadcast of AM (amplitude

Fig. 2.1 An illustration of

sound propagation within a

closed room

Fig. 2.2 The Fletcher curve
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modulated) audio signals began in 1930. The LP (Long Play) system with a

playback time of about 25 min was developed in 1948. This brief review of some

of the inventions testifies that the audio industry has developed significantly over

the last 100 years. For example, the first gramophones could play recordings about

2 min long, and the system used 78 revolutions per minute. The frequency range of

the system was 200 Hz–3 KHz and its dynamic range was 18 dB. The later systems

had the extended frequency range (30 Hz–15 KHz), with the dynamic range being

65 dB.

Efforts to improve the performance of audio devices have led to the use of tape

recorders during the 1960s and 1970s. The development of Compact disc (CD)

began during 1970s, when Mitsubishi, Sony, and Hitachi demonstrated the Digital

Audio Disc (DAD). DAD was 30 cm in diameter. Philips and Sony continued to

work together on this system. As a result, they produced a disc with a diameter of

12 cm in the early 1980s. The capacity of the disc was 74 min. A further develop-

ment of the CD technology led to the development of mini discs, Digital Versatile

Discs (DVD), Super Audio CDs (SACD).

Along with the development of digital audio devices, there was a growing need

to develop systems for Digital Audio Broadcasting (DAB). The used bandwidth is

1.54 MHz. The frequency blocks are arranged as: 12 frequency blocks in the range

87–108 MHz, 39 blocks in the VHF band (174–240 MHz) and 23 frequency blocks

in the L band (1452–1492 MHz). An example of DAB system is given in Fig. 2.3,

showing the general principle of combining different signals and their transmission

in digital form.

Fig. 2.3 Block diagram of a DAB system
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2.3 Effects of Sampling and Quantization on the Quality
of Audio Signal

Sampling is the first step in digitalization of analog signals. Recall that sampling

causes periodic extensions in the frequency domain. If the discretization is

performed according to the sampling theorem, then the basic part of the signal

spectrum will not overlap with periodic extensions. However, if the sampling rate is

not sufficiently high, then there is a spectrum overlap (or aliasing) (Fig. 2.4).

The signal spectrum is extracted by using antialiasing filters with steep transition

from pass to stop regions (a filter example is shown in Fig. 2.5). Note that filters

with steep transitions are usually the higher order ones.

In many real applications, it is necessary to use more economic versions of

antialiasing filters of lower orders. Therefore, the sampling rate is increased beyond

what is required by the sampling theorem in order to allow for less steeper

transitions. For example, the sampling frequency used for a CD is equal to

44.1 KHz, although the maximum frequency we want to reproduce is 20 KHz.

A sample and hold circuit that can be used for sampling of analog signals is

shown in Fig. 2.6. A switching element is controlled by the signal fs, which defines
the sampling frequency. The operational amplifier provides high resistance, and

thus a large time constant for the capacitor C to discharge. Thus, the voltage on the

capacitor is changed slightly between the two control pulses fs.

Fig. 2.4 Aliasing effects

Fig. 2.5 An example of

antialiasing filter with a

steep transition
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The next step after the sampling process is the quantization. Analog signals can

have infinitely many different values, but a number of quantization levels is limited.

As a result, the signal after quantization can meet only a certain degree of accuracy,

as defined by the number of quantization levels. In other words, the quantization

introduces the quantization noise. A relationship between the signal-to-noise ratio

(S/N or SNR) and the number of bits (which is determined by the number of

quantization levels) can be easily determined. Suppose that the probability density

function of quantization error is uniform, as shown in Fig. 2.7.

The number of quantization levels in an n-bit system is denoted asM¼ 2n. Now,

consider a sinusoidal signal with the amplitude V/2. Then, the quantization interval

is Q¼V/(M�1). Since the quantization noise is uniformly distributed in the range

[�Q/2, Q/2], the quantization noise power is equal to:

N ¼ 2

Q

ðQ=2
0

x2dx ¼ 2

Q

Q=2ð Þ3
3

¼ Q2

12
: ð2:2Þ

On the other hand, the power of a sinusoidal signal is equal to:

P ¼ 1

2π

ð2π
0

V

2

� �2

sin 2x dx ¼ 1

2π

V2

4

ð2π
0

1� cos 2x

2
dx ¼ V2

8
: ð2:3Þ

Fig. 2.6 A circuit for signal

sampling

Fig. 2.7 The probability

density function of the

quantization error
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Therefore, S/N in the n-bit system is given by:

S=N ¼ P

N
¼ V2=8

V2= 22n=12
� � ¼ 3

2
22n; ð2:4Þ

or equivalently:

S=N dB½ � ¼ 10log
S

N
¼ 10log

3

2
þ 10log22n ¼ 1:76þ 6n: ð2:5Þ

For example, if we use 16 bits to quantize the signal, then S/N �98 dB.

2.3.1 Nonlinear Quantization

The previous section discussed a uniform quantization approach (where each

quantization interval Q is identical). However, we can assign the quantization

levels in a nonlinear manner. For instance, the quantization levels can be adjusted

according to the input signal amplitude, such that a small amplitude signal will have

smaller quantization intervals, and vice versa.

A process of nonlinear quantization of a variable x can be described as follows.

First x is transformed (compressed) by using the nonlinear function f(x), which is

then linearly quantized. The quantized values are then processed (expanded) by the

inverse nonlinear function f�1. Lastly, for a nonlinear quantizer we have:

Q xð Þ ¼ f�1 Qu f xð Þð Þð Þ; ð2:6Þ

where Qu(x) denotes a linear quantizer. A typical function for nonlinear quantiza-

tion is the A-law which is defined as follows:

F xð Þ ¼ Ax= 1þ lnAð Þ for 0 < x � V=A,

V 1þ ln Ax=Vð Þð Þ= 1þ lnAð Þ for V=A � x � V;

�
ð2:7Þ

where A is a constant that controls the compression ratio, while the peak magnitude

of the input signal is labelled as V. In practice, A¼ 87.6 is often used.

Figure 2.8 depicts the process of nonlinear quantization. The x-axis represents
the normalized amplitude of the input signal, while the y-axis represents the values
of quantization intervals. For example, when the signal amplitude drops four times

(�12 dB), the quantization interval is 3/4Q.
The concept of nonlinear quantization is applied in other schemes such as the

floating-point conversion, which is used in professional audio systems. The princi-

ple of floating-point conversion is shown in Fig. 2.9.

This system is based on the principle of a logarithmic scale. Namely, the signal is

sent through several parallel circuits with different gains ensuring that the input to
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linear A/D converter is always a signal whose level is suitable for linear conversion.

The converted part of the signal is called the mantissa.

Information on the signal amplitude is provided through the second part of the

system, whose output is a binary value called the exponent. Note that with three bits

of the exponent we can achieve a conversion of signals with the following gains:

0, 6, 12, 18, 24, 30, 36 and 42 dB. Hence, we can effectively digitize signals with

very different amplitude levels, which is often a practical demand for audio signals.

A typical S/N curve for a signal based on an 8-bit mantissa and a 3-bit exponent is

illustrated in Fig. 2.10.

It should be noted that although it is a 11-bit system, the S/N is between 42 and

48 dB, and its maximum value is defined by the mantissa.

Fig. 2.8 Nonlinear quantization

Fig. 2.9 Floating-point conversion
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2.3.2 Block Floating-Point Conversion

This is a special case of floating-point conversion, used when a low bandwidth is

required. Namely, the exponent is not associated with every sample, but it is done

for a block of successive samples. In this way, a considerable bit rate reduction is

enabled. This technique is also known as near-instantaneous companding.

2.3.3 Differential Pulse Code Modulation (DPCM)

Using the previous conversion techniques, we analyze each sample separately in

order to prepare it for transmission. In the case of differential pulse code modula-

tion, the differences between neighboring samples are transmitted.

This modulation is a form of predictive coding in which the prediction for the

current sample is carried out on the basis of the previous sample. It is particularly

efficient when a small sampling period is used, since the differences between

adjacent samples are very small and practically related to a single bit (the least

significant bit). Sigma delta converters are used for this type of conversion. Note that

the serial bit stream is impractical, and therefore digital filters (decimation filters) are

usually applied to convert the serial stream into a multibit format (e.g., 16 bits for the

CD system). A block scheme of a single-bit A/D converter is shown in Fig. 2.11.

Fig. 2.10 S/N ratio for a considered floating-point converter (8-bit mantissa and 3-bit exponent)

Fig. 2.11 Single-bit A/D converter
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2.3.4 Super Bit Mapping

In the CD technology, audio signals are usually encoded with 16 bits. In some cases

(e.g., professional audio studios), 20 bits are used for encoding of audio signal.

Then, the super bit mapping is used to convert 20-bit signals to 16-bit signals. The

additional four bits are used to increase the accuracy of the least significant bits of

the 16-bit signal. Super bit mapping takes the advantage of the nonlinear frequency

response of human auditory system. The noise shaping technique is applied to

distribute digital quantization noise in the areas of frequency response where the ear

is much less sensitive (higher and lower frequencies). Using this technique, the

perceptual quality equivalent to 20-bit sound is available on a standard compact

disc.

2.4 Speech Signals

The system for generating speech signals is illustrated in Fig. 2.12. We can see that

the lungs initialize the air flow through the trachea and larynx to the mouth. The lips

form a longitudinal wave that will spread further through the air.

Note that the air flow is modulated by passing through the larynx and the vocal

folds. Therefore, the vocal folds generate waves that pass through the mouth and the

nasal cavity. The observed system for the voice production can be viewed through

two subsystems called glottal and vocal tract. The glottal tract (up to the beginning

of the pharynx) generates waves under the influence of the vocal folds, while the

vocal tract works as a set of resonators and filters, which modulate and shape the

wave in order to make specific sounds.

Fig. 2.12 An illustration of

the speech generation

system
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As the speech sounds can be divided into vowels and consonants, it is necessary

to describe how they are formed within the speech production system. When

generating vowels, the vocal folds resonate and produce quasi-periodic oscillating

impulses that continue to be shaped in the vocal tract where the oral cavity acts as a

resonator. During this process, some of the frequencies are attenuated, while others

are amplified. By examining the spectrum of vowels, we can notice some harmonics

that dominate over other components. These harmonics are called the formants and

they actually represent the resonant frequencies of vocal tract. When analyzing the

speech signal, we can often observe the first four formants. The structure of

formants in the time-frequency domain is shown in Fig. 2.13.

The strongest formants for the vowel A range from 700 Hz to 1000 Hz. For the

vowel I these formants are in the range of 200 Hz–400 Hz and 2200 Hz–3200 Hz,

while for the vowel O they are restricted to frequencies from 400 Hz to 800 Hz.

Consonants can be divided into voiced and voiceless consonants. In the case of

voiced consonants, the vocal folds produce noise, which is then modulated in the

vocal tract. Although the noise spectrum is mainly spread and continuous, the

specific components representing a certain form of formants appear as well. Voice-

less consonants occur only in the oral cavity, when the vocal folds are not active.

Let us define some of the most important features of the formant, since it

represents an important voice characteristic. The formant frequency is the maxi-

mum frequency within the frequency band defined by the formant. The formant

bandwidth is defined as the frequency region in which the amplification differs less

than 3 dB from the amplification at the peak (central) frequency of the formant.

Having in mind the characteristics of the speech production system, the speech

signal can have a variety of values due to its continuous nature. However, from the

perceptual point of view, we are able to distinguish just a finite number of sounds,

since there is a limited set of meaningful information contained in speech. In this

way, we consider only the functional units called phonemes. Note that the same

phoneme can occur in different forms, which have no impact on its meaning. In

other words, the strength and timbre of the voice will not affect the understanding of

phonemes and will not change its functional value.

Fig. 2.13 Time-frequency

representation of speech

formants
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2.4.1 Linear Model of Speech Production System

Based on the previous analysis, we can model the speech production system as

shown in Fig. 2.14.

The transfer functions of the glottal tract, the vocal tract, and the lips are denoted

byG(z), V(z), and L(z), respectively. e(n) is the input excitation signal, which can be
modelled as a train of Dirac impulses for voiced sounds or Gaussian noise for

unvoiced sounds. Based on the system in Fig. 2.14, we can write:

S zð Þ ¼ E zð ÞG zð ÞV zð ÞL zð Þ: ð2:8Þ

By introducing the inverse filter:

A zð Þ ¼ 1

G zð ÞV zð ÞL zð Þ ; ð2:9Þ

where A(z) has a form of all-zero filter A zð Þ ¼ 1þ
Xp
i¼1

aiz
�i, we can write the

following relation:

E zð Þ ¼ A zð ÞS zð Þ: ð2:10Þ

In other words, if z�1 is interpreted as the unit delay operator: z�1s nð Þ ¼ s n� 1ð Þ,
then the previous relation can be written as the autoregressive model of order p:

s nð Þ þ
Xp
i¼1

ais n� ið Þ ¼ e nð Þ: ð2:11Þ

We can model every 700 Hz with one pair of poles.

Let us consider now the impact of the glottal tract and mouth. The speech

production system can be observed from the glottal wave g(n). Moreover, the

characteristics of the glottal wave are known and given by:

Fig. 2.14 A model of the speech production system
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gðtÞ ¼
sin 2 πt

2T p
, for 0 � t � T p,

cos
πðt� T pÞ

2Tn
, for T p < t � Tc, Tc ¼ T p þ Tn,

0, for Tc < t � T,

8>>><
>>>:

ð2:12Þ

where Tp¼ 3.25 ms, Tn¼ 1.25 ms and the pitch period (time interval between two

consecutive periodic excitation cycles) is T¼ 8 ms. The glottal tract can be

modelled by the following transfer function:

Hg zð Þ ¼ 1

1� qz�1ð Þ2 ; ð2:13Þ

which attenuates –12 dB/oct. (for q� 1). The influence of radiation from the lips

can be approximated by:

L zð Þ ¼ 1� z�1: ð2:14Þ

Since a linear model of the speech production system is assumed, the transfer

functions L(z) and V(z) in Fig. 2.14 can replace the positions. Thus, as the input

of V(z) we have:

1� z�1
� �

g nð Þ ¼ g nð Þ � g n� 1ð Þ ¼ g0 nð Þ; ð2:15Þ

where g0(n) is a differentiated glottal wave. When considering the remaining part of

the system, we get:

s nð Þ ¼ V zð Þg0 nð Þ : ð2:16Þ

Next, an additional differentiation can be performed, which will result in:

s0 nð Þ ¼ V zð Þg00 nð Þ: ð2:17Þ

Assuming that:

V zð Þ ¼ 1

A p zð Þ ¼
1

1þ
Xp
i¼1

aiz
�i

; ð2:18Þ

we can obtain the final model of the speech production system:
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s0 nð ÞA p zð Þ ¼ s0 nð Þ þ
Xp
i¼1

ais
0 n� ið Þ ¼ g00 nð Þ: ð2:19Þ

It is important to emphasize that g00(n) is the excitation signal that can be approx-

imated in the form of the Dirac pulse train (Fig. 2.15). Then the signal s0(n) is the
pre-emphasized signal s(n), with no influence of the glottal wave and radiation. This
model also represents the auto-regressive model of the order p, as the one defined
by Eq. (2.11).

2.5 Voice Activity Analysis and Detectors

Recall that different speech sounds are formed by forcing the air through the vocal

system. They could be classified as voiced and unvoiced speech sounds, as shown in

Fig. 2.16. Voiced speech parts are generated by vocal folds vibrations that cause the

periodical air oscillations. As a result, a sequence of air pulses is created which

excites the vocal tract and produces the acoustically filtered output. On the other

hand, the unvoiced sounds are usually generated by forcing the air through certain

constrictions in the vocal tract.

The voiced sounds are characterized by a significant periodicity in the time

domain, with the fundamental frequency referred to as pitch frequency. The

unvoiced sounds have a more noisy-like nature. Also, the voiced parts are charac-

terized by significantly higher energy compared to the unvoiced sounds. As men-

tioned before, the voiced sounds contain formants in the frequency domain.

Formants are very important in the speech analysis and applications (e.g., speech

coding). Frequency components of unvoiced sounds are generally low energy

components located mostly at the high frequencies. Due to the significant differ-

ences between voiced and unvoiced speech parts, some applications employ the

sounds classification as a pre-processing step. The classification of voiced and

unvoiced sounds can be done by using voice activity detectors. These detectors

are based on voice activity indicators (energy, zero-crossing rate, prediction gain,

etc.) combined with thresholding to decide between voiced and unvoiced option.

Some of the existing voice activity indicators are described in the sequel.

Fig. 2.15 Excitation signals g(t), g0(t), g00(t)
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Energy
Before processing, the speech signals are usually divided into frames with a certain

number of samples. The length of the frame is determined such that the statistical

signal characteristics are almost constant within the frame. The simplest way to

make differentiation between the voiced and unvoiced parts is the frame energy

which is defined as:

E nð Þ ¼
Xn

k¼n�Nþ1

s2 kð Þ; ð2:20Þ

where s denotes the speech signal, N is the length of frame, while n is the end point
of the frame. The voiced parts have the energy that is several times higher than the

unvoiced parts energy.

Instead of energy, one can use the magnitudes of the frame samples:

MA nð Þ ¼
Xn

k¼n�Nþ1

s kð Þj j: ð2:21Þ

Fig. 2.16 An illustration of different speech parts
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Zero-Crossing Rate
Due to the presence of low-frequency pitch component, the voiced sounds are

characterized by a low zero-crossing rate compared to the unvoiced sounds. For a

certain frame, the zero-crossing rate can be calculated as follows:

ZC nð Þ ¼ 1

2

Xn
k¼n�Nþ1

sgn s kð Þð Þ � sgn s k � 1ð Þð Þj j: ð2:22Þ

Prediction Gain
As previously mentioned, the linear prediction algorithm is commonly used in the

analysis and synthesis of speech signals. This method provides the extraction of

certain sound characteristics that can be used for the voiced/unvoiced speech

classification. The prediction of discrete signal s(n) based on the M samples can

be defined as:

ŝ kð Þ ¼ �
XM
i¼1

ais k � ið Þ, k ¼ n� N þ 1, . . . , n; ð2:23Þ

where ai, i¼ 1, . . ., M are estimated linear prediction coefficients of the

autoregressive model, while M is the order of the prediction system. For a

nonstationary signal such as speech, the linear prediction is performed separately

for each frame.

The estimation of linear prediction parameters is based on the criterion of mean

square prediction error:

J ¼ E e2 kð Þ� � ¼ E s kð Þ þ
XM
i¼1

ais k � ið Þ
 !2

8<
:

9=
;: ð2:24Þ

The optimal linear prediction coefficients are obtained by solving the system of

equations based on the partial derivatives of the error function J with respect to

parameters am, for m¼ 1, 2, . . ., M:

∂J
∂am

¼ 2E s kð Þ þ
XM
i¼1

ais k � ið Þ
 !

s k � mð Þ
( )

¼ 0: ð2:25Þ

The prediction gain is defined as the ratio between the signal energy and the

prediction error:

PG nð Þ ¼ 10log10

Xn
k¼n�Nþ1

s2 kð Þ
Xn

k¼n�Nþ1

e2 kð Þ

0
BBBB@

1
CCCCA: ð2:26Þ
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This parameter can be used as an indicator of differences between the voiced and

unvoiced speech parts. It is known that voiced sounds achieve higher prediction

gain compared to the unvoiced ones for at least 3 dB. The periodicity of voiced

frames causes a stronger correlation between the frame samples. On the other hand,

random nature of unvoiced parts makes the prediction less efficient.

The outputs of the considered voiced/unvoiced sounds indicators for the frames

with 180 samples (22.5 ms when the sampling rate is 8 KHz) are illustrated in

Fig. 2.17.

The simple versions of the voice activity detectors assume one of these indica-

tors as the input signal. As in the standard classification problems, here is also

necessary to define suitable thresholds to separate the voiced and unvoiced speech

parts. The thresholds setting is based on the analysis of large signal sets, with the

aim to minimize the classification errors. In the practical applications, the consid-

ered detectors could be combined to improve the performance of the detection

system.

2.5.1 Word Endpoints Detector

The start and end points of words can be detected by using a word endpoints

detector. One realization of this detector is based on the energy-entropy signal

feature. The signal is firstly divided into time frames that are 8 ms long

Fig. 2.17 The outputs of the voice activity indicators based on the magnitudes (MA), zero-

crossing rate (ZC), and prediction gain (PG)
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(e.g., 64 samples long for a speech signal sampled at 8 KHz). The energy of frame

Ei is calculated according to Eq. (2.20). On the other hand, the probability density

function for the speech spectrum S(ω), is obtained by normalizing the frequency

content within the frame. Hence, for the i-th frame we have:

pi ¼
S ωið ÞXN

k¼1

S ωkð Þ
; ð2:27Þ

where N is the number of components within the frame. The energy-entropy feature

can be calculated as follows:

EEFi ¼ 1þ Ei � Hij jð Þ1=2; ð2:28Þ

where Hi represents the entropy of the i-th frame defined as:

Hi ¼
XK
k¼1

pklogpk: ð2:29Þ

Energy-entropy features for the consecutive frames of speech signal are illustrated

in Fig. 2.18.

By using the energy-entropy feature, the start and the end point of a spoken word

can be determined as follows:

ts ¼ arg min
i

fEEFðiÞ > T1g, 1 � i � N,

te ¼ arg max
i

fEEFðiÞ > T2g, 1 � i � N,
ð2:30Þ

where N is the total number of considered speech frames, while T1 and T2 are

thresholds for the start and end point, respectively. The thresholds can be set

Fig. 2.18 (a) Speech signal, (b) Energy-entropy feature for speech frames
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empirically, based on various experiments with different speech signals and

speakers. The typical values for the thresholds are T1¼ 0.16 and T2¼ 0.17. The

resulting word endpoints are illustrated in Fig. 2.18.

2.6 Speech and Music Decomposition Algorithm

The singular value decomposition (SVD) has been used in numerous practical

applications for characterization of signals and their components. The SVD has

been applied on the time-frequency distributions to extract features used for

signal characterization. Most of the procedures are based on the use of singular

values. However, significant information about the patterns embedded in the

matrix can be obtained by using the left and right singular vectors, especially

those corresponding to the largest singular values. Namely, the left and right

singular vectors contain the information about time and frequency domain infor-

mation of the signal, respectively. Here, the SVD is used to extract speech and

musical components from the auto-correlation function. The auto-correlation

function is obtained by using the inversion of suitable time-frequency distribu-

tion, as described in the sequel.

2.6.1 Principal Components Analysis Based on SVD

The SVD transforms the original correlated variables into the uncorrelated set of

variables. It allows identifying the direction along which the data variations are

dominant. For a certain matrix S, SVD is defined as follows:

S ¼ UΣVT ; ð2:31Þ

where Σ is a diagonal matrix of singular values. Matrix Σ is of the same size as S,
and the values are sorted in decreasing order along the main diagonal. The U and

V are orthonormal matrices whose columns represent left and right singular vectors,

respectively. If S isM�Nmatrix (M>N ), then the size of U isM�M, Σ is anM�N
matrix, whileV is an N�Nmatrix. A memory-efficient method known as economy-

sized SVD is computed as follows:

– Only N columns of U are computed.

– Only N rows of Σ are computed.
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2.6.2 Components Extraction by Using the SVD
and the S-Method

The audio signals, such as the speech and musical signals are multicomponent

signals: f nð Þ ¼
X
c

f c nð Þ. Let us consider the inverse Wigner distribution for a

separately observed c-th signal component:

f c nþ mð Þ f *c n� mð Þ ¼ 1

N þ 1

XN=2
k¼�N=2

WDc n; kð Þe j 2π
Nþ1

k2m: ð2:32Þ

By replacing nþ m ¼ p and n� m ¼ q, we obtain:

f c pð Þ f *c qð Þ ¼ 1

N þ 1

XN=2
k¼�N=2

WDc
pþ q

2
; k

	 

e j 2π

Nþ1
p�qð Þk: ð2:33Þ

The left hand side corresponds to the auto-correlation matrix:

Rc p; qð Þ ¼ f c pð Þ f *c qð Þ;

where fc( p) is a column vector, whose elements represent the signal terms, and f�c(q)
is a row vector, with complex conjugate elements. For a sum of M signal compo-

nents, the total auto-correlation matrix becomes:

R p; qð Þ ¼
XM
c¼1

Rc p; qð Þ ¼ 1

N þ 1

XN=2
k¼�N=2

XM
c¼1

WDc
pþ q

2
; k

	 

e j 2π

Nþ1
p�qð Þk: ð2:34Þ

By using the S-method the previous relation can be written as:

R p; qð Þ ¼ 1

N þ 1

XN=2
k¼�N=2

SM
pþ q

2
; k

	 

e j 2π

Nþ1 p�qð Þk: ð2:35Þ

Furthermore, we observe the case when the time-frequency distribution is

represented by a square matrix, i.e., time and frequency dimensions are the same.

Consequently, the auto-correlation function R( p,q) is given by the symmetric

square matrix R with the symmetry axis along the main diagonal. Therefore, we

have: U¼V are the matrices containing eigenvectors, whileΣ¼Λ is the eigenvalue

matrix:

UΣVT ¼ UΛUT : ð2:36Þ
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Hence, the auto-correlation matrix R can be decomposed as follows:

R ¼
XM
j¼1

λ ju j nð Þu* j nð Þ; ð2:37Þ

where λj are the eigenvalues and uj(n) are the eigenvectors of the autocorrelation

matrixR. Note that the eigenvectors correspond to the signal components, while the

eigenvalues are related to the components energy.

The speech formants, separated by using the eigenvalue decomposition, are

shown in Fig. 2.19 (the formants at positive frequencies are shown). Now, it is

possible to arbitrarily combine the components that belong to the low, middle or

high-frequency regions. Consequently, an arbitrary time-frequency mask

(Fig. 2.20) can be made and used in speech processing applications.

Let us consider a violin signal with a number of closely spaced components, as it

can be seen from Fig. 2.21. The eigenvalue decomposition method is applied in the

same way as in the case of speech signal. The extracted components are shown in

Fig. 2.22. It is important to note that, due to the specific nature of audio signals, the

perfect signal reconstruction from its separated components is not fully attainable.

Fig. 2.19 The formants isolated by using the eigenvalues decomposition method
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2.7 Psychoacoustic Effects

It was mentioned earlier that the ear is not equally sensitive to different frequencies.

The sensitivity function (shown in Fig. 2.2) is obtained experimentally and is given

by the following expression:

T fð Þ ¼ 3:64
f

1000

� ��0:8

� 6:5e�0:6 f=1000�3:3ð Þ2 þ 10�3 f

1000

� �4

dB: ð2:38Þ

Let us perform now a detailed analysis of the auditory system. It is composed of

the outer (lobe) ear, the middle ear and the inner ear, as illustrated in Fig. 2.23. The

Fig. 2.20 Illustrations of different components combinations selected by a few time-frequency

masks

Fig. 2.21 The time-

frequency representation of

the violin signal obtained by

using the S-method
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auditory system up to the inner ear can be simply represented as a combination of a

horn and open pipes.

Sound waves, collected by the ear shell, are forwarded over the ear channel. In

the inner ear there is the organ of Corti, which contains the fibrous elements with

different lengths and resonant frequencies. These elements are connected to the

auditory nerve that is used to convey information to the brain. As a consequence of

the applied sound wave, the mechanical vibrations are passed through the ossicles

to the Cochlea causing the basilar membrane to oscillate. The parts of basilar

membrane resonate depending on the frequencies (Fig. 2.23). In the case of high

frequencies the resonance is produced in the front part of basilar membrane, while

in the case of low frequencies, it occurs in the rear part.

The hearing system works effectively as a filter bank. We devote our attention to

a particular sound only after our brain focuses on it.

Fig. 2.22 Separated components of violin signal

Fig. 2.23 Illustration of human auditory system
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2.7.1 Audio Masking

As discussed earlier, there is a threshold value of SPL below which we cannot hear

a sound. However, even the components above this threshold can be non-audible if

they are masked by other components. Masking effects can be either in the time

and/or in the frequency domain. In the case of frequency masking, tones with

greater intensity can mask lower intensity tones at neighboring frequencies. There-

fore, if we know a value of the threshold below which the adjacent frequencies

become non-audible, then we can ignore those frequencies without sacrificing the

quality of the sound, as shown in Fig. 2.24. This is particularly important when

applied to each of the critical frequency bands, where we can say that the ear is

equally sensitive. The sensitivity is different for different critical bands.

It should be mentioned that the width of the critical frequency bands varies from

a few hundred Hz at lower frequencies to several KHz at higher frequencies. An

overview of the 25 experimentally determined critical bands is given in the follow-

ing section.

A masking curve is illustrated in Fig. 2.25. Note that the samples below the

masking curve are dismissed and only the samples that are not masked are consid-

ered for encoding and transmission. In addition to frequency masking, we can use

Fig. 2.24 Masking noise

Fig. 2.25 An illustration of audio masking
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time masking where the threshold is defined as a function of time. For example, let

us assume that we have a signal with a dominant frequency f at time t. Then, it is
possible to determine the masking threshold for the interval (t, tþΔt) for which the
signal becomes non-audible at the given frequency f or adjacent frequencies.

2.8 Audio Compression

Based on the aforementioned characteristics of the audio signal, we can conclude

that storing high quality digital audio signals requires a large memory space.

Therefore, the transmission of such signals also requires a network with large

bandwidth. The reduction of the required bandwidth and memory space, while

maintaining high audio quality, can be achieved by compression algorithms. Recent

advances in computer technology have prompted significant improvements in

compression algorithms. Also, there is a growing need to transfer large amount of

data over the network. Hence, the compression algorithms have a significant

economic impact related to various storage media or better utilization of network

connections.

Data compression is performed by a circuit called the encoder. After transmis-

sion over a communication channel, the data are restored back into its basic form by

using decoders. The encoder is generally much more complex and expensive than

the decoder. However, a single encoder can be used to provide data to a large

number of decoders.

A compression ratio is the ratio of the compressed signal size versus the original

signal size. This ratio is often referred to as a coding gain. The compression is

especially important in the Internet-based communications and applications. The

need for efficient compression algorithms is also growing in radio broadcasting, as

we are trying to use the available bandwidth more efficiently.

2.8.1 Lossless Compressions

Compression in general can be divided into lossless and lossy compression. In

lossless compression, the information before and after compression must be iden-

tical. To achieve lossless compression, we use algorithms such as Huffman coding

and LZW coding. Lossless compression algorithms have limited compression

abilities. If the audio signal is compressed by using lossless compression tech-

niques, than we refer to it as heavy due to a low compression ratio.

Figure 2.26 illustrates the concept of entropy as the information content without

redundancy. Namely, if we transmit the amount of information smaller than the

information content or entropy, we actually introduce the artifacts. This is called

lossy compression. Otherwise, the compression scheme is lossless when it is

possible to recover the signal by uncompressing, i.e., the compressed signal has
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the same entropy as the original one. We can conclude that the redundancy is

actually a difference between the information rate and the overall bit rate. An ideal

coder should provide the information bit rate defined by the entropy.

The relationship between the compression ratio and the complexity of the

compression system is depicted in Fig. 2.27. In order to maintain the quality of

signal under high compression ratio, we have to increase the complexity of the

system.

2.8.1.1 LZ-77

LZ-77 algorithms achieve compression by replacing repeated occurrences of data

with references to a single copy of these existing earlier in the input (uncompressed)

data stream. It is especially important to determine the optimal length of the

Fig. 2.26 Lossless and lossy compressions

Fig. 2.27 Quality of a

compressed signal depends

on the complexity of the

compression system and the

compression ratio
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sequence that is encoded. Too short, or too long sequences can cause negative

effects on compression.

Pointers can be encoded with 12 bits such that the first 8 bits are used to denote

the number of characters we have to go back, and the last 4 bits are used to denote

the length of the sequence. In some cases, the pointers are encoded with 18 bits,

where the first 12 bits determine the position, and the last 6 bits denote the length of

the sequence. Encoding an entire sentence is performed by inserting 1 in front of an

uncompressed part and 0 in front of a compressed part.

For the sake of simplicity, let us illustrate this compression principle on the text

by using the following sentence:

she_sells_seashells_by_the_seashore

The letters _se (from the word seashells) are found in the word _sells and they

are replaced by the pointer (6,3) meaning that we go back six characters and take

the following three characters. The sequence she from seashells is found in the

word she and can be replaced by a pointer (13,3), meaning that we go back

13 characters and take the next 3 characters. The procedure continues until we

reach the end of the sentence, which we are encoding. The sentence can be then

encoded as follows:

she_sells<6,3>a<13,3><10,4>by_t<23,5><17,3>ore

Since the pointers are encoded with 12 bits, in this short example we can reduce

the amount of information by 76 bits (out of 280).

2.8.1.2 LZW Coding

LZW coding is a generalization of the LZ-77 coding, and it is based on defining a

code book (dictionary) of words and strings found in the text. Strings are placed in

the dictionary. Since the first 255 entries found in the dictionary are assigned to

single characters, the first available index in the dictionary is actually 256. The

dictionary is formed by initially indexing any two-character string found in the

message. Then, we continue with three-character string, and so on. For example, let

us consider the previous example:

she_sells_seashells_by_the_seashore

256 ! sh <sh> e_sells_ seashells_by_the_seashore

257 ! he s < he >_sells_ seashells_by_the_seashore

258 ! e_ sh < e_ >sells_ seashells_by_the_seashore

259 ! _s she < _s >ells_ seashells_by_the_seashore

260 ! se she_ < se >lls_ seashells_by_the_seashore

261 ! el she_s < el >ls_ seashells_by_the_seashore
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262 ! ll she_se < ll >s_ seashells_by_the_seashore

263 ! ls she_sel < ls >_ seashells_by_the_seashore

264 ! s_ she_sell< s_ > seashells_by_the_seashore

The next two characters are "_s", but they already exist in the dictio-

nary under the number 259. This means that we can now place the three

characters "_se" as a new entry in the dictionary and then continue with

the strings of two characters:

265 ! _se she_sells< _ se >ashells_by_the_seashore

266 ! ea she_sells_s<ea > shells_by_the_seashore

267 ! as she_sells_se<as > hells_by_the_seashore

The next two characters "sh" are already indexed in the dictionary under

256. Therefore, we add a new three-character string "she":

268 !she she_sells_sea<she > lls_by_the_seashore

The string "el" is already in the dictionary with the label (261), and

therefore we add "ell":

269 ! ell she_sells_seash< ell > s_by_the_seashore

The string "ls" is already in the dictionary with the label (263), and we

add "ls_", and then continue with the string of two characters:

270 ! ls_ she_sells_seashel<ls_ >by_the_seashore

271 ! _b she_sells_seashells<_b >y_the_seashore

272 ! by she_sells_seashells_<by > _the_seashore

273 ! y_ she_sells_seashells_b< y_ >the_seashore

274 ! _t she_sells_seashells_by<_t >he_seashore

275 ! th she_sells_seashells_by_<th > e_seashore

As the string "he" is already in the dictionary with the label (257),

"he_" is added:

276 ! he_ she_sells_seashells_by_t<he_ > seashore

String "_s" is already in the dictionary with the label (259), as well as

the string “_se” with the label (265). Thus, we add a new string with four

characters "_sea":

277 ! _sea she_sells_seashells_by_the<_ sea > shore

278 ! ash she_sells_seashells_by_the_se<ash>ore

279 ! ho she_sells_seashells_by_the_seas<ho>re

280 ! or she_sells_seashells_by_the_seash<or>e

281 ! re she_sells_seashells_by_the_seasho<re>
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Finally, the dictionary will contain the following strings:

256 ! sh 269 ! ell

257 ! he 270 ! ls_

258 ! e_ 271 ! _b

259 ! _s 272 ! by

260 ! se 273 ! y_

261 ! el 274 ! _t

262 ! ll 275 ! th

263 ! ls 276 ! he_

264 ! s_ 277 ! _sea

265 ! _se 278 ! ash

266 ! ea 279 ! ho

267 ! as 280 ! or

268 !she 281 ! re

In parallel to forming the dictionary, the encoder continuously transmits char-

acters until it encounters the string that is in the dictionary. Then, instead of sending

the string, the index from the dictionary is sent. This process is repeated until the

whole message is transmitted. It means that the compressed messages in our case

will be:

she_sells<259>ea<256><261><263>_by_t<257><265><267>hore

Note that it is not necessary to send to the decoder the dictionary created by the

encoder. While reading and decoding the message, the decoder creates the dictio-

nary in the same way as the encoder.

Let us consider another example:

Thomas_threw_three_free_throws

256 ! th < Th >omas_threw_three_free_throws

257 ! ho T <ho>mas_threw_three_free_throws

258 ! om Th <om>as_threw_three_free_throws

259 ! ma Tho<ma>s_threw_three_free_throws

260 ! as Thom<as>_threw_three_free_throws

261 ! s_ Thoma<s_>threw_three_free_throws

262 ! _t Thomas <_t>hrew_three_free_throws

263 ! thr Thomas_<thr>ew_three_free_throws

264 ! re Thomas_th<re>w_three_free_throws

265 ! ew Thomas_thr<ew>_three_free_throws

266 ! w_ Thomas_thre<w_>three_free_throws

267 ! _th Thomas _threw<_th>ree_free_throws

268 ! hr Thomas _threw_t<hr>ee_free_throws

269 ! ree Thomas _threw_th<ree>_free_throws
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270 ! e_ Thomas _threw_thre<e_>free_throws

271 !_f Thomas _threw_three<_f>ree_throws

272 ! fr Thomas _threw_three_<fr>ee_throws

273 ! ree_ Thomas _threw_three_f<ree_>throws

274 !_thr Thomas _threw_three_free<_thr>ows

275 ! ro Thomas _threw_three_free_th<ro>ws

276 ! ow Thomas _threw_three_free_thr<ow>s

277 ! ws Thomas _threw_three_free_thro<ws>

The dictionary is formed as follows:

256 ! th 267 ! _th

257 ! ho 268 ! hr

258 ! om 269 ! ree

259 ! ma 270 ! e_

260 ! as 271 ! _f

261 ! s_ 272 ! fr

262 ! _t 273 ! ree_

263 ! thr 274 ! _thr

264 ! re 275 ! ro

265 ! ew 276 ! ow

266 ! w_ 277 ! w

while the coded message is:

Thomas_<256>rew<262>h<264>e_f<269><267> rows

2.8.1.3 Huffman Coding

The idea behind the Huffman coding is to encode each character with a code word

whose length is inversely proportional to the probability of occurrence of that

character. In other words, if a character appears more frequently, it should be

encoded with the shortest possible code word.

The characters are firstly sorted according to the number of occurrences (NO).

Then, we observe a pair of characters with the lowest NO. If the logical value of “1”

is assigned to the character with a higher NO, then “0” is assigned to the character

with a lower NO. The cumulative NO for the two characters is calculated and it

replaces this pair in the next iterations. The next character is used in the new

iteration and its NO is compared with the smaller between: NO for another

character and cumulative NO from the previous iteration. Again, “1” is assigned

to the higher NO, while “0” is assigned to lower NO. The procedure is repeated

until we get the entire tree. Each branch within the tree corresponds to one

character, and it is uniquely determined by the resulting sequence of logical values

“1” and “0”.
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Consider an example with the following characters A, M, R, C, D and

U. Assume that the NOs of characters in a text are: A¼ 60, M¼ 38, R¼ 21,

C¼ 11, D¼ 34, U¼ 51. For Huffman coding we form the following tree:

Therefore, the binary combinations denoting each of the characters are given as:
A
10

U
01

M
00

D
111

R
1101

C
1100

2.8.2 Lossy Compressions

The idea of lossy compression is based on the perceptual characteristics. Namely,

the information that is the least important, from a perceptual point of view, is

omitted. For lossy compressions we utilize our understanding of psychoacoustics

(e.g., the auditory system responds differently to different frequencies and some

sounds may be masked by the others). Therefore, this coding method is often

referred to as the perceptual coding. MPEG (Moving Picture Experts Group)

compression algorithms represent the important and widely used cases of lossy

compression.

The amount of compressed data depends on the signal nature (i.e., the encoding

may have a variable compression factor), which causes a variable bit rate through
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the channel. In practice, it is often required that coders have a constant compression

factor in order to transmit at a constant rate.

In order to use the perceptual coding, it is important to adjust and calibrate

correctly the microphone gain and reproduction system volume control. The overall

gains should be adjusted to the human hearing system such that the coder uses the

SPL which is actually heard. Otherwise, we might have a situation that the low gain

from the microphone is interpreted as low SPL, which further causes inappropriate

masking of the coded signal. Thus, the compression systems must include the

calibration model based on human hearing system. In addition to calibration, an

important role in perceptual coding has a masking model. The accuracy of the

model used for the separation of relevant and irrelevant components is of particular

importance. Based on this model, we decide to ignore a certain amount of infor-

mation that will not affect the signal quality. The most reliable approach for

assessing the quality of the masking is listening. Such methods are usually expen-

sive to carry out. Therefore, systems have been developed to measure the quality of

sound masking. A system based on noise measurements is shown in Fig. 2.28.

The system compares the original and coded signals and determines the noise

introduced by encoder. The lower branch performs the noise analysis and provides

the critical band spectrum of the noise. The blocks in the upper branch of the system

are used to calculate the masking threshold of the input signal. The noise to masking

ratio (N/M or NMR) is obtained at the output of the observed system (Fig. 2.28).

This ratio is a quality measure of masking. Smaller values denote more accurate

masking models.

2.8.2.1 Critical Subbands and Perceptual Coding

The spectrum of the audio signal can be divided into the subbands (critical bands)

within which is assumed that the human hearing system has equal sensitivity for all

frequencies. Table 2.1 provides the lower (Fl) and upper (Fu) limit frequencies, the

center frequency (Fc) and the bandwidth for each critical band.

Thus, the auditory system can be approximately modelled as a filter bank.

However, implementing selected critical bands would be a demanding task.

Hence, we can obtain a simpler system with some approximations as shown in

Fig. 2.29.

Fig. 2.28 The system for measuring the noise/masking ratio
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Table 2.1 Critical bands Subband Fl Fc Fu Bandwidth (Hz)

1 0 50 100 100

2 100 150 200 100

3 200 250 300 100

4 300 350 400 100

5 400 450 510 110

6 510 570 630 120

7 630 700 770 140

8 770 840 920 150

9 920 1000 1080 160

10 1080 1170 1270 190

11 1270 1370 1480 210

12 1480 1600 1720 240

13 1720 1850 2000 280

14 2000 2150 2320 320

15 2320 2500 2700 380

16 2700 2900 3150 450

17 3150 3400 3700 550

18 3700 4000 4400 700

19 4400 4800 5300 900

20 5300 5800 6400 1100

21 6400 7000 7700 1300

22 7700 8500 9500 1800

23 9500 10500 12000 2500

24 12000 13500 15500 3500

25 15500 18775 22050 6550

Fig. 2.29 Dividing the spectrum into critical bands by using a filter bank
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At each filtering stage, the signal bandwidth is halved, allowing us to decrease

the sampling frequency1 by 2. The high-frequency part of the spectrum is obtained

as a difference between the input and the filtered spectrum (low-frequency part). In

this way, a ladder scheme of the spectrum partition into critical bands is obtained.

The frequency subbands are illustrated in Fig. 2.30.

The scale used to number these critical bands is known as the Bark scale named

after the German scientist Barkhausen. The scale depends on the frequencies

(expressed in Hz) and can be approximately given by:

B Barkð Þ ¼
f

100
for f < 500Hz,

9þ 4log2
f

1000

� �
for f 	 500Hz;

8><
>: ð2:39Þ

where B is the number of the critical band. It is often used by the following

approximate relation:

B Barkð Þ ¼ 13arctan 0:76 f Hzð Þ=1000ð Þð Þ þ 3:5arctan f Hzð Þ=7500ð Þ2
	 


:

For example, the frequency of 200 Hz can be represented by 2 from the Bark scale,

while the frequency of 2000 Hz can be represented by 13 from the Bark scale.

To obtain the frequency in Hz from the Bark scale, we can use the following

relationship:

f Hzð Þ ¼ 1000 exp 0:219 � Bð Þ=352ð Þ þ 0:1ð Þ � B� 0:032 � exp �0:15 � B� 5ð Þ2
	 
n o

Figure 2.31 shows the masking effects versus the frequency expressed in KHz and

the Bark scale. In both cases, the dotted line shows the curve representing a hearing

threshold in quiet. Figure 2.31a also depicts masking curves for samples at

Fig. 2.30 An illustration of the critical bands

1 For the signal with spectrum bandwidth B, the sampling frequency is fs ¼2B if (2fcþB)/2B is an

integer ( fc is the central frequency)
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frequencies 1 KHz, 4 KHz and 8 KHz, respectively. Similarly, Fig. 2.31b shows the

masking curve for different ranges on the Bark scale.

Consider the following example, where the amplitude levels in certain frequency

bands are provided in the Table 2.2.

Note that the amplitude level in the 12th band is 43 dB. Suppose that it masks all

components below 15 dB in the 11th band and the components below 17 dB in the

13th band.

• The signal level in the 11th band is 25 dB (>15 dB) and this band should be

encoded for transmission. However, the quantization noise of 12 dB will be

masked, and therefore, we can use 2 bits less to represent the samples in

this band.

Fig. 2.31 An illustration of the effects of masking tones: (a) masking in frequency, (b) masking of

the bandwidth range
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• The signal level in the 13th band is 14 dB (<17 dB). Hence, the components in

the 13th band are masked and there is no need to transmit this band.

2.8.3 MPEG Compression

In 1988, the ISO (International Standards Organization) and IEC (International

Electrotechnical Commission) have begun to establish international standards for

audio compression. As a result, they established guidelines for MPEG audio

compression, which is currently used for the audio coding in DAB (digital audio

broadcasting). Algorithms for MPEG audio compression were derived from

MUSICAM (Masking-pattern Universal Subband Integrated Coding And

Multiplexing) algorithm. A block diagram for an audio compression coder based

on the MUSICAM is shown in Fig. 2.32.

MUSICAM compresses audio data such that the optimal bit rate is approxi-

mately 700 Kb/s. In parallel to the MUSICAM, a compression algorithm known as

ASPEC (Adaptive Spectral Perceptual Entropy Coding) was developed. Its main

goal was to achieve high compression factors in order to facilitate transmission of

audio signals over the ISDN lines. By combining MUSICAM and ASPEC, MP3

(MPEG Layer III) algorithm was created. That is, while the MPEG Layer I and

MPEG Layer II represent simplified versions of MUSICAM, MP3 combines the

best features of MUSICAM and ASPEC. The layers of MPEG audio coding deal

with signals having maximal frequencies: 16, 22.05, and 24 KHz and support

different bit rates such as: 32, 48, 56, 64, 96, 112, 128, 192, 256, 320, and

384 Kb/s. MPEG Layer I is based on two channels (i.e., a stereo signal), while

MPEG Layer II can handle a five-channel audio signal. MPEG Layer II can also

Table 2.2 An example of amplitude levels in different frequency bands

Band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Level (dB) 12 5 3 1 2 12 8 28 19 10 25 43 14 2 6 35

Fig. 2.32 Block diagram of MUSICAM based coder

2.8 Audio Compression 115



convert a five-channel signal into a two-channel signal and such a system is

illustrated in Fig. 2.33.

The compression algorithm known as AC-3, developed by Dolby Laboratories,

is also used in North America. At the beginning, the AC-3 was developed as a

compression scheme that provides the surround sound for the theater and cinema.

Nowadays, it is usually referred as Dolby Digital and can be found in the HDTV,

home theaters, DVD players, some TV receivers, etc.

2.8.3.1 MPEG Layer I

As already noted, the MPEG Layer I is a simplified version of the MUSICAM

algorithm. According to the MPEG Layer I algorithm, an audio signal is divided

into 32 subbands. All 32 subbands are of the same width, which is one of the

drawbacks of this compression scheme, since the bandwidths of the critical bands

are frequency dependent. Thus, subbands can be either too wide at lower frequen-

cies or too narrow at higher frequencies. In order to compensate the imprecision

caused by the uniform subbands width, audio masking is used. The Fourier trans-

form has an important role in the audio masking (it is computed by the FFT

algorithm). A block scheme for MPEG layer I compression is given in Fig. 2.34.

The signal compression is carried out in blocks of 384 samples (see Appendix).

After coding, we obtain 32 blocks with 12 samples corresponding to the width of

8 ms at the sampling frequency of 48 KHz. The FFT is calculated for 512 points in

order to obtain higher resolution. This provides a more accurate model of masking.

The data in each block are encoded according to the maximum signal value in that

block. A 6-bit scale factor is assigned to each block and it is applied to all 12 block

samples. The gain step between two successive 6-bit combinations is 2 dB, thus

providing a 128 dB of dynamic range. Having in mind the nature of audio signals,

the number of bits reserved for samples will vary for the 32 different blocks, but the

Fig. 2.33 A scheme for converting from five channels into two channels
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total length of 32 blocks has to be equal for each coded block (the size of the output

block with 384 samples is fixed for a certain bit rate).

The bit allocation is used to determine the structure of binary code words for the

appropriate subband. Namely, four bits are used to describe the samples code

length. The length can range between 0 and 15 bits (i.e., from the combination

0000 to 1110), excluding the allocation of 1 bit due to the nature of midtread

quantizer (it has 0 as one of its quantized values, and generally an odd number of

decision intervals). 0000 denotes that zero bits is allocated for samples within the

block, while 1110 denotes that we need 15 bits for each sample in the block. 1111 is

not used in order to avoid possible conflict with the synchronization code. There is

also a special code if all samples in the block are equal to zero. Hence, for each

block it is necessary to send 4 allocation bits and 6 bits that define the amplification

factor (Fig. 2.35).

Note that the block length of 8 ms is quite long to avoid pre-masking effects that

may appear due to the abrupt changes in signal followed by silence at the transition

between two blocks. This phenomenon can be avoided by comparing the values in

Fig. 2.34 A block diagram of MPEG layer I compression

Fig. 2.35 A part of the bits packing structure in MPEG Layer I (N can be between 1 and 15)
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neighboring blocks. A significant difference between consecutive blocks indicates

transient in the signal. A typical value of the compression factor in MPEG Layer I is

1:4, and the bit rate is 384 Kb/s.

Calculating SMR Using Psychoacoustic Model

In order to perform the bit allocation procedure and quantization of the subband

values, the psychoacoustic model is used to calculate the signal to mask ratio

(SMR), which is a basis for the bit allocation process. The SMR determines the

dynamic range within the subband that needs to be quantized in a way to keep the

quantization noise below the masking threshold. The SMR(i) is calculated for each

subband i based on the minimum masking threshold and the maximal signal level

within the subband. The power density spectrum of the signal is estimated using the

FFT in parallel with the analysis filter bank. Therefore, a higher frequency resolu-

tion is used for estimating power density spectrum compared to the resolution of

32 subband analysis filter. The SMR is calculates as (see Appendix):

1. Calculating power density spectrum using block of N-point FFT (N¼ 512)

and w(n) is a window function (Hanning window is usually assumed):

XðkÞ ¼ 10log10
1

N

XN�1

n¼0

wðnÞxðnÞe� j2πnk=N

�����
�����
2

½dB�

The FFT values in X are then scalled such that the maximum corresponds to

96dB. The window w(n) is later shifted for 384 samples in order to process the

next set of samples.

2. Calculating the SPL in each subband i¼1,...,32:

SPLðiÞ ¼ maxfXðiÞ, 20log10ðSCFðiÞ∗32768Þ � 10g ½dB�,
where XðiÞ ¼ maxfXðði� 1Þ � 8þ 1Þ, :::,Xðði� 1Þ � 8þ 8Þg, i ¼ 1, :::, 32

where scaling factor SCFmax(i) is selected from the predefined lookup table

(specified by the standard) on the basis of the absolute value of the largest among

12 samples in the subband. Note that the SPL is calculated as the larger value

between the maximum amplitude FFT spectral line and lowest level determined

by the maximal scaling factor in the i-th subband. Since the scaling factors

defined by the MPEG-1 layer 1 standard range from very small number up to

value 2, the multiplication by 32768 (215) is used for normalization of scaling

factors, so that the largest value after normalization corresponds to 96 dB.

3. Determining the absolute threshold which is defined by the MPEG standard

for different sampling rates.

4. Calculating tonal and non-total masking components, determining the rele-

vant maskers and calculating the individual thresholds.

5. Calculating global masking threshold as a sum of all contributions from

masking components.
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6. Determining the minimum masking threshold in every subband Tmin(i) as a
minimum of the global masking threshold

7. Calculating SMR(i) per subband as: SMR ið Þ ¼ SPL ið Þ � Tmin ið Þ:

Bit Allocation

The MPEG audio compression is based on the principle of quantization, where the

quantized values are not the audio samples but so-called signals taken from the

frequency domain representation. Generally, the desired bit rate and consequently

the compression ratio are known to the encoder, and thus the adaptive (dynamic) bit

allocation is applied to quantized signals until the desired rate is achieved. In other

words, the MPEG algorithm uses the known bit rate and the frequency spectrum of

the most recent audio samples to quantize the signals in a way that allows inaudible

quantization noise (quantization noise should be below the masking threshold).

The bit allocation process is performed as an iterative procedure used to allocate

bits for each subband. We saw that the SMR(i) is the result of the psychoacoustic

model, while the SNR(i) is defined by a Table 2.3 [ISO92], where every number of

bits has specified a corresponding SNR. The new bits are allocated as long as the

mask-to-noise ratio (MNR) is less than zero in dB.

If we assume that R is a required bit rate (in Kb/s), fs is a signal sampling rate

while the number of samples within the frame is 32�12, then the available number

of bits per frame is calculated as:

Bavail ¼ R� 32� 12ð Þ � 1

f s
: ð2:40Þ

Table 2.3 Amplitude levels

in different frequency bands
Bit allocation Code Number of levels SNR

0 0000 0 0.00

2 0001 3 7.00

3 0010 7 16.00

4 0011 15 25.28

5 0100 31 31.59

6 0101 63 37.75

7 0110 127 43.84

8 0111 255 49.89

9 1000 511 55.93

10 1001 1023 61.96

11 1010 2047 67.98

12 1011 4095 74.01

13 1100 8191 80.03

14 1101 16383 86.05

15 1110 32767 92.01

Note: Code 1111 is not used
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The total number of bits that are required for each frame is:

Btotal ¼ Bheader þ
X31
i¼0

ð12� BdataðiÞ þ Balok þ BexpðiÞÞ, ð2:41Þ

where Bheader¼ 32 is the number of bits reserved for the frame header, Bdata(i) is the
number of bits per sample in the i-th subband, with allowed range of bits: Bdata(i)
2{0,2,3,4, . . ., 15}. Balok denotes the allocation bits, and this number is fixed and

equal to 4 bits. Recall that Bdata(i) is not allowed to take value 1 or values>15. The

number of bits for exponent (used to encode the scaling factor) for the i-th subband
can be either Bexp¼ 6 if Bdata> 0 or Bexp¼ 0 if Bdata¼ 0. Thus, the scaling factor is

not coded for the subband whose data are not coded.

According to the psychoacoustic model, the quantization noise will not be

perceptible as long as the MNR is greater than zero in dB. It means that the MNR

need to be positive (higher than 0) on a dB scale. The MNR is defined as follows:

MNR ið Þ ¼ SNRq Bdata ið Þð Þ � SMR ið Þ; ð2:42Þ

where SNRq(B) is the signal power to quantization noise power ratio for a B-bit
quantizer. The values of SNRq are given in the Table 2.3.

The procedure for dynamic bit allocation can be briefly summarized as follows:

1. Input data:

(a) Set initial value for Bdata(i)¼ 0 for each subband i within the frame of

384 samples

(b) Calculate SMR(i) for each subband i¼1,...,32

2. Calculate MNR(i)¼ SNRq(i)-SMR(i), i¼1,...,32

3. Find im ¼ arg min
i

fMNRðiÞg, i ¼ 1, :::, 32 and BdataðiÞ < 15

4. If Btotal� Baval

If Bdata(im)¼ 0,

Set Bdata(im)¼ 2 and Bexp(im)¼ 6

else
Set Bdata(im)¼Bdata(im)þ 1

end
end

5. Go to Step 2

120 2 Digital Audio



2.8.3.2 MPEG Layer II

The MPEG Layer II is an improved version of the MPEG Layer I algorithm which

almost completely utilizes the MUSICAM algorithm. The scheme with 32 blocks is

also used for this compression. However, the total frequency range is divided into

three parts: low, medium and high. Given the different sensitivities of the auditory

system to these three parts, the number of bits used for encoding will be different in

each part. Namely, the low-frequency range uses up to 15 bits, the mid-frequency

range uses up to 7 bits, and the high-frequency range uses up to 3 bits. In addition,

4 bits are needed for bit allocation in the low-frequency band, while the middle and

high-frequency ranges use 3 and 2 allocation bits, respectively. The input blocks

contain 1152 samples, and since they split into three new blocks, each of them will

contain 384 samples. In such a way, we get a structure that corresponds to the

previously described code scheme for the MPEG Layer I. The masking procedure is

done by using the FFT algorithm with 1024 samples. The compression ratio of the

MPEG Layer II is approximately equal to six to eight times (Fig. 2.36).

2.8.3.3 MPEG Layer III (MP3)

Unlike the prior two compression algorithms, MP3 is based on ASPEC and

MUSICAM. Namely, compression is carried out using samples in the transform

domain, and the structure of the blocks resembles the previous algorithms. MP3

uses the blocks containing 1152 samples divided into 32 subbands. The transfor-

mation from the time to the frequency domain is performed using the modified

discrete cosine transform (MDCT). It is important to note that the MP3 algorithm

does not use the fixed-length windows, but they are either 24 ms or 8 ms long. The

windows of short duration are used when there are sudden signal changes, since

shorter windows ensure a good time resolution. Wider windows are used for slowly

varying signals. Figure 2.37 shows window forms used in the MP3 compression.

Fig. 2.36 Dividing the frequency range in MPEG Layer II (N1 ranges between 1 and 15, N2

ranges between 1 and 7, while N3 is between 1 and 3)
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The algorithm based on variable window widths provides a better quality of the

compressed signals. However, it should be noted that a choice of an appropriate

window function depends on a more complex psychoacoustic model than the

models used in the MPEG Layer I and Layer II algorithms. Namely, the complexity

of the psychoacoustic model is increased due to the use of the MDCT. A block

diagram of the MP3 compression is shown in Fig. 2.38.

It should be mentioned that the MP3 coding also uses blocks for entropy coding

based on Huffman code. The MP3 was developed primarily for Internet applica-

tions and provides high compression ratio (about 12 times) with a good quality of

the reproduced signal.

2.8.4 ATRAC Compression

The ATRAC compression algorithm is used for mini-discs in order to store the

same amount of audio signals and with same quality as in the case of the CD, but on

the significantly smaller disc area. ATRAC stands for Adaptive Transform Acoustic

Fig. 2.37 Windows used

byMP3 algorithm: (a) Wide

window, (b) Narrow
window, (c) and (d)
Transition windows, (e)
Shifting from wide to

narrow window and vice

versa

Fig. 2.38 A block diagram of the system for MP3 compression
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Coder. Using filters, the range of the input signal is divided into three subband

(0–5.5125 KHz, 5.5125–11.025 KHz and 11.025–22.05 KHz). Each subband is

passed to the MDCT processors. The first subband has 20 blocks, while the other

two contain 16 blocks each. Such a resolution corresponds better to the sensitivity

of the auditory system. The time slot for the analysis can vary from 1.45 ms to

11.6 ms by using the increments of 1.45 ms. In this way, the time-frequency plane

of the signal is divided into a number of different areas which enable successful

compression, taking into account the difference in sensitivity of the auditory system

in different parts of the time-frequency plane. The ATRAC compression reduces

the bit rate from 1.4 Mb/s to 292 Kb/s. A block scheme of ATRAC compression

system is shown in Fig. 2.39. Figure 2.40 demonstrates the division of the time-

frequency plane as required by the ATRAC compression algorithm.

Fig. 2.39 A block scheme of ATRAC compression system

Fig. 2.40 A division of the time-frequency plane in the ATRAC algorithm
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2.9 Examples

2.1. The Sound Pressure Level for a signal is SPL¼ 20 dB. If the reference level

of pressure is Po¼ 20 μPa, calculate the value of the pressure P in Pascals.

Solution:

SPL¼ 20 dB

Po¼ 20 μPa
SPL¼ 20�log10 (P/Po)

20¼ 20�log10(P/Po)¼> log(P/Po)¼ 1¼> P/Po¼ 10

P¼Po�10¼ 20�10�6�10 Pa¼ 2�10�4Pa¼ 0.2 mPa

2.2. If the signal to quantization noise is S/N¼ 61.76 dB, determine the number of

bits used for signal representation?

Solution:

S/N¼ 1.76þ 6�n n- number of bits used to represent signal

6�n¼ 60 ¼> n¼ 10 bits

2.3. A 13-bit signal is obtained at the output of the floating-point converter, with

the signal to noise ratio S/N¼ 61.76 dB. Determine the number of bits used to

represent mantissa, and the number of bits used for exponent?

Solution:

S/N¼ 61.76 dB

6�n¼ 60 ¼> n¼ 10 bits for mantissa

m¼ 13–10¼ 3 bits for exponent

2.4. The communication channel consists of three sections. The average level of

transmission power is 400 mW. The first section introduces 16 dB attenuation

compared to the average power level, the second introduces 20 dB gain

compared to the first section, while the third introduces attenuation of

10 dB compared to the second section. Determine the signal power at the

output of each channel section.

Solution:

P0¼ 400 mW

First section: 16dB ¼ 10log P0

P1

	 

¼ 10log 400

P1

	 

) P1 ¼ 10:0475 mW

Second section:

20dB ¼ 10log
P2

P1

� �
¼ 10log

P2

10:0475

� �
) P2 ¼ 1004:75mW

Third section:

10dB ¼ 10log
P2

P3

� �
¼ 10log

1004:75

P3

� �
) P3 ¼ 100:475 mW
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2.5. Load the signal speech_dft.wav inMatlab. Make a new signal y that will contain
2 seconds of the original speech signal, and listen to the resulting signal.

Solution:

[y,fs]¼wavread(’speech_dft.wav’);

length(y)

ans¼110033

fs¼22050

y¼y(1:2*fs);

soundsc(y,fs)

2.6. For a signal obtained in the previous example, design a low-pass filter in

Matlab, with the cutoff frequency fc¼ 735 Hz.

Solution:

The sampling frequency of the considered signal is fs¼ 22050 Hz. The total

length of the signal is 44100 samples. Hence, the Fourier transform will

produce 44100 samples in the frequency domain, from which 22050 samples

are related to positive and 22050 to negative frequencies (Fig. 2.41).

fmax¼ fs/2¼ 11025 Hz.

In the frequency range between zero and the cutoff frequency fc¼ 735 Hz,

we have: 22050�(735/11025)¼ 1470 samples

The filtering operation can be done by using Matlab as follows:

F¼fftshift(fft(y)); % Fourier transform of the signal

figure(1), plot((abs(F)))

% Filter transfer function

H¼[zeros(1,20580) ones(1,2940) zeros(1,20580)];

G¼F.*H’; % Signal filtering in the frequency domain

figure(2), plot(abs(G));

% The filtered signal is obtained by applying the inverse Fourier

transform

yg¼ifft(fftshift(G));

soundsc(real(yg),fs)

The Fourier transform of the original and filtered signal are shown in

Fig. 2.42.

2.7. For the speech signal used in previous examples, design the band-pass filter

with the band frequencies defines by 1102.5 Hz and 2205 Hz.

Fig. 2.41 Filter function
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Solution:

The cutoff frequencies of the band-pass filter are: fc1¼ 1102.5 Hz and

fc2¼ 2205 Hz, while the maximal signal frequency is fmax¼ 11025 Hz

(Fig. 2.43).

Hence, we made the proportions as:

fc1 : a¼ fmax : 22050 ) a¼ 2205

fc2 : b¼ fmax : 22050 ) b¼ 4410

The number of samples passing unchanged through the filter is

b-a¼ 2205.

Note that the length between the cutoff frequency fc2 and the maximal

signal frequency fmax is:

c¼ 22050-b¼ 22050–4410¼ 17640 samples.

The filter transfer function in Matlab is given by (Fig. 2.44):

>>H¼[zeros(1,17640) ones(1,2205) zeros(1,4410) ones(1,2205)

zeros(1,17640)];

Fig. 2.42 (a) The Fourier transform of the original signal, (b) the Fourier transform of the filtered

signal

Fig. 2.43 Parameters of

band-pass filter function

Fig. 2.44 Filter transfer function
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Finally, we can perform signal filtering in the frequency domain by using

the filter transfer function H:

>>G¼F.* H’;

The filtered signal is obtained by applying the inverse Fourier transform to

the filtered signal spectrum:

>>yg¼ifft(fftshift(G));

>>soundsc(real(yg),fs)

2.8. By using the speech signal “speech_dft.wav” in Matlab, realize the echo by

using a 0.2 s delay, while the echo amplitude is decreased for 50%. Listen to

the achieved echo effect.

Solution:

Echo effect can be realized in a way that we make two versions of the

original signal: one is obtained by adding a zero sequence at the beginning of

the original signal, while the other is obtained by adding zeros at the end of

the considered signal. The signal with echo effect is obtained as a sum of two

modified signal versions.

The length of the zero sequence is defined by the delay which is equal to

0.2 s. Since the sampling frequency for the observed speech signal is 22050

Hz, the delay 0.2 s corresponds to 4410 samples. The echo realization in

Matlab can be done as follows:

[y,fs]¼wavread(‘speech_dft.wav’);

y1¼[zeros(1,4410) y’];

y2¼[y’ zeros(1,4410)];

echo¼0.5*y1þy2;

soundsc(echo,fs)

2.9. By using the linear prediction coefficients given by vector a, and the set of

20 signal samples (vector f ), determine the 14th signal sample and the

prediction error.

a ¼ �� 1:7321 0:9472 � 0:3083 0:0748 � 0:0812 0:1260 0:2962 . . .
. . . � 0:3123 0:0005 0:0216 � 0:1595 0:2126 � 0:0496


f ¼ � -2696 -2558 -2096 -1749 -1865 -2563 -2280 -1054 -635 -41 . . .
. . . 1695 3645 5150 6188 5930 4730 3704 3039 2265 1159


Solution:

Based on the linear prediction analysis, the estimated value of the 14th sample

is calculated according to:

f̂ ðnÞ ¼ �
XL
i¼1

ai f ðn� iÞ,
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For n¼ 14, L¼ 13, we have: f̂ 14ð Þ ¼ �
X13
i¼1

ai f 14� ið Þ ¼ 6064:

The prediction error is: e 14ð Þ ¼ f 14ð Þ � f̂ 14ð Þ ¼ 6188� 6064 ¼ 124:

2.10. For a given set f of ten signal samples and the corresponding prediction errors

(given by vector e) calculated as in the previous example, determine the value

of prediction gain.

e ¼ 103 � �0:0095 � 0:7917 � 1:1271 � 0:3273 0:0907 � 0:1379 � 0:1106½
. . . 0:1444 � 0:1762 0:5057�

f ¼ 6188 5930 4730 3704 3039 2265 1159 168 � 434 120½ �

Solution:

The prediction gain for the observed set of samples given in f can be

calculated as:

PG ¼ 10log10

X10
k¼1

f 2 kð Þ

X10
k¼1

e2 kð Þ

0
BBBB@

1
CCCCA ¼ 17:27dB:

2.11. For a set of ten samples (given below), calculate the value of energy-entropy

feature EEF.

f ¼ ½�43 7 � 97 � 3� 163 182 143 225� 242� 262�:

Solution:

Firstly, we calculate the energy E of the frame:

E ¼
X10
k¼1

f k
2 ¼ 269291:

The Fourier transform coefficients of the signal f are:

FðωÞ ¼ ½�2:5300 � 5:8848þ 1:0069i 1:4868� 7:6610i 3:0148� 0:1360i
3:2532þ 0:1677i � 5:5100 3:2532� 0:1677i 3:0148þ 0:1360i
1:4868þ 7:6610i � 5:8848� 1:0069i�:

The probability density function is calculated as:

p ¼ F ωð Þ=
X10
k¼1

F ωð Þ;
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and the corresponding vector p is obtained:

p ¼ 0:0526 0:1240 0:1621 0:0627 0:0677 0:1145 0:0677 0:0627 0:1621 0:1240½ �:

The entropy of the observed frame is calculated as:

H ¼
X10
k¼1

pklog pk ¼ �0:9651:

Finally, the energy-entropy feature can be calculated as:

EEF ¼ 1þ E � Hj jð Þ1=2 ¼ 509:8067:

2.12. Write the Matlab code for the word endpoints detector based on the energy-

entropy feature.

Solution:

%% load test speech signal in vector f

k=1;

for i=1:64: round(length(f)/64)*64

E(k)=sum(f(i:i+63).^2);

X=fft(f(i:i+63));

p=(abs(X)./sum(abs(X)));

H(k)=sum(p.*log10(p));

EEF(k)=sqrt(1+abs(E(k).*H(k)));

k=k+1;

end

for i=0:length(EEF)-1

s(1+i*64:i*64+64)=EEF(i+1);

end

figure(1),plot(real(s)./max(real(s)))

2.13. In this example a short Matlab code for the time-frequency based eigenvalue

decomposition is provided. We assume that the S-method is calculated in

advance (Chap. 1).
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Solution:

%Sm is the S-method matrix

%% Calculation of the auto-correlation matrix

R=zeros(N+1);

for n=1:N+1;

v=N+n;

k=n;

for m=1:N+1;

R(n,m)=Sm(v,k);

v=v-1;k=k+1;

end

end

% Eigenvalues matrix D and eigenvectors V

[V,D]=eigs(R,Nc,’lm’,opt); %columns of V are eigenvectors

D=abs(diag(D));

2.14. For the given subband samples, determine the number of bits that will be

transmitted, if we know that the samples below 13 dB are masked by the

neighboring subband (as shown in Fig. 2.45). Assume that the signal samples

are originally represented by 8 bits.

Fig. 2.45 The subband

samples and masking level
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Solution:

Due to the audio masking effects, only the samples that are above the

masking level will be transmitted. Due to the masking of tones below 13 dB,

the quantization noise of 12 dB is masked as well. Therefore, we use 2 bits

less to represent the samples, and the total number of transmitted bits is:

5 samples · (8-2) b¼ 30 b

2.15. Perform the Huffman coding algorithm, for the symbols whose numbers of

occurrences within a certain sequence are given below.

Number of occurrences: a ! 15

b ! 11

c ! 12

d ! 13

e ! 5

f ! 3

Solution:

In order to perform Huffman coding, the numbers of occurrences for

symbols a, b, c, d, e, and f are firstly sorted in decreasing order. Then the

coding is performed according to the scheme in Fig. 2.46.

Thus the symbols are coded as follows:

a ! 10 d ! 01 c ! 00 b !111 e ! 1101 f ! 1100

2.16. Consider the sequence this_image_is_damaged. Code the sequence by using

the LZ-77 code. Determine the number of bits that can be saved by applying

this coding algorithm. Assume that the pointers are represented by 12 bits.

Solution:

The sequences can be coded as follows:

this_image_is_damaged

this_image_(9,3)da(10,4)d

Fig. 2.46 An example of

Huffman coding
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(9,3) ! 00001001 0011

(10,4) ! 00001010 0100

Before LZ-77: 21�8 b¼ 168 b (21 characters including spaces)

After LZ-77: 14�8 bþ 24 b¼ 136 b

168–136¼ 32 (19%)

2.17. Perform the LZW coding of the sequence: strange strategic statistics.
Solution:

strange_strategic_statistics

256 ! st < st >range_strategic_statistics

257 ! tr s< tr >ange_strategic_statistics

258 ! ra st< ra >nge_strategic_statistics

259 ! an str< an >ge_strategic_statistics

260 ! ng stra< ng >e_strategic_statistics

261 ! ge stran< ge >_strategic_statistics

262 ! e_ strang< e_ > strategic_statistics

263 ! _s strange <_s > trategic_statistics

264 ! str strange _< str >ategic_statistics

265 ! rat strange_st< rat > egic_statistics

266 ! te strange_stra< te > gic_statistics

267 ! eg strange_strat< eg > ic_statistics

268 ! gi strange_strate< gi > c_statistics

269 ! ic strange_strateg< ic > _statistics

270 ! c_ strange_strategi< c_ > statistics

271 ! _st strange_strategic< _st > atistics

272 ! ta strange_strategic_s< ta > tistics

273 ! at strange_strategic_st< at > istics

274 ! ti strange_strategic_sta< ti > stics

275 ! is strange_strategic_stat< is > tics

276 ! sti strange_strategic_stati< sti > cs

277 ! ics strange_strategic_statist< ics >

Coded sequence:

strange_< 256>< 258> tegic< 263> tati< 256><269> s

2.18. Determine the bit rate (in Kb/s) for the following cases:

(a) Speech signal with the maximal frequency 10 KHz, while the samples

are coded by using 12 b/sample.

(b) Musical signal with the maximal frequency 20 KHz, coded using

16 b/sample. How much memory is required to store 10 min of this

stereo music?

The speech and musical signals are sampled according to the sam-

pling theorem.
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Solution:

(a) Speech signal:

fmax¼ 10 KHz ¼> fs 	 2�fmax¼ 20 KHz . Let us consider fs¼ 20 KHz.

Therefore, we have:

(20000 samples/s) � (12 b/sample)¼ 240 Kb/s

(b) Musical signal:

fmax¼ 20 KHz ¼> fs 	 2�fmax¼ 40 KHz

mono signal: (40000 samples/s) � (16 b/sample)¼ 640 Kb/s

stereo signal: 2�640 Kb/s¼ 1280 Kb/s

Memory requirements:

1280 Kb/s � 10 min¼ 1280 Kb/s � 600s¼ 768000 Kb

768000 Kb / 8¼ 93750 KB

2.19. Consider a stereo signal, sampled at 44.1 KHz, and coded by using 16 b/sam-

ple. Calculate the memory requirements for storing 1 min of this audio

format? What time is required to download 1 min of audio content from the

Internet if the connection speed is 50 Kb/s?

Solution:

The sampling rate for the considered signal is 44100 samples per second. This

number is multiplied by 2 due to stereo format, so that we have 88200

samples per second. Since each sample is coded with 16 bits, the total number

of bits used to represent 1 s of this audio format is:

88200�16¼ 1411200 b/s

Furthermore, 60 s of audio contains:

1411200b/s�60 s¼ 84672000 b, or equivalently,

84672000

8
¼ 10584000 B ¼ 10336 KB ¼ 10 MB:

The time required for a download of 1 min long audio content is:

84672000 b

50000 b
s

¼ 1693:44 s ¼ 28:22min:

2.20. If the sampling frequency of a signal is fs¼ 32000 Hz, determine the fre-

quency bandwidth of each subband in the case of the MPEG Layer I com-

pression algorithm.

Solution:

fs¼ 32 KHz

fmax¼ fs /2¼ 16 KHz
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In the MPEG Layer I compression algorithm the total frequency bandwidth

is divided into 32 subbands. Hence, each of the subbands has the following

width:

16000 / 32¼ 500 Hz.

2.21. Calculate the bit rate of the compressed 16-bit stereo signal if the sampling

frequency is:

(a) 32 KHz, (b) 44.1 KHz, (c) 48 KHz.

Assume that the MPEG Layer I compression factor is 1:4.

Solution:

(a)
16b � 2 � 32000 1

s

4
¼ 256000b=s ¼ 256Kb=s:

(b) 16b � 2 � 44100 1
s

4
¼ 352800b=s ¼ 352:8Kb=s:

(c)
16b � 2 � 48000 1

s

4
¼ 384000b=s ¼ 384Kb=s:

2.22. Consider 1152 signal samples and show that MPEG Layer II compression

algorithm provides considerable savings compared to the MPEG Layer I

algorithm, even in the case when the samples are coded with the maximal

number of bits in each subband.

Solution:

MPEG Layer I algorithm:

1152 samples¼ 3 block � 384 samples

384 samples¼ 32 block � 12 samples

Four allocation bits are assigned to each block

Maximal number of bits that is available for coding of samples is 15

6 bits that corresponds to scale factor is assigned to each block

3�32�4 bþ 3�32�6 bþ 3�32�12�15 b¼ 18240 b

MPEG Layer II algorithm:

The signal with 1152 samples is divided into three parts: 384 samples belong-

ing to low frequencies, 384 middle frequency samples and 384 samples

corresponding to high frequencies.

We assign 4 allocation bits, for each low-frequency block and conse-

quently we have 15 b/sample at most;

Three allocation bits are assigned to each of 32 middle frequency blocks,

meaning that at most 7 b/samples are available;

Finally, high-frequency blocks get 2 allocation bits each, and this means at

most 3 b/sample;
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The scale factor requires 6 bits per block.

Therefore, the total number of bits that is required for coding the set of

1152 samples is:

32�4þ 32�3þ 32�2þ 3�32�6þ 32�12�15þ 32�12�7þ 32�12�3¼ 10464 b

The savings can be calculated as a difference between the number of

required bits: 18240–10464¼ 7776 b.

2.23. Consider a simplified part of the sequence obtained by using the MPEG Layer

I algorithm and determine the value of the third sample in the first block

(from 32 blocks)? (Fig. 2.47)

Solution:

First 4 allocations bits—0110—correspond to the first block.

The sequence 0110 determines the samples within the considered block are

coded by using 6þ 1¼ 7 b/sample. Hence, we have:

I sample: 0110010

II sample: 1101100

III sample: 0110101

The value of the third signal sample is 53.

The scale factor is defined by the sequence 011101, i.e., the scaling factor

is 29�2 dB¼ 58 dB.

2.24. The signal with maximal frequency 24 KHz is coded by using the MPEG

Layer II algorithm and the achieved bit rate is 192 Kb/s. Calculate the number

of bits required for representation of the constant-length block used as a

coding unit.

Solution:

fmax¼ 24 KHz ) fs¼ 48 KHz, or in other words 1 s of the signal consists

of 48000 samples.

The total number of bits for the coding block within the MPEG Layer II

algorithm is:

n ¼ 1152 samples � 192000 b=s

48000 samples=s
¼ 4608 b:

2.25 Consider a MPEG-1 layer 1 audio frame of 384 samples divided into

32 subbands. Given are the SMR(i) for each subband i¼ 1, . . ., 32, the signal
sampling frequency 44.1 KHz and the required bit rate R¼ 320

Fig. 2.47 An illustration of MPEG Layer I sequence part
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Kb/s. Determine the number of bits that can be allocated per each subband

taking into consideration the required bit rate and MNR(i)¼ SNRq(i)-SMR(i).
The values of SNRq are given earlier in Table 2.3 for different number of

allocated bits Bdata (Table 2.4).
Solution:

The total number of available bits for frame can be calculated as:

Bavail ¼ R� 1000� ð32� 12Þ � 1

f s
¼

¼ 320� 1000� ð32� 12Þ � 1

f s
¼ 2786 b:

Also observe that each subband has SMR(i)> 0 dB which means that each

subband will require 6 bits for the exponent and 4 allocation bits, which

results in:

32ðheaderÞ þ 32� 4ðallocation bitsÞ þ 32� 6ðexponentÞ ¼ 352 b:

The total number of bits that will be reserved for the frame is calculated as:

Btotal ¼ 352 bþ
X31
i¼0

ð12� BdataðiÞÞ,

where Bdata(i) will be increased though the iteration untilMNR(i)> 0 for all i,
or until we reach the available number of bits Bavail.

In the first iteration we allocated BdataðiÞ ¼ 2 b bits per sample in each

subband, which is equivalent to SNRq¼ 7 dB. Then we calculate MNR(i) for
each subband i as given in Table 2.5.

Now the total number of used bits is: Btotal ¼ 352 bþP31
i¼0

ð12� 2Þ ¼ 1120:

As long as there are still bits available, we increase the number of Bdata(i) as
follows: Bdata(i)¼Bdata(i)þ 1, starting from the subbands i with the lowest

MNR(i). As we increase Bdata(i) for a specific subband i, the SNRq(Bdata(i))
increase according to the Table 2.3, and the MNR(i) needs to be recalculated

through iterations.

Table 2.4 SMR(i) for subband i¼ 1, . . ., 32

Subband 1 2 3 4 5 6 7 8 9 10 11

SMR/dB 24 18 14 14 14 18 18 18 20 18 14

Subband 12 13 14 15 16 17 18 19 20 21 22

SMR/dB 6 6 20 20 40 40 20 24 24 40 40

Subband 23 24 25 26 27 28 29 30 31 32

SMR/dB 40 60 60 60 60 60 64 85 85 85
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After a certain number of iterations, Bdata(i) for 32 subbands are given

in Table 2.6. The total number of used bits is:

Btotal ¼ 352 bþ 12� 202 ¼ 2776 b, which is still below Bavail¼ 2786, but

we cannot allocate any additional bit to 12 samples of certain subband.

For better readability, SNRq(Bdata(i)) are rewritten from Table 2.3 in

Table 2.7 having in mind Bdata from the Table 2.6.

The corresponding MNR(i) are given in Table 2.8. We may observe that

MNR(i)> 0 dB for each subband i, which means that the quantization noise is

below mask in each subband.

Table 2.6 Bdata allocated for samples of different subbands

Subband 1 2 3 4 5 6 7 8 9 10 11

Bdata 4 4 3 3 3 4 4 4 4 4 3

Subband 12 13 14 15 16 17 18 19 20 21 22

Bdata 2 2 4 4 7 7 4 4 4 7 7

Subband 23 24 25 26 27 28 29 30 31 32

Bdata 7 10 10 10 10 10 11 14 14 14

Table 2.5 MNR(i) for i¼ 1, . . ., 32 and Bdata(i)¼ 2 (SNRq¼ 7 dB)

Subband 1 2 3 4 5 6 7 8 9 10 11

MNR �17 �11 �1 �7 �7 �11 �11 �11 �13 �11 �7

Subband 12 13 14 15 16 17 18 19 20 21 22

MNR 1 1 �13 �13 �33 �33 �13 �17 �17 �33 �33

Subband 23 24 25 26 27 28 29 30 31 32

MNR �33 �53 �53 �53 �53 �53 �57 �78 �78 �78

Table 2.7 SNRq(Bdata(i)) for different subbands

Subband 1 2 3 4 5 6 7 8 9 10 11

SNRq 25.28 25.28 16 16 16 25.28 25.28 25.28 25.28 25.28 16

Subband 12 13 14 15 16 17 18 19 20 21 22

SNRq 7 7 25.28 25.28 43.84 43.84 25.28 25.28 25.28 43.84 43.84

Subband 23 24 25 26 27 28 29 30 31 32

SNRq 43.84 61.96 61.96 61.96 61.96 61.96 67.98 86.05 86.05 86.05

Table 2.8 MNR(i) for i¼ 1, . . ., 32 and Bdata(i) given in Table 2.6

Subband 1 2 3 4 5 6 7 8 9 10 11

MNR 1.28 7.28 2 2 2 7.28 7.28 7.28 5.28 7.28 2

Subband 12 13 14 15 16 17 18 19 20 21 22

MNR 1 1 5.28 5.28 3.84 3.84 5.28 1.28 1.28 3.84 3.84

Subband 23 24 25 26 27 28 29 30 31 32

MNR 3.84 1.96 1.96 1.96 1.96 1.96 3.98 1.05 1.05 1.05
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Fig. 2.48 MPEG layer 1 - SMR calculation
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Chapter 3

Storing and Transmission of Digital
Audio Signals

In this chapter we consider the widely used media for storing digital data. A special

attention is given to CD, Mini Disc (MD), DVD (concepts of data writing and

reading processes are considered), as well as to the coding principles. Different

error correction and interleaving algorithms such as cyclic redundancy check,

cross-interleaving, Reed–Solomon code, and Eight-to-Fourteen Modulation are

presented. Also, the basic concepts of the digital audio broadcasting system are

considered.

3.1 Compact Disc: CD

The basic characteristics of a CD are provided in Table 3.1.

CD has 20625 tracks, where the distance between tracks is 1.6 μm. The audio

storage space is placed between the lead-in and the lead-out area, having diameters

of 46 mm and 116 mm, respectively. The lead-in area contains information about

the CD content, the length and the starting time of audio sequences. The lead-out

area provides the information that the playback is completed. The internal structure

of the CD is given in Fig. 3.1, Table 3.2.

On the CD surface, there are pits and flat layers called lands. The pits can have

one of nine different lengths, from T3 to T11. The smallest pit size is

0.833� 0.5 μm. However, the pit and land lengths may vary depending on the

disc writing (turning) speed while recording. For example, T3 pit length is 833 nm

for the writing speed 1.2 m/s, while for the speed 1.4 m/s it is 972 nm.

Laser rays that fall on the land of the CD are reflected with the same path and the

same intensities, while the intensities of rays scattered from the bumps are lower.

The intensity of reflected beam is detected as one of the logical values (1 or 0).

Figure 3.2 illustrates the laser beam reflections from a CD.

It is noteworthy that a CD is not sensitive to an amount of dust, fingerprints, and

scratches. One reason that a CD has a good performance in terms of sensitivity to
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dust is a protective layer of 1.2 mm thickness, which completely passes the laser

beam through. For example, if there is a dust grain on the protective layer, the laser

ray will pass to the focal point without obstacles as long as the dust grain diameter is

less than 0.8 mm. The intensity of the reflected ray will correspond to the same

logical value as in the case of reflection from the clean surface, Fig. 3.2.

Table 3.1 Basic features

of CD
Characteristics Values

Frequency range 20 Hz–20 KHz

Dynamic range �96 dB

Diameter 12 cm

Playing time 60 min–74 min

Fig. 3.1 The structure of CD

Table 3.2 Lengths of pits at 1.2 m/s

Pits length Size in nm

T3¼ 10001 833

T4¼ 100001 1111

T5¼ 1000001 1388

. . . . . . . . .

T11¼ 1000000000001 3054
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3.1.1 Encoding CD

In order to be resistant to scratches and other errors, an efficient coding scheme is

applied. Namely, the audio signal stored on a CD is encoded within four steps:

1. Cross-Interleaved Reed–Solomon Coding (CIRC).

2. Generating a control word.

3. EFM encoding.

4. Generating synchronization word.

When passing through the CD encoding system, a bit rate for a 16-bit stereo

audio signal changes from 1.4112 · 106 b/s to 4.3218 · 106 b/s. To easily understand

the coding schemes used for CD, let us first briefly consider Cyclic Redundancy

Check (CRC) and interleaving.

3.1.1.1 Cyclic Redundancy Check: CRC

CRC is a general method used for error detection. The method relies on the division

of a polynomial corresponding to the original sequence by another predefined

polynomial function, resulting in a residue which is actually a CRC. The length

of a residue is always smaller than the length of the polynomial. CRC coding can be

also done by using the exclusive OR operation (XOR), but both polynomials have

to be represented as binary sequences.

Let us assume that the message is 11010011101100, while the divisor sequence

is equal to 1011 (as a polynomial it is defined by x3þ xþ 1). Now, the XOR

operation should be carried out between the original sequence and the divisor

sequence (from left to right). It should be mentioned that if the first bit in the

original sequence is equal to 0, then we begin the XOR operation on the next bit that

Fig. 3.2 Reflections from a CD
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has the value 1. The second step is to move the divisor sequence by one position to

the right and perform the XOR operation again. This procedure is repeated until the

sequence 1011 reaches the end of the original sequence, as illustrated in the

example. At the end, a binary residual sequence is obtained, representing the

CRC function.

11010011101100
1011
_______________ ________________
01100011101100

1011
________________________________
00111011101100

1011
________________________________
00010111101100

1011
________________________________
00000001101100

1011
________________________________
00000000110100

1011
________________________________
00000000011000

1011
________________________________
00000000001110

1011
________________________________
00000000000101 (the remaining 3 bits)

Typical polynomials used in the CRC encoding are given in Table 3.3.

3.1.1.2 Interleaving

Interleaving is an approach that arranges the data in noncontiguous order to

decrease the effects of errors. This enables us to possibly recover damaged infor-

mation by an interpolation method. For example, consider a signal with 24 samples

and divide it into blocks of 12 samples. A simple interleaving can be obtained by

reordering samples as shown in Fig. 3.3. In this case, interleaving is based on
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moving the first 6 samples within the block to the right by i-1, where i is the sample

position (e.g., the third sample is moved for 3–1¼ 2 positions to the right).

Another simple example of interleaving which is closer to the concept used in

the CIRC encoding, is shown in Fig. 3.4. Note that the distance between the

consecutive samples is increased. Each row has a different delay (the first row

has no delay, the second row has a unit delay, etc.).

3.1.1.3 CIRC Coding

Consider now the interleaving procedure used in the CD coding, which is consid-

erably more complex and it is illustrated in Fig. 3.5.

The structure is based on a group of six samples for the left and six samples for

the right channel of stereo audio signals. Each sample is represented by 16 bits.

Table 3.3 Some of the

polynomials used for CRC

coding

Code Polynomial

CRC-1 xþ 1

CRC-4 ITU x4þ xþ 1

CRC-5 ITU x5þ x4þ x2þ x1

CRC-8-CCITT x8þ x2þ xþ 1

CRC-10 x10þ x9þ x5þ x4þ xþ 1

CRC-12 x12þ x11þ x3þ x2þ xþ 1

CRC-16 CCIT x16þ x12þ x5þ 1

CRC-16 IBM x16þ x15þ x2þ 1

Fig. 3.3 An example of interleaving

Fig. 3.4 Interleaving based on the delay lines
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Odd and even samples are separated. From each sample, two 8-bit words are formed

(24 words in total). Then, all even samples are delayed by two symbols.

Figure 3.6 illustrates an example depicting how even the part of the system with a

two-symbol delay, can be useful to reconstruct the damaged part of the signal. Labels

Li and Ri represent the left and right i-th sample, respectively. Shaded parts denote

damaged samples. In the lower part of Fig. 3.6, the delay compensation is performed

and the samples are synchronized according to their initial order. Based on the even

samples, the damaged odd samples are reconstructed by interpolation, and vice versa.

The C2 encoder, shown in Fig. 3.5, generates four Q words that are 8 bits long.

These words represent the parity bytes used to increase the distance between the

odd and even samples and to allow the errors detection. Additional interleaving is

performed after the C2 encoder, which arranges the order and distances between the

Fig. 3.5 Interleaving used in CD coding
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Fig. 3.6 The reconstruction principle of the damaged signal part
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existing 28 words. The introduced delay between the words is used to dissipate the

error across distant positions in order to increase the ability to recover as many

samples as possible. After the interleaving subsystem, the C1 encoder generates

four P words (P parity bytes). Therefore, the CIRC encoder ends up with 32 words

from the initial 24 input words, introducing the redundancy of 8 words and

increasing the bit rate from 1.4112 · 106 b/s to 1.8816 · 106 b/s. The resultant

32 sequences are included within the unit called frame.

The procedure for determining P and Q parity words is done by using the Reed–

Solomon code. It is based on the finite field arithmetic, which is usually referred to

as Galois field. A finite field of q elements is denoted as GF(q). The field GF(q)
always contains at least one element, called a primitive element, with the order

(q� 1). If a is a primitive in GF(q), then (q� 1) consecutive powers of a: {1, a, a2,
. . ., aq� 2}, must be distinct and they are (q� 1) nonzero elements of GF(q). The
“exponential representation” allows describing the multiplication operation as an

addition: axay¼ axþy. A primitive element is a root of a primitive polynomial p(x).
For example, if we consider the polynomial: p(x)¼ x3þ xþ 1, then a3þ aþ 1¼ 0.

Note that the addition is done as the XOR operation.

The Reed–Solomon code use the Galois field in the form GF(2k), where the

elements of the field are represented by k bits. The 3-bit terms given in Table 3.4

describe a Galois field GF(23).
In order to understand how to obtain P and Q words, let us consider one

simplified, but illustrative example. Suppose that we have five data words labelled

as A, B, C, D, and E (3-bit words are used). Then, we set the following equations:

A� B� C� D� E� P� Q ¼ 0; ð3:1Þ
a7A� a6B� a5C� a4D� a3E� a2P� aQ ¼ 0; ð3:2Þ

where ai are the above defined constants. By solving the equations simultaneously,

the expressions for P and Q words are obtained. Hence, Eq. (3.2) is divided by a,
and then Q is replaced by A� B� C� D� E� P (since from Eq. (3.1) Q ¼ A
�B� C� D� E� P holds):

Table 3.4 The Galois field

GF(23)
Exponential Algebraic Binary

0 0 000

1 1 001

a a 010

a2 a2 100

a3 aþ 1 011

a4 a · a3¼ a2þ a 110

a5 a2 · a3¼ a2þ aþ 1 111

a6 a · a5¼ a3þ a2þ a¼ aþ 1

þ a2þ a¼ a2þ 1

101

a7 a · a6¼ a · (a2þ 1)¼ aþ 1þ a¼ 1 001

148 3 Storing and Transmission of Digital Audio Signals



a6A� a5B� a4C� a3D� a2E� aP� Q

¼ a6A� a5B� a4C� a3D� a2E� aP� A� B� C� D� E� P

) a6 � 1
� �

A� a5 � 1
� �

B� a4 � 1ð ÞC� a3 � 1ð ÞD� a2 � 1ð ÞE ¼ a� 1ð ÞP:
ð3:3Þ

By using the binary representation of constants from the Table 3.4, Eq. (3.3) can be

simplified as:

a2A� a4B� a5C� aD� a6E ¼ a3P

P ¼ a6A� aB� a2C� a5D� a3E ;
ð3:4Þ

where a2/a3¼ a�1¼ a7–1¼ a6. Similarly, by multiplying the Eq. (3.1) by a2, we
have:

a2A�a2B�a2C�a2D�a2E�a2P�a2Q¼ 0 )
a7A�a6B�a5C�a4D�a3E�ða2A�a2B�a2C�a2D�a2E�a2QÞ�aQ¼ 0 )
ða7�a2ÞA�ða6�a2ÞB�ða5�a2ÞC�ða4�a2ÞD�ða3�a2ÞE�ða�a2ÞQ¼ 0

Again using the binary representation of constants, the Q word is obtained as:

a6A� B� a3C� aD� a5E ¼ a4Q )
Q ¼ a2A� a3B� a6C� a4D� aE:

ð3:5Þ

In order to detect errors, two syndromes are considered:

S1 ¼ A
0 � B

0 � C
0 � D

0 � E� P
0 � Q

0
,

S2 ¼ a7A
0 � a6B

0 � a5C
0 � a4D

0 � a3E
0 � a2P

0 � aQ
0
;

ð3:6Þ

where A0, B0, . . ., Q0 denote received words that may contain an error. Assume that

the error occurred in the word C (C0 ¼CþG), while the other words are without

errors. Then, we obtain:

S1 ¼ A� B� Cþ Gð Þ � D� E� P� Q ¼ G,

S2 ¼ a7A� a6B� a5 Cþ Gð Þ � a4D� a3E� a2P� aQ ¼ a5G;
ð3:7Þ

or S2¼ a5S1. Therefore, the error is equal to the syndrome S1 and the error location
is obtained based on the weighting coefficient. After calculating the coefficient as:

ax ¼ S2
S1
, and concluding that ax¼ a5 holds, one may know that an error occurred

within the C word, because C is multiplied by a5.
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3.1.1.4 Generating Control Word

The next step in the CD coding procedure is a control word generation. The control

word is added to each block of 32 words. This word consists of the codes P, Q, R, S,
T, U, V, W. Note that the choice of P and Q labels is made a bit unadvisedly, since

we used them to obtain new code sequences independent of P and Q words

generated in CIRC coding. P can have values 0 or 1. From Fig. 3.7, we can observe

that P has value 1 between two sequences recorded on CD and value 0 during the

sequence duration. Switching from 0 to 1 with frequency equals to 2 Hz in the lead-

out area indicates the end of the disc. The Q word specifies the number of audio

channels. It should be noted that the total length of these subcodes is 98 bits, which

means that it can be read from 98 frames. After adding the control word, the bit rate

is increased to:

33=32 � 1:8816 � 106b=s ¼ 1:9404106b=s:

An example of the P and Q words is given in Fig. 3.7.

TheQword in the BCD format contains the current track number (01, 02, 03, etc.),

the index number, running time, etc. TNO (track number) represents the current track

number and ranges from 01 to 99. The TNO within the lead in area has the value 00.

The index point is a two-digit number in the BCD format and within the sequences

can be up to 99 index points. During a pause, the index point is equal to 00, while the

index point at the beginning of each sequence is equal to 01. Also, the index point in

the lead out area is equal to 01. Setting up the values for index pointers is a way to

divide the sequence into smaller parts. Index pointers are primarily intended for CDs

with long sequences (e.g., a classical music CD), since they allow direct access to

some parts of the sequence. However, they are rarely used nowadays.

Other subcodes are used for transmitting additional information such as text and

information on duration of individual sequences.

Fig. 3.7 An illustration of timing diagrams for P and Q channels
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After we determine the control word, the EFM (Eight to Fourteen Modulation)

is used to convert 8-bit symbols into 14-bit symbols. Observe that with 8 bits we can

make 256 combinations, while with 14 bits we can achieve 16384 combinations.

The basic idea of EFM coding is to map 8-bit words into 14-bit words such that the

number of inversions between consecutive bits is reduced, i.e., the distance between

transitions on the disc surface is increased (logical value 1 is used to determine the

transitions). An example of an EMF mapping is shown in Table 3.5, while the EFM

encoding procedure is illustrated in Fig. 3.8.

Note that the 14-bit signals are separated by using 3 merging bits to additionally

increase the distance between consecutive values 1. In other words, the initial 8-bit

sequences are extended to 17 bits and represented by theNRZ code. Then the sequence

of bits from the NRZ code is transferred into the NRZ1 code, such that each value 1 in

theNRZ codemakes the transition inNRZ1, as shown in Fig. 3.8. TheNRZ1 sequence

defines the position of pits when writing data to a CD. The minimum duration of the

NRZ1 signals is 3 T (3 clock periods) and the maximum duration is 11 T.

The bit rate after this coding stage is:

17=8 � 1:9404 � 106b=s ¼ 4:12335 � 106b=s:

Finally, the CD encoding process ends with a synchronization (sync) word. This

word is added after each frame to indicate the beginning of the frame, but also

serves to control the spinning motor speed. The sync word consists of 12 values

Table 3.5 Examples of

extending 8-bit words to

14-bit words

8-bit word 14-bit words

00000011 00100100000000

01001110 01000001001000

10101010 10010001000100

11110010 00000010001001

Fig. 3.8 An example of EFM encoding
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equal to 1, another 12 values 0, and 3 filter bits, making a total of 27 bits. Hence,

from the previously achieved 561 bits per frame, now we get 588 bits within the

frame (33 words · 17 bits¼ 561).

The final bit rate is:

4:12335b=s � 588=561 ¼ 4:3218 � 106b=s:

3.2 Mini Disc

Mini Disc (MD) has a diameter of 6.4 cm, almost twice smaller than the CD, with

the same playing time of 74 min. The sound quality is almost identical to the CD

audio quality. The structure of MD is depicted in Fig. 3.9.

Sophisticated compression algorithms are needed to reduce the amount of

information that has to be stored in order to retain a high-quality sound on MDs.

For this purpose, the MD uses ATRAC compression described in the previous

chapter. Note that the sampling frequency used for MDs is the same as for CDs

(44.1 KHz), and the track width is 1.6 μm.

Data recording is done through the magnetization performed by the magnetic

head. The magnetization is done at the specific temperature, which is above the

Curie point (about 185 �C). Note that the materials which are easily magnetized are

not used for manufacturing of MDs due to the possibility of data loss in the presence

of an external magnetic field. Therefore, even when exposed to an external mag-

netic field, MDs will not lose its contents, unless the required temperature is

achieved. A system for the MD magnetization is illustrated in Fig. 3.10.

When recording the data, the laser heats the magnetic layer up to the Curie

temperature. Then the magnetic head, placed on the opposite disc surface, performs

the magnetization by producing the correct polarity for each logical value (north or

south depending on the bit, 1 or 0). The laser beam is reflected from the magnetic

layer while reading the data. The polarization of the laser beam is changed based on

the orientation of the magnetic layer (Fig. 3.11). An optical device with a polarizing

filter collects reflected polarized signals. When the laser beam passes through the

filter, the intensity changes according to the laser beam polarization, and the output

signal is generated.

Fig. 3.9 The structure of

MD
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MDs use the ACIRC (Advanced CIRC) for encoding, which is similar to the

CIRC encoding used in CDs. It also uses the EFM encoding, along with the ATRAC

compression which is not used in CDs.

The antishock system is an important part of MDs as it enables the system to

recover from any shocks during playback. This system is based on the RAM,

allowing recovery from the shock with duration of several seconds.

A block diagram of the entire MD system is illustrated in Fig. 3.12.

Fig. 3.10 Recording the data on the MD

Fig. 3.11 Reflections of the laser beam in the case of MD
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When data are written to the MD (upper part in Fig. 3.12), the digital audio signal

is fed to the ATRAC encoder. ATRAC data compression is performed and the data

are loaded to the antishock system, and further through the EFM/ACIRC encoder

(which includes interleaving, error detection and EFM coding). The signal from the

EFM/ACIRC encoder is used to control the magnetic head when recording the data.

Reproduction or reading of the data starts at the unit called the optical signal

collector, shown in the lower part of Fig. 3.12. A special device within this unit is

called the optical detector. Then, the signal is amplified by the RF (radio frequency)

amplifier and fed to the EFM/ACIRC decoder. The data is decompressed using the

ATRAC decoder that follows the antishock system. The output of the ATRAC

decoder is a digital audio signal.

3.3 Super Audio CD (SACD)

SACD provides a high quality sound, with the option of multichannel records. The

diameter of SACD is the same as for a CD, while the width of pit lane is less than in

the case of CD (the track width is 0.74 μm and the length of a pit is 0.40 μm). The

sampling frequency is 2.8224 MHz and the 1-bit DSD encoding is used. The

maximum frequency of the reproduced sound is up to 100 KHz and with 120 dB

dynamic range. Data are protected with the SACD watermarking techniques.

The memory space required to store 74 min stereo audio recording is

(2�74�60�2.8224�106)/8 B¼ 2.9 GB. Hence, in the case of 6-channel format, the

required memory capacities would be certainly much larger. Therefore, SACDs use

lossy compression (e.g., AC3) or lossless compression based on the complex

algorithms with adaptive prediction and entropy coding.

Fig. 3.12 A block diagram of the MD system
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3.4 DVD-Audio

DVD-audio (DVD hereinafter) is also used to record high quality sound with the

sampling frequency of 192 KHz and 24 bit data format. DVD allows the signal to

noise ratio of S/N¼ 146 dB. The capacity of a DVD is 4.7 GB and its diameter is

8 or 12 cm. The maximum number of channels is 6. Based on these requirements, a

DVD cannot store 74 min of high quality music within 4.7 GB of memory space.

Therefore, the data have to be compressed. For this purpose, the lossless compres-

sion called Meridian Lossless Packing (or Packed PCM) has been developed. It is

based on three lossless techniques: Infinite Impulse Response (IIR) waveform

predictor selected from a set of predetermined filters to reduce the intersample

correlation, lossless inter-channel decorrelation and Huffman coding. This com-

pression algorithm compresses the original data by 50 %. However, even with this

high compression ratio, it is not possible to record six channels with sampling

frequency of 192 KHz and 24 bits. Therefore, the channels reflecting the influence

of the environment (surround sound) use different sampling frequencies. For

example, the direct left, right and center channels are characterized by 24-bit format

and the sampling frequency of 192 KHz, while the signals in the remaining three

channels (representing the surround effects) have a sampling frequency 96 KHz and

they are coded by 16 bits.

3.5 Principles of Digital Audio Broadcasting: DAB

Before we consider the main characteristics of DAB systems, let us review some

basic facts about the FM systems. In order to receive an FM signal with a stable

high quality, the fixed and well-directed antennas are required. For example, it is

impossible to achieve this condition with car antennas. Also, due to the multipath

propagation, the waves with different delays (i.e., different phases) can cause a

significant amplitude decrease and hence the poor reception of such signals

(Fig. 3.13).

The DAB system can avoid the aforementioned problems. Consider a DAB

system given in Fig. 3.14.

The first block compresses the data, which are then forwarded to the second

block. The second block encodes the data in order to become less sensitive to noise.

Lastly, the signal is forwarded to a transmitter that broadcasts the data. Figure 3.15

shows the channel interleaving process used to combine data from different chan-

nels into one transmission channel.

If interference occurs, it will not damage only the signal in one channel, but will

be scattered across all channels. Hence, a significant damage of signal belonging to

only one channel is avoided.
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3.5.1 Orthogonal Frequency-Division Multiplexing (OFDM)

OFDM is used to achieve more efficient bandwidth utilization for DAB systems.

Binary data sequence is first divided into pairs of bits, which are then forwarded to

the QPSK modulator (some systems use QAM or other modulation schemes). This

means that two bits are mapped into one of the four phase values, as illustrated in

the diagram in Fig. 3.16.

This produces the complex QPSK symbols. If the changes in the phase of the

received signal are used instead of the phase itself, the scheme is called the

Fig. 3.13 Direct and

reflected FM signals with

equal strength are nulled

when 180� phase difference
occur

Fig. 3.14 A block scheme of DAB system

Fig. 3.15 An illustration of channel interleaving
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differential QPSK (DQPSK). It depends on the difference between successive

phases. In DQPSK the phase-shifts are 0�, 90�, 180�, 270�, corresponding to the

data ‘00’, ‘01’, ‘11’, ‘10’.
Each of the symbols obtained after QPSK modulation is multiplied by a

sub-carrier frequency:

sk tð Þ ¼ Ake
jϕk e j2π f kt; ð3:8Þ

where Ak and ϕk are the amplitude and the phase of a QPSK symbol. For example,

symbols obtained by using the QPSK modulation have the constant amplitude and

their phases can have one of four possible values. If we assume that we have N sub-

carriers, then one OFDM symbol will be in the form:

s tð Þ ¼ 1ffiffiffiffi
N

p
XN�1

k¼0

Ake
j 2π f k tþϕkð Þ, 0 < t < T; ð3:9Þ

where f k ¼ f 0 þ kΔ f ¼ f 0 þ k 1
NTs

, Ts is the length of the symbols (e.g., the QPSK

symbols), while T¼N�Ts is the OFDM symbol duration. The carrier frequency is f0,
while the sub-carriers are separated by 1/T. The sub-carriers are transmitted in

mutually orthogonal frequencies, so that the subcarriers are peak centered at the

positions where other sub-carries pass through zero (Fig. 3.17). Note that the

OFDM symbol corresponds to the definition of the inverse Fourier transform.

Comparing to the previously used form of the Fourier transform, ωk is replaced

by 2πfk, and consequently 1/N is replaced by 1=
ffiffiffiffi
N

p
.

The spectrum of an individual sub-carrier is of the form sin(x)/x and it is centered
at the sub-carrier frequency.

Fig. 3.16 Diagram and table for QPSK modulation
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A simplified scheme including QPSK and OFDM modulator is given in

Fig. 3.18. Note that an OFDM system should include additional elements, such as

pilot symbols, guard intervals, etc., but here we only deal with the basic OFDM

concepts.

We saw that the OFDM modulation can be performed by calculating the inverse

Fourier transform. Demodulation is achieved by dividing the signal into the

parts that are equal in duration to OFDM symbols. Then, the Fourier transform is

performed and we can identify the sub-carrier frequencies. The resulting signal is

obtained by calculating the phases of the components on the sub-carrier

frequencies.

3.6 Examples

3.1. Starting from the sequence:

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},

perform a simple interleaving procedure defined as follows: the sequence

is divided into 4-samples segments, and then the first interleaved block is

formed by taking the first elements from each segment, the second block is

Fig. 3.17 An OFDM spectrum: (a) one sub-carrier, (b) five sub-carriers

Fig. 3.18 A simplified block diagram of OFDM system
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formed from the elements on the second position, and so on. Determine the

output sequence.

Solution is given in Fig. 3.19.

3.2. Consider the following input sequence:

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}.

The interleaving procedure is defined as follows:

– The input samples are placed to the 4� 4 matrix, by filling the

matrix rows.

– The matrix rows are reordered according to the principle 4-2-3-1 (the new

order of rows).

– The columns are reordered by using the same rule.

Determine the output sequence obtained by reading the columns of the

resulting matrix.

Solution:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

)
13 14 15 16

5 6 7 8

9 10 11 12

1 2 3 4

)
16 14 15 13

8 6 7 5

12 10 11 9

4 2 3 1

Output sequence is: {16,8,12,4,14,6,10,2,15,7,11,3,13,5,9,1}.

3.3. Consider a 16-bit audio stereo signal and calculate how much does the bit

rate change when passing through the first three CD encoding stages (CIRC

coding, Generating control word, EFM), if the starting bit rate at the input of

the coder is 1.4112�106 b/s.
Solution:

CIRC coding: At the input of the CIRC coder we have 24 words (8 bits

each). The coder C2 generates 4 Q words (8 bits each), while the coder C1

generates 4 P words (8 bits each).

At the output of the CIRC coder we have 32 words.

24 words produce the bit rate equal to 1.4112�106 b/s )
32 words produce the following bit rate:

(32/24) �1.4112�106 b/s ¼ 1.8816�106 b/s.

Fig. 3.19 Example of interleaving
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Generating control word: The 8-bit control word (P, Q, R, S, T, U, V,W ) is

assigned to each block.

Before generating the control word, the bit rate was 1.8816�106 b/s. At the
end of this stage the bit rate becomes:

(33/32) �1.8816�106 b/s¼ 1.9404�106 b/s.

EFM: In this stage 8-bit symbols are firstly extended into 14-bit symbols,

and then 3 additional bits are embedded between 14-bit combinations. Hence,

instead of 8-bit words, we have 17-bit words at the output of the EFM coder,

which results in the bit rate:

(17/8) �1.9404�106 b/s¼ 4.1233�106 b/s.

3.4. Consider the Super audio CD with sampling frequency 2.8224 MHz and 1-bit

DSD coding. It is recommended that the 74 min of an audio is stored within

4.7 GB. Is it enough memory to store the considered 6-channel audio format?

Solution:

fs¼ 2.8224 MHz) 2.8224�106 samples/s.

74 min¼ 74�60 s¼ 4440 s

Memory requirements: 6�4440�2.8224�106 �1 b ¼75188�106 b,
75188 � 106

8
¼ 9:4 � 109 B ¼ 8:75 GB:

Hence, 4.7 GB is not enough to store 74 min of the considered audio format.

3.5. In the case of DVD, the samples of direct left, right and central channel are

coded by using 24 bits, while the sampling frequency is 192 KHz. The

samples of the three environmental channels are coded by using 16 bits (the

sampling frequency is 96 KHz). Calculate the memory requirements for

storing 10 min of audio on DVD.

Solution:

In the considered case, we have:

– 3 channels with 192�103 samples/s, each coded by using 24 bits

– 3 channels with 96�103 samples/s, each coded by using 16 bits

Memory requirements: 3�24�192�103�10�60þ 3�16�96�103�10�60
¼8294400�103þ 2764800�103¼ 11059200�103 b
(11059200�103/8)/(10243)¼ 1.29 GB
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3.6. Having in mind that the sector of a CD contains 98 frames, each frame

contains 588 bits, and each sample is coded by using 16 bits (the sampling

frequency is 44.1 KHz, stereo channel), calculate the number of sectors that

are processed/read within 2 s.

Solution:

One sector of a CD contains 98 frames and the following number of bits:

98 � 588 b¼ 57624 b.

The bit rate for a considered stereo signal is:

2� 44100 � 16 b/s¼ 1411200 b/s.

Hence, the total number of sectors that are read in 2 s is:

2�1411200/57624¼ 49 sectors.

3.7. By using the CD bit rate equal to 4.3218�106 b/s, calculate the number of bits

which are used for (P,Q,R,S,T,U,V,W ) words within 1 s of the audio signal

stored on CD?

Solution:

The total number of frames:
4:3218 � 106 b=s

588 b=frames
¼ 7350 frames=s

The total number of sectors is:
7350

98
¼ 75.

Each sector contains one of each word type: P,Q,R,S,T,U,V,W. Hence the

total number of bits used to represent these words is:

75 sectors � 98 b/word � 8 words¼ 58800 b

3.8. Consider a 16-bit sequence: 1001101010101010, which is fed to the QPSK

modulator. The resulting QPSK sequence duration is T¼ 4.984 ms and it is

the input of OFDM block. Assuming that the carrier frequency is f0¼ 1 KHz,

while the inverse Fourier transform is calculated in 768 point, determine the

frequencies of sub-carriers f1 and f2.
Solution:

At the output of QPSK modulator, we obtain the sequence of 8 symbols.

The QPSK symbol duration is:

TS ¼ T

8
¼ 4:984

8
ms ¼ 0:623 ms:

The frequency of the k-th sub-carrier is given by:

f k ¼ f 0 þ kΔ f ¼ f 0 þ k
1

NTS
;
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Hence, the frequencies of the first two sub-carriers are obtained as:

f 1 ¼ f 0 þ Δ f ¼ f 0 þ
1

NTS
¼ 1 KHzþ 1

768 � 0:623 ms
¼ 1002:09 Hz;

f 2 ¼ f 0 þ 2Δ f ¼ f 0 þ 2
1

NTS
¼ 1 KHzþ 2

768 � 0:623 ms
¼ 1004:18 Hz:

3.9. Determine the frequency of the sub-carrier k¼ 5 within a certain OFDM

system, if the carrier frequency is f0¼ 2400 MHz, while the symbols rate is

fS¼ 2 MHz and the total number of sub-carriers is N¼ 200.

Solution:

The frequency of the k-th sub-carrier can be calculated as:

f k ¼ f 0 þ kΔ f ¼ f 0 þ k
1

NTS
;

where: f S ¼ 1
TS
. The frequency of the 5-th sub-carrier is then:

f 5 ¼ f 0 þ 5Δ f ¼ f 0 þ 5
f S
N

¼ 2400 MHzþ 5
2

200
MHz ¼ 2400:05 MHz:

3.10. Determine the number of sub-carriers in the OFDM system if the OFDM

symbol duration is 3.2 μs, while the total transmission bandwidth is

B¼ 20 MHz.

Solution:

For a given OFDM symbol duration NTS¼ 3.2 μs, we can calculate

sub-carrier spacing:

Δ f ¼ 1

NTs
¼ 1

3:2μs
¼ 312:5 KHz:

The number of sub-carriers in the OFDM system can be obtained as:

Nsc ¼ B

Δ f
¼ 64:
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Chapter 4

Digital Image

4.1 Fundamentals of Digital Image Processing

An image can be represented as a two-dimensional analog function f(x,y). After
digitalization, a digital image is obtained and it is represented by a two-dimensional

set of samples called pixels. Depending on the number of bits used for pixel

representation, a digital image can be characterized as:

• Binary image—each pixel is represented by using one bit.

• Computer graphics—four bits per pixel are used.

• Grayscale image—eight bits per pixel are used.

• Color image—each pixel is represented by using 24 or 32 bits.

Increasing the number of bits reduces the quantization error, i.e., increases the

SNR by 6 dB per bit.

Grayscale image with N1 rows and N2 columns contains N1�N2 spatially

distributed pixels, and it requires 8�N1�N2 bits for representation. Color images

are represented by using three matrices (for three color channels). Hence, if 8 bits

per pixel are used, we need 3� 8�N1�N2 bits of memory to store a color image.

In addition to the spatial distribution of pixels which provides the information

about the positions of grayscale values, a pixel value distribution in different image

regions can be analyzed as well. Such a distribution can be described by the joint

density function:

p xið Þ ¼
XN
k¼1

πk pk xið Þ, i ¼ 1, 2, . . . ,M; ð4:1Þ

where xi represents the gray level of the i-th pixel, pk(xi) is the probability density

function (pdf) for a region k, and πk is a weighting factor. The pdf for a region k can
be described by the generalized Gaussian function:
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pk xið Þ ¼ αβk
2Γ 1=αð Þ e

� βk xi�μkð Þj jα½ �, α > 0, βk ¼
1

σk

Γ 3=αð Þ
Γ 1=αð Þ
� �1

2

; ð4:2Þ

where Γ(�) is the gamma function and μk represents the mean value. The variance σk
is used to calculate βk. For α >> 1, the pdf becomes uniform. For α ¼ 2, the

Gaussian distribution is obtained, while for α ¼ 1 the Laplace distribution follows.

The generalized Gaussian pdf is suitable, because it can be used to describe the

image histogram. The image histogram provides important information about the

occurrence of certain pixel values, and as such, plays an important role in image

analysis. The histogram of a grayscale image “Lena” is given in Fig. 4.1.

4.2 Elementary Algebraic Operations with Images

Consider two images of the same dimensions, whose pixels at an arbitrary position

(i, j) are denoted as a(i, j) for the first and b(i, j) for the second image. Addition or

subtraction of two images is done by adding or subtracting the corresponding pixels

of an image, so that the resulting pixel is given in the form: c(i, j)¼ a(i, j)� b(i, j).
Multiplying the image by a constant term k can be written as c(i, j)¼ ka(i, j).
However, if we want to represent the result of these and other operations as a

new image, we must perform quantization (i.e., rounding to integer values) and

limit the results in the range of 0 to 255 (grayscale image is assumed).

Consider now the grayscale images “Baboon” and “Lena” (Fig. 4.2).

Let us perform the following operation: c(i, j)¼ a(i, j)þ 0.3b(i, j), where a(i, j)
denotes the pixel belonging to the “Lena” image, while b(i,j) belongs to the

“Baboon” image. The result is the image shown in Fig. 4.3.

Fig. 4.1 Histogram of “Lena” image
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To obtain a negative of a grayscale image, we use the following relation:

n i; jð Þ ¼ 255� a i; jð Þ:

The negative image of “Lena” is shown in Fig. 4.4.

Clipping (cutting the pixels values over a certain level cmax and below a certain

level cmin) is another mathematical operation used in image processing, and it is

defined as:

Fig. 4.2 (a) Grayscale image “Baboon,” (b) Grayscale image “Lena”

Fig. 4.3 The resulting

image obtained by adding

30 % of “Baboon” to

“Lena”

Fig. 4.4 Negative

of “Lena” image
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a i; jð Þ ¼
cmax, a i; jð Þ > cmax,

a i; jð Þ, cmax � a i; jð Þ � cmin,

cmin, a i; jð Þ < cmin:

8>><
>>: ð4:3Þ

For example, consider clipping of image “Lena” with cmin¼ 100, cmax¼ 156. The
result of clipping is shown in Fig. 4.5.

4.3 Basic Geometric Operations

Translation of an image a(i, j) with dimensions N1�N2 can be represented as

moving the pixels in one or both directions for a certain number of positions. In

the example shown in Fig. 4.6, we translated the image by embedding 31 rows and

31 columns of black color (zero value), while omitting the last 31 rows and

columns. In the case we would like a white surface to appear after translation, the

zero values should be replaced by the maximum values (e.g., value 255).

For an image a(x,y) the coordinates can be written by the vector
x
y

� �
. Then the

image rotation can be defined by:

X

Y

" #
¼ cos θ � sin θ

sin θ cos θ

" #
x

y

" #
; ð4:4Þ

where
X
Y

� �
are the new coordinates after rotation (Fig. 4.7).

After image rotation, we need to transform points from the polar coordinate

system to the rectangular coordinate system. In general, this transform is performed

with certain approximations.

Fig. 4.5 Clipped “Lena”

image
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4.4 The Characteristics of the Human Eye

By considering the characteristics of human visual system, we can define different

image processing algorithms that will meet important perceptual criteria.

One of the specific features of the human eye is sensitivity to the change of light

intensity. Specifically, the eye does not perceive the changes in light intensity

linearly, but logarithmically. It means that at lower intensity human eye can notice

very small changes in brightness, while at high intensity even a much bigger change

can hardly be registered.

There are two types of cells in the eye: elongated (rod cells or rods) and cone-

like (cone cells or cones). There are about 125 million rods and about 5 million

cones. The rods just detect the amount of light, while the cones detect colors. An

eye is not equally sensitive to three primary colors: red, green and blue. The relative

ratio of these sensitivities is:

Red : Green : Blue ¼ 30% : 59% : 11%

An eye is able to identify approximately between 40 and 80 shades of gray, while

for color images it can recognize between 15 and 80 million colors. The light

entering the eye is detected by the cones and rods. The image in the brain is actually

Fig. 4.6 “Lena” image

translated for 31 columns

and 31 rows

Fig. 4.7 “Lena” image

rotated by 45�
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obtained as the sum of images in primary colors. TV sets (CRT, LCD and plasma),

monitors, video projectors follow the human three-color model.

It is interesting to note that various models are used to measure the image quality

in different applications. Namely, the image quality can be represented by three

dimensions: fidelity, usefulness and naturalness. For example, the usefulness is a

major metric for medical imaging, the fidelity is the major metric for paintings,

while the naturalness is used in virtual reality applications.

4.5 Color Models

Color is one of the most important image characteristics. It is generally invariant to

translation, rotation and scaling. The color image can be modeled using various

color systems. RGB is one of the commonly used color systems. It can be

represented by the color cube as shown in Fig. 4.8. The gray level is defined by

the line R¼G¼B. Although the RGB model is based on the human perception of

colors, and thus, it has been used for displaying images (monitors, TV, etc.), other

color systems have been also defined in order to meet various constraints that exist

in the applications.

The RGBmodel is based on the fact that color can be viewed as a vector function

of three coordinates for each position within the image. Sometimes this model is

called the additive model, because the image is obtained by adding the components

in primary colors. Each point in the image can be represented by the sum of values

Fig. 4.8 The color cube
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of the three primary colors (R, G, B). A size of an RGB digital image depends on

how many bits we use for quantization. For example, for n¼ 8 bits, the values range

from 0 to 255. In the RGB model, the value 0 (coordinate¼ 0) means the absence of

color, while the value 255 (coordinate¼ 1) denotes the color with maximum

intensity. Thus, we conclude that (0,0,0) represents black and (1,1,1) represents

white. When converting a color image to a grayscale one, the luminescence is

calculated as the mean value of the RGB components. By combining two of the

three primary colors (R, G, B), we get the colors used in the CMY color model, and

white color as a sum of all three colors:

Gþ B ¼ C cyanð Þ; Rþ B ¼ M magentað Þ;
Rþ G ¼ Y yellowð Þ; Rþ Gþ B ¼ W whiteð Þ:

In Fig. 4.8, the color cube is shown in rectangular coordinates. It illustrates the

relative position of the RGB and CMY color model.

4.5.1 CMY, CMYK, YUV, and HSV Color

The coordinate system in the color space can be formed by using three noncollinear

color vectors. Thus, if we choose the basis vectors as follows: C—Cyan,

M—Magenta and Y—Yellow, the CMY color model is obtained. This model is

basically the most commonly used in printers, because the white is obtained by the

absence of colors. Even though, black is obtained by combining all three colors

together, the printers usually have a separate cartridge for the black color. The

CMYmodel including the black color is called the CMYK color model. K is used to

refer to the black color. The connection between the CMY and RGB models is

evident from the color cube:

C ¼ 1� R, M ¼ 1� G, Y ¼ 1� B; ð4:5Þ

while the CMYK model can be obtained as:

K ¼ min C;M;Yð Þ, C ¼ C� K, M ¼ M � K, Y ¼ Y � K: ð4:6Þ

Another commonly used system is YUV. Here, the color is represented by three

components: luminance (Y ) and two chrominance components (U and V ). The
YUV is obtained from the RGB by using the following equations:

Y ¼ 0:299Rþ 0:587Gþ 0:114B,

U ¼ 0:564 B� Yð Þ,
V ¼ 0:713 R� Yð Þ:

ð4:7Þ
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It is interesting to note that in the case of R¼G¼B, we have Y¼R¼G¼B
which is actually the luminance component, while U¼ 0, V¼ 0.

Special efforts have been made to define the color systems that are more uniform

from the standpoint of perceptual sensitivity, such as L*u*v* and L*a*b* systems.

Perceptually uniform means that two colors that are equally distant in the color

space are equally distant perceptually, which is not the case with the RGB or CMY

models (the calculated distance between two colors does not correspond with the

perceived difference between the colors). In the L*a*b* model the perceptual color

difference is represented by the Euclidean distance:

ΔE*
ab ¼ ΔL*

2 þ Δa*2 þ Δb*2
� �1

2

where

ΔL* ¼ L1
* � L2

*

Δa* ¼ a1
* � a2

*

Δb* ¼ b1
* � b2

*

ð4:8Þ

The L*a*b* model can be obtained from the RGB by the following

transformations:

X

Y

Z

2
64

3
75 ¼

0:490 0:310 0:200

0:177 0:813 0:011

0:000 0:010 0:990

2
64

3
75

R

G

B

2
64

3
75; ð4:9Þ

L* ¼ 25
100Y

Y0

� �1
3

� 16,

a* ¼ 500
X

X0

� �1
3

� Y

Y0

� �1
3

" #
,

b* ¼ 200
Y

Y0

� �1
3

� Z

Z0

� �1
3

" #
:

ð4:10Þ

The condition 1	 100Y	 100 should be satisfied in Eq. (4.10). The value

(X0,Y0,Z0) represents reference white. On the basis of this system, we can introduce

the HSV color system that is more oriented towards the perceptual model.

The HSV color system is represented by a cylindrical coordinate system as

shown in Fig. 4.9.

This system is based on the three coordinates: H, S and V. H is a measure of the

spectral composition of color, while S provides information about the purity of

color, or more accurately, it indicates how far is the color from the gray level, under

the same amount of luminescence. V is a measure of the relative luminescence. The

component H is measured by the angle around the V axis, ranging from 0� (red) to
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360�. Along the V axis, the luminance is changed from black to white. The value of

the H, S and V can be defined by using the RGB model as follows:

H1 ¼ cos �1
1
2

R� Gð Þ þ R� Bð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� Gð Þ2 þ R� Bð Þ G� Bð Þ

q
0
B@

1
CA,

H ¼ H1 for B 	 G,
H ¼ 360∘ � H1 for B > G;

ð4:11Þ

S ¼ max R;G;Bð Þ �min R;G;Bð Þ
max R;G;Bð Þ ; ð4:12Þ

V ¼ max R;G;Bð Þ
255

: ð4:13Þ

The HSV model is suitable for face detection and tracking algorithms. The thresh-

olds that define the human face color are specified as:

340∘ 	 H 	 360∘ and 0∘ 	 H 	 50∘,

S � 20%,

V � 35%:

ð4:14Þ

Having in mind the coordinate system of this color model, we may observe that the

previously given intervals are wide, which may lead to the false detection of the

object that actually does not represent the face, but have a similar color information.

In order to avoid this possibility, additional analyses are required.

Fig. 4.9 The HSV color model
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4.6 Filtering

4.6.1 Noise Probability Distributions

Image noise may occur during image transmission over a communication channel.

The most common types of noise are impulse noise and Gaussian noise. Impulse

noise is manifested as a set of black and white pulses in the image (Fig. 4.10). It

occurs as a result of atmospheric discharges, or due to electromagnetic field

generated by various appliances.

If impulse noise takes two fixed values: a (negative impulse) and

b (positive impulse), with equal probabilities p/2, we will have the

two-sided impulse noise model. In this case, an image with impulse noise can be

defined as:

f I i; jð Þ ¼
a, with a probability p=2;

b, with a probability p=2;

f i; jð Þ, with a probability 1� pð Þ:

8>><
>>: ð4:15Þ

Thermal noise is usually modeled as the white Gaussian one and its distribution

is given by:

Pg xð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
e�

x�μð Þ2
2σ2 ; ð4:16Þ

where μ is the mean value, while σ2 denotes the variance of noise (σ is the standard

deviation of noise). Figure 4.11 demonstrates “Lena” image affected by white

Gaussian noise.

Beside the impulse and Gaussian noise, the uniformly distributed noise can

appear. The gray level values of the noise are evenly distributed across a specific

range. The quantization noise can be approximated by using uniform distribution.

The corresponding pdf is defined as:

Fig. 4.10 “Lena” affected

by an impulse noise with

density 0.05
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Pu xð Þ ¼
1

b� a
, for a 	 x 	 b

0, otherwise:

8<
: ð4:17Þ

The mean value and variance of the uniform density function are:

μ ¼ aþ bð Þ=2 and σ2 ¼ b� að Þ2=12, respectively.
Radar images may contain noise characterized by the Rayleigh distribution:

PR xð Þ ¼
2

β
x� αð Þe� x�αð Þ2=β, for x � α

0, otherwise;

8<
: ð4:18Þ

with the mean equal to μ ¼ αþ ffiffiffiffiffiffiffiffiffiffi
πβ=4

p
and the variance σ2 ¼ β 4� πð Þ=4.

4.6.2 Filtering in the Spatial Domain

Filtering of noisy images intends to reduce noise and to highlight image details. For

this purpose, the commonly used filters in the spatial domain are the mean and

median filters. Use of these filters depends on the nature of the noise that is present

within the image. Spatial domain filters are especially suitable in the cases when

additive noise is present.

4.6.2.1 Mean Filter

Mean filters are used to filter the images affected by the Gaussian white noise, since

it is based on calculating the average pixel intensity within an image part captured

by a specified window. The filter should use a small number of points within the

window to avoid blurring of image details. Note that a larger window would

provide better noise filtering.

Fig. 4.11 “Lena” affected

by zero-mean white

Gaussian noise whose

variance is equal to 0.02
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Consider a window of the size (2N1þ 1)� (2N2þ 1). The signal f(i,j) is

affected by the noise n(i,j) and the noisy signal is:

x i; jð Þ ¼ f i; jð Þ þ n i; jð Þ: ð4:19Þ

The output of the arithmetic mean filter is defined by the relation:

x f i; jð Þ ¼ 1

2N1 þ 1ð Þ 2N2 þ 1ð Þ
XiþN1

n¼i�N1

XjþN2

m¼ j�N2

x n;mð Þ; ð4:20Þ

where x(n,m) is the pixel value within the window, while the impulse response of

the filter is h i; jð Þ ¼ 1= 2N1 þ 1ð Þ 2N2 þ 1ð Þð Þ. The output of this filter is actually

the mean value of pixels captured by the window. For a window size 3� 3, we deal

with 9 points, while the 5� 5 window includes 25 points. From the aspect of noise

reduction, the 5� 5 window will be more effective. However, it will introduce

more smoothed edges and blurred image (Fig. 4.12).

As an example, “Lena” image affected by a zero-mean Gaussian noise with

variance 0.02, and its filtered versions are shown in Fig. 4.13.

Instead of the arithmetic mean filter, the geometric mean can be used as well,

where the filter output is given by:

x f i; jð Þ ¼
YiþN1

n¼i�N1

YjþN2

m¼ j�N2

x n;mð Þ
 ! 1

2N1þ1ð Þ 2N2þ1ð Þ
: ð4:21Þ

The geometric mean filter introduces less blurring and preserves more image details

(Figs. 4.14 and 4.15).

4.6.2.2 Median Filter

Median filters are used to filter out the impulse noise. Consider a sequence with an

odd number of elements. After sorting the elements, the median value is obtained as

the central element. In a sequence with an even number of elements, the median is

calculated as the mean of two central elements of the sorted sequence.

Fig. 4.12 An illustration

of blurring after applying

mean filter on the image

edge (the mask size used

is 5� 5)
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Example

The sequence is given as:

3 14 7 1 5

Sort the numbers in the ascending order:

1 3 5 7 14

and then the median is the central element 5.

Consider now a sequence with an even number of elements:

1 12 7 9 4 2

Sort the elements in ascending order:

1 2 4 7 9 12

4 and 7 are the two central elements, and the median is equal to their mean value,

or 5.5.

Fig. 4.13 (a) “Lena” affected by Gaussian noise with zero mean and variance 0.02, (b) filtered
image obtained by using mean filter of size 3� 3, (c) filtered image obtained by using mean filter

of size 5� 5
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The median filter is applied in image denoising by using a rectangular window

that slides over the entire image. The elements captured by the window are

reordered as a vector x:{x(k), k2[1,N]} and then the median value xm for the vector

is calculated as follows:

xm ¼ median x 1ð Þ, . . . , x kð Þ, . . . , x Nð Þð Þ

¼
xs N=2b c þ 1ð Þ, N is odd,

xs N=2ð Þ þ xs N=2þ 1ð Þ
2

, N is even;

8<
:

ð4:22Þ

where xs is the sorted version of x, while �b c denotes the integer part of a positive
number. Another way to calculate the median of a matrix is to calculate the median

value for columns and then for rows (or vice versa). Generally, these two

approaches usually do not produce exactly the same result.

Fig. 4.14 (a) Original image, (b) noisy image (Gaussian noise with 0.05 mean and variance

0.025), (c) image filtered by using arithmetic mean of size 3� 3, (d) image filtered by using

geometric mean of size 3� 3
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Suppose that the filter window covers (2N1þ 1) (2N2þ 1) pixels. The pixel x(i,
j) is the central one in the filter window. From all the pixels within the window, we

form a matrix:

x i� N1, j� N2ð Þ . . . x i� N1, jð Þ . . . x i� N1, jþ N2ð Þ
⋮ ⋮ ⋮

x i, j� N2ð Þ . . . x i; jð Þ . . . x i, jþ N2ð Þ
⋮ ⋮ ⋮

x iþ N1, j� N2ð Þ . . . x iþ N1, jð Þ . . . x iþ N1, jþ N2ð Þ

2
666666664

3
777777775

The first step is to sort the elements within columns and to determine the median for

each column. The second step uses the median values of columns and calculates the

median again. Mathematically, it is described as:

Fig. 4.15 (a) Original image, (b) noisy image (Gaussian noise with 0.05 mean and variance

0.025), (c) image filtered by using arithmetic mean of size 3� 3, (d) image filtered by using

geometric mean of size 3� 3
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qn ¼ median x i� N1, jð Þ, x i� N1 þ 1, jð Þ, . . . , x iþ N1, jð Þf g, for n ¼ j,

q i; jð Þ ¼ median qn; n 2 j� N2, . . . , jþ N2ð Þf g:
ð4:23Þ

Therefore, q(i,j) represents the output of separable median filter. An application of

the median filter to image “Lena” affected by the impulse noise is illustrated in

Fig. 4.16.

The α-trimmed mean filter has been introduced as a good compromise between

the median and arithmetic mean filter. Namely, after sorting the windowed pixels,

we discard a few lowest and highest samples, while the remaining pixels are

averaged. The α-trimmed mean filter can be defined as:

xα i; jð Þ ¼ 1

N � 2 αN½ �ð Þ
XN� αN½ �

n¼ αN½ �þ1

xs nð Þ; ð4:24Þ

where xs(n) is the vector of sorted pixels from the window N1�N2, N¼N1N2, [αN]
denotes rounding to the greatest integer not greater than αN. The parameter α takes

the value from the range: 0	 α< 0.5. Note that this filter form corresponds to the

median for α¼ 0.5 (for odd N ), while for α¼ 0 it performs as a moving average

Fig. 4.16 (a) “Lena” affected by impulse noise with density 0.05, (b) denoised image (median

filter of size 3� 3 is used), (c) denoised image (5� 5 median filter)
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filter. Alternatively, we can apply the same operation separately on the rows and

columns as follows:

xα i; jð Þ ¼ 1

N1 � 2 αN1½ �	
N2 � 2 αN2½ �
 	 XN1� αN½ �

n¼ αN1½ �þ1

XN2� αN½ �

m¼ αN2½ �þ1

x m; nð Þ: ð4:25Þ

4.6.3 Filtering in the Frequency Domain

Filters in the frequency domain are designed on the basis of a priori knowledge

about signal frequency characteristics. The most significant frequency content of

images is mostly concentrated at low frequencies. Therefore, in many applications,

the images are usually filtered with low-pass filters. The ideal rectangular separable

low-pass filter has the following transfer function:

H ω1;ω2ð Þ ¼
1, ω1j j 	 W1 and ω2j j 	 W2

0, otherwise:

(
ð4:26Þ

A band-pass filter can be defined as:

H ω1;ω2ð Þ ¼
1, W11 	 ω1j j 	 W1 2 , W21 	 ω2j j 	 W22

0, otherwise:

(
ð4:27Þ

In addition to rectangular, a circular low-pass filter can be used:

H ω1;ω2ð Þ ¼ 1, ω2
1 þ ω2

2 	 W,

0, otherwise:

(
ð4:28Þ

Filtering images with a high-pass filter provides high-frequency components that

contain the image details:

H ω1;ω2ð Þ ¼ 1, ω1j j > W1 and ω2j j > W2ð Þ or ω2
1 þ ω2

2 > W

 	

,

0, otherwise:

(
ð4:29Þ

L-estimate space-varying filtering
Certain types of images such as interferograms, textures and surface images, are

characterized by a specific frequency content that can be efficiently processed using

the concept of space-varying filtering based on the space/spatial-frequency (SSF)

representation. Particularly, in the presence of mixed Gaussian and heavy-tailed
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noise, the filter formulation based on the robust L-estimate forms of SSF represen-

tations can be used. The L-estimate representation is exploited to identify important

components and to filter them out from the scattered noise. The filtering approach

comprises two filter forms as follows:

1. α-trimmed approach in SSF domain. The calculation of the 2D L-estimate

STFT of image f(x, y) using N�N rectangular unit window is performed in this

phase:

STFTL x; y; kx; ky

 	 ¼XN�1

p¼0

XN�1

q¼0

a paq


r p,q x; y; kx; ky


 	þ j � i p,q x; y; kx; ky

 		

;

ð4:30Þ

where rp,q and ip,q are sequences sorted in non-decreasing order:

r p,q x; y; kx; ky

 	 2 Re f x, y,u,v

� �
, u, v 2 �� N=2,N=2� 1

	n o
,

i p:q x; y; kx; ky

 	 2 Im f x, y,u,v

� �
, u, v 2 �� N=2,N=2� 1

	n o
;

ð4:31Þ

while

f x, y,u,v ¼ f xþ u, yþ vð Þe� j2π ukxþvkyð Þ=N: ð4:32Þ

Due to the sorting operation, the coefficients corrupted by noisy pulses will be

located at the ends of the sorted sequence. The weights ap and aq are designed in
analogy with coefficients of α-trimmed filter and they will have zero values at

the position corresponding to the ends of sorted sequence. It further means that

the coefficients at the ends of sorted sequence will be set to zero and the mean

value is calculated using the remaining ones.

2. 2D Space-varying filtering. The output of the 2D space-varying filtering (pseudo

form) can be calculated according to:

y x; yð Þ ¼
X
kx

X
ky

LH x; y; kx; ky

 	

STFTL x; y; kx; ky

 	

: ð4:33Þ

Recall that the corresponding 1D form is known as time-varying filtering

which is defined in Chap. 1. The support function LH of the nonstationary

space-varying filter can be defined in the form:

LH x; y; kx; ky

 	 ¼ 1 for x; y; kx; ky


 	 2 D

0 for x; y; kx; ky

 	

=2D

(
: ð4:34Þ
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The support region D, in practical realizations, can be simply calculated as:

D ¼ x; y; kx; ky

 	

: SSFRL x; y; kx; ky

 	�� �� > ξ

 �
; ð4:35Þ

where ξ represents the energy floor, SSFR denotes a space/spatial-frequency

representation, while L indicates the L-estimate form (for instance, we can

employ the 2D L-estimate spectrogram or the 2D L-estimate S-method).

4.6.4 Image Sharpening

A blurred noisy image in the Fourier domain can be written as:

X u; vð Þ ¼ H u; vð ÞF u; vð Þ þ N u; vð Þ; ð4:36Þ
where X(u,v) is the Fourier transform of blurred image, H(u,v) is the impulse

response of the system that induces blurring (degradation), F(u,v) is the Fourier

transform of the original image, and N(u,v) is the Fourier transform of noise. For

example, if the blurring is produced by the uniform linear motion between the

image and the sensor (during image acquisition) along the x axis, then the degra-

dation function can be defined by:

H u; vð Þ ¼ T
sin πnuð Þ
πnu

e�jπnu; ð4:37Þ
where n is the distance of pixels displacement, while T is the duration of the

exposure. Sharpening of the image is achieved based on the following relation:

F u; vð Þ ¼ X u; vð Þ
H u; vð Þ : ð4:38Þ

4.6.5 Wiener Filtering

The Wiener filter is defined in the theory of optimal signal estimation. It is based on

the equation:

f e i; jð Þ ¼ L f i; jð Þ½ �; ð4:39Þ
where L is a linear operator meaning that the estimated values are a linear function

of the original (degraded) values. The estimated values are obtained such that the

mean square error:

E f i; jð Þ � f e i; jð Þð Þ2
n o

; ð4:40Þ

is minimized. The Wiener filter in the frequency domain is obtained in the form:
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Hw u; vð Þ ¼ H* u; vð Þ
H u; vð Þj j2 þ Sn u;vð Þ

S f u;vð Þ
; ð4:41Þ

where Sn(u,v) and Sf(u,v) represent the power spectrum of the noise and the signal,

respectively: Sn u; vð Þ ¼ N u; vð Þj j2, S f u; vð Þ ¼ F u; vð Þj j2. H*(u,v) is the complex

conjugate of the degradation function and for H*(u,v)¼ 1, Eq. (4.41) becomes:

Hw u; vð Þ ¼ S f u; vð Þ
S f u; vð Þ þ Sn u; vð Þ ¼ 1� Sn u; vð Þ

Sx u; vð Þ : ð4:42Þ

It is assumed that the signal and noise are uncorrelated:

Sx u; vð Þ ¼ S f u; vð Þ þ Sn u; vð Þ. Note that when Sn tends to zero, the filter function

is approximately equal to 1 (no modification of the signal), while in the case when Sf
tends to zero, the filter function is zero. The filtered spectrum can be written as:

Fe u; vð Þ ¼ Hw u; vð ÞX u; vð Þ; ð4:43Þ
where X(u,v) is the spectrum of noisy image. The noise should be measured in the

time intervals when the signal is not present (e.g., consider a communication

channel without signal during an interval of time), and then the estimated noise

spectrum is available for the calculation of Hw(u,v).

4.7 Enhancing Image Details

An image can be represented in terms of its illumination and reflectance

components:

a i; jð Þ ¼ ai i; jð Þar i; jð Þ; ð4:44Þ

where ai is the illumination describing the amount of incident light on the observed

scene, while ar is the reflectance component describing the amount of light reflected

by the objects. It is usually assumed that the scene illumination varies slowly over

space, while the reflectance varies rapidly especially on the transitions between

different objects. Hence, the illumination and the reflectance components are asso-

ciated with low and high frequencies, respectively. Usually, the goal is to extract the

reflectance component and to minimize the illumination effect, which can be done

by using the logarithm to transform multiplicative into additive procedure:

log a i; jð Þð Þ ¼ log ai i; jð Þð Þ þ log ar i; jð Þð Þ: ð4:45Þ

Having in mind their frequency characteristics, we can separate these two compo-

nents of images and emphasize the details.
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4.8 Analysis of Image Content

The distribution of colors and textures are considered as two important features for

the analysis of image content.

4.8.1 The Distribution of Colors

The distribution of colors can be described by using histogram. If we want to search

an image database, we can achieve it by comparing the histogram of the sample

image Q and the histogram of each image I from the database. Suppose that both

histograms have N elements. Comparison is done by calculating the total number of

pixels that are common to both histograms:

S ¼
XN
i¼1

min Ii;Qið Þ: ð4:46Þ

This amount is often normalized by the total number of pixels in one of the two

histograms. Having in mind that this method is computationally demanding, the

modified forms have been considered. Namely, by using a suitable color model, an

image can retain its relevant properties even with a coarser representation. Hence, a

significant computational savings can be achieved.

A computationally efficient method for comparison of color images can be

obtained if colors are represented by fewer bits. For example, if each color is

reduced to 2 bits, then we have 64 possible combinations in the case of three colors.

The colorfulness of images can be described by using the color coherence

vectors. Assume that the total number of colors is N, the color coherence vectors

for images Q and I are given by:

αQ
1 ; β

Q
1

� �
, . . . , αQ

N ; β
Q
N

� �h i
and α I

1; β
I
1


 	
, . . . , α I

N; β
I
N


 	� �
;

where αi and βi represent the number of coherent and incoherent pixels for color i,
respectively. Coherent pixels are those that belong to a region characterized by the

same color. A difference between two images can be calculated by using the

following formula:

dist Q; Ið Þ ¼
XN
i¼1

αQi � αI i
αQi þ αI i þ 1

����
����þ βQi � βI i

βQi þ βI i þ 1

����
����

� �
: ð4:47Þ

4.8 Analysis of Image Content 185



4.8.2 Textures

A texture is an important characteristic of the image surface. There are different

methods and metrics for texture analysis. For instance, the textures can be described

by using the following properties: contrast, directionality and coarseness.

The contrast can be quantified by the statistical distribution of pixel intensities.

It is expressed as:

Con ¼ σ

K1=4
; ð4:48Þ

where σ is the standard deviation, K is the kurtosis, defined by:

K ¼ μ4
σ4

; ð4:49Þ

while μ4 is the fourth moment about the mean. The presented definition is a global

measure of the contrast obtained for the entire image.

Coarseness represents a measure of texture granularity. It is obtained as the

mean value calculated over windows of different sizes 2k� 2k, where k is usually

between 1 and 5. The windowing and averaging is done for each image pixel.

Consider a pixel at the position (x,y). The mean value within the window of size

2k� 2k is defined as:

Ak x; yð Þ ¼
Xxþ2k�1�1

i¼x�2k�1

Xyþ2k�1�1

j¼y�2k�1

a i; jð Þ
22k

; ð4:50Þ

where a(i,j) is the grayscale pixel value at the position (i,j). Then the differences

between mean values in the horizontal and vertical directions are calculated as

follows:

Dkh ¼ Ak xþ 2k�1, y

 	� Ak x� 2k�1, y


 	�� ��,
Dkv ¼ Ak x, yþ 2k�1


 	� Ak x, y� 2k�1

 	�� ��: ð4:51Þ

Using the above equations, we choose the value of k, which yields the maximum

values forDkh andDkv. The selected k is used to calculate the optimization parameter:

g x; yð Þ ¼ 2k: ð4:52Þ

Finally, the measure of granulation can be expressed in the form:

Gran ¼ 1

mn

Xm
i¼1

Xn
j¼1

g i; jð Þ: ð4:53Þ
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In order to reduce the number of calculations, the measure of granularity can be

calculated for lower image resolution.

Directionality is the third important texture feature. As a measure of direction-

ality, at each pixel we calculate a gradient vector, whose amplitude and angle are

given as:

ΔGj j ¼ ΔHj j þ ΔVj jð Þ=2,

φ ¼ arctan
ΔV

ΔH

� �
þ π

2
;

ð4:54Þ

where horizontal ΔH and vertical ΔV differences are calculated over 3� 3 window

around a pixel. After determining the above parameters for each pixel, we can draw

a histogram of angle values φ, taking only those pixels where jΔGj is larger than a

given threshold. The resulting histogram will have dominant peaks for highly

directional images, while for non-directional images it will be flatter.

4.8.3 Co-occurrence Matrix

A simplified method to measure the contrast of textures can be performed by using

the co-occurrence matrices. First, we form the co-occurrence matrices that show

how many times the values y appear immediately after the x values. For example,

consider the following sample matrix:

1 1 1 2 3

1 1 1 2 3

1 1 1 2 3

1 1 1 3 4

The corresponding co-occurrence matrix is then obtained as:

x y 1 2 3 4

1 8 3 1 0

2 0 0 3 0

3 0 0 0 1

4 0 0 0 0

Let us analyze the numbers in the matrix. The number 8 means that 1 occurs

8 times after 1, while 3 denotes that value 2 occurs after 1 three times. The

expression for the measure of the texture contrast is given by:

Con ¼
XN�1

x¼0

XN�1

y¼0

x� yð Þ2c x; yð Þ; ð4:55Þ

where c(x,y) represents the elements of the co-occurrence matrix of size N�N. If
there are significant variations in the image, c(x,y) will be concentrated outside the
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main diagonal and contrast measures will have greater values. The co-occurrence

matrix with values concentrated on its diagonal corresponds to a homogeneous

region.

There are other useful features that can be computed from the co-occurrence

matrix, as listed below:

Energy :
XN�1

x¼0

XN�1

y¼0

c2 x; yð Þ;

Entropy : �
XN�1

x¼0

XN�1

y¼0

c x; yð Þlog2c x; yð Þ;

Homogeneity :
XN�1

x¼0

XN�1

y¼0

c x; yð Þ
1þ x� yj j;

Correlation :
XN�1

x¼0

XN�1

y¼0

x� μxð Þ y� μy


 	
c x; yð Þ

σxσy
:

4.8.4 Edge Detection

Edge detection plays an important role in a number of applications. Consider an

image with pixels a(i, j). Edges of the image should be obtained by simple differ-

entiation. However, bearing in mind that the image is always more or less affected

by noise, the direct application of differentiation is not effective. For this purpose,

several algorithms have been defined, and among them the most commonly used

one is based on the Sobel matrices (for vertical and horizontal edge). Specifically,

the image is analyzed pixel by pixel using the Sobel matrix as a mask. The matrix

elements are the weights that multiply the pixels within the mask. Then the sum is

calculated by adding all the obtained values. The resulting value is compared with a

threshold. If it is greater than the threshold, the central pixel belongs to the edge,

and vice versa.

The Sobel matrices for vertical and horizontal edges are given by:

Sv ¼
1 0 �1

2 0 �2

1 0 �1

2
4

3
5 Sh ¼

1 2 1

0 0 0

�1 �2 �1

2
4

3
5

The edges are obtained by:

L i; jð Þ ¼
X1
m¼�1

X1
n¼�1

a iþ m, jþ nð ÞS mþ 2, nþ 2ð Þ; ð4:56Þ
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where S(m,n) is a filtering function (e.g., the Sobelmatrix Sh or Sv). After calculating Lh
and Lv (using the horizontal and vertical matrix), the overall L is calculated as follows:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lh

2 þ Lv
2

p
: ð4:57Þ

The obtained values (for all pixels) are compared with a threshold and the results

are represented in a binary form. An example of edge detection is illustrated in

Fig. 4.17. For simplicity, the threshold was set to 100 for the entire image.

However, the local threshold values are frequently used in practical applications.

They are calculated based on the mean response of the edge detector around the

current pixel. For example, a threshold value can be calculated as:

T i; jð Þ ¼ L i; jð Þ 1þ pð Þ ¼ 1þ p

2N þ 1

XiþN

k¼i�N

XjþN

l¼ j�N

L k; lð Þ; ð4:58Þ

where p has a value between 0 and 1.

Fig. 4.17 An illustration of edge detection: (a) original image, (b) Lv, (c) Lh, (d) L
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4.8.5 The Condition of the Global Edge (Edge Based
Representation: A Contour Image)

An algorithm for edge-based image representation is described in the sequel. First,

the image is normalized by applying the affine transformation which results in the

square image of the size 64� 64. Then the gradient is calculated for each pixel:

∂i, j ¼
Δpi, j
�� ��
Ii, j
�� �� ; ð4:59Þ

where the numerator represents the maximum of the differences between the

intensity of a given pixel and the intensity of its neighbors. The denominator is

the local power of pixel intensities. The calculated gradient is compared with the

sum of the mean and the variance of original image:

∂i, j � μþ σ: ð4:60Þ

Pixels that fulfill the condition Eq. (4.60) are called the global edge candidates.

Now, from pixels selected as the global edge candidates, we reselect the pixels for

which:

∂i, j � μi, j þ σi, j; ð4:61Þ

holds, where μ and σ are mean and variance of the local gradient to its neighbors.

They are called the local edge candidates.

4.8.6 Dithering

One of the properties of the human eye is that when observing a small area from a

long distance, it perceives just the overall intensity as a result of averaging granular

details. This feature is used in dithering, where a group of points represents a color.

Consider a simple example by using four points:

We see that with only two values, we can create 5 different colors (from pure

white to pure black). If this 2� 2 structure is used with the three primary colors, we

can get 125 color combinations.
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4.9 Image Compression

Multimedia information is very demanding on the memory space and usually needs

much processing power. Additionally, it may require higher bit rates compared to

the available bit rates of communication channels. All of these aspects lead to the

inevitable use of compression algorithms. As already mentioned, data compression

can be performed as lossless compression and lossy compression. This section

considers compression algorithms for digital images. Special attention will be

devoted to JPEG and JPEG2000 compression.

4.9.1 JPEG Image Compression Algorithm

Note that the JPEG algorithm can achieve significant compression ratio while

maintaining high image quality. Therefore, in this chapter we discuss in detail the

elements of JPEG encoder. JPEG algorithm can be analyzed across several blocks

used for image compression. These blocks can be summarized as follows: a block

performing DCT on the 8� 8 image blocks, quantization block, zig-zag matrix

scanning and an entropy coding block (Fig. 4.18).

The DCT of an 8� 8 image block is defined by:

DCT k1; k2ð Þ ¼ C k1ð Þ
2

C k2ð Þ
2

X7
i¼0

X7
j¼0

a i; jð Þ cos 2iþ 1ð Þk1π
16

� �
cos

2 jþ 1ð Þk2π
16

� �

ð4:62Þ

where:

C k1ð Þ ¼
1ffiffiffi
2

p , for k1 ¼ 0

1, for k1 > 0

8<
: , C k2ð Þ ¼

1ffiffiffi
2

p , for k2 ¼ 0

1, for k2 > 0

8<
: :

Fig. 4.18 JPEG encoder block diagram
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The DCT coefficient (0,0) is called the DC component, and it carries an information

about the mean value of 64 coefficients. The remaining 63 coefficients are the AC

coefficients.

The samples of the grayscale image whose values are in the range 0, 2n � 1½ � (n is
number of bits used to represent samples), are shifted to the range

�2n�1, 2n�1 � 1
� �

, and then the DCT is applied. Hence, in the case of 8-bit

samples, the shifted range is �128, 127½ �. The corresponding DCT coefficients

will be in the range �1024, 1023½ � and they require additional 3 bits. To encode the
DC coefficient of a current block, we subtract its value from the DC coefficient in

the previous block, and then encode their difference.

Before introducing the quantization matrix, let us show that the most important

transform coefficients of images are concentrated at low frequencies. For this

purpose we will analyze the image “Lena” (of the size 256� 256 pixels). After

applying the DCT, we take the first 128� 128 coefficients, then the first 64� 64

coefficients, and finally the first 25� 25 coefficients.

Applying the inverse DCT, we reconstruct the images shown in Fig. 4.19. Note

that, although the number of coefficients is significantly decreased, the image

retains much of the information.

Fig. 4.19 (a) Original image “Lena” (b) image based on the first 128� 128 DCT coefficients, (c)
image based on the first 64� 64 DCT coefficients, (d) image based on the first 25� 25 DCT

coefficients
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The previous fact was extensively investigated in order to determine the optimal

block size and to provide the efficient energy compaction within the smallest number

of coefficients. Even though the 32� 32 and 16� 16 blocks slightly improve the

coding gain compared to the 8� 8 blocks, the JPEG compression still uses 8� 8

blocks due to the easier calculation. Namely, the 8� 8 blocks provide an optimal

trade-off between the computational complexity, prediction gain and energy com-

paction, with as small artifacts as possible. Therefore, the algorithm for JPEG image

compression firstly decomposes an image into 8� 8 blocks. Next, the DCT is

calculated for each 8� 8 block. The DCT coefficients are divided by weighting

coefficients, representing the elements of quantization matrix. Therefore, we have:

DCTq k1; k2ð Þ ¼ round
DCT k1; k2ð Þ
Q k1; k2ð Þ

� �
; ð4:63Þ

where Q is a quantization matrix, while DCTq are the quantized coefficients.

A simplified example for calculating coefficients of a matrix that can be used for

quantization is given by the following code:

f or i ¼ 0 : N � 1

f or j ¼ 0 : N � 1

Q iþ 1, jþ 1ð Þ ¼ 1þ 1þ iþ jð Þ*quality½ �;
end

end

The quality parameter ranges from 1 to 25. Higher values denote better compression,

but worse image quality. The compressionmatrix for quality¼ 2 is given in Fig. 4.20.

In practical applications, the quantization matrices are derived from the exper-

imental quantization matrix given in Fig. 4.21. The experimental quantization

matrix is defined for the 50 % compression ratio (quality factor QF¼ 50).

Using the matrix Q50, we can obtain matrices for other compression degrees as

follows:

QQF ¼ round Q50 � qð Þ; ð4:64Þ

Fig. 4.20 Quantization

matrix obtained for

quality¼ 2
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where q is defined as:

q ¼
2� 0:02QF for QF � 50 ,

50

QF
for QF < 50 :

8<
:

The DCT coefficients of 8� 8 blocks are divided by the corresponding coefficients

of quantization matrices and rounded to the nearest integer values.

After quantization, the zig-zag reordering is applied to the 8� 8 matrix to form a

vector of 64 elements. This reordering allows the values to be sorted from the

low-frequency coefficients towards the high-frequency ones. A schematic of zig-

zag reordering is shown in Fig. 4.22.

Next, the entropy coding is applied based on the Huffman coding. Each AC

coefficient is encoded with two symbols. The first symbol is defined as: (a,b)¼
(runlength,size). The runlength provides the information about the number of

consecutive zero coefficients preceding the non-zero AC coefficient. Since it is

encoded with 4 bits, it can be used to represent no more than 15 consecutive zero

coefficients. Hence, the symbol (15,0) represents 16 consecutive zero AC coeffi-

cients and it can be up to three (15,0) extensions. This symbol also contains

information on the number of bits required to represent the coefficient value

(size). The second symbol is the amplitude of the coefficient (which is in the

range [�1023,1024]) that can be represented with up to 10 bits.

Fig. 4.21 Coefficients of

the quantization matrix Q50

Fig. 4.22 Zig-zag

reordering
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For example, if we have the following sequence of coefficients:

0,0,0,0,0,0,0,239, we code it as: (7,8) (239).

The symbol (0,0) denotes the end of the block (EOB).

Since there is a strong correlation between the DC coefficients from adjacent

blocks, the differences between DC coefficients are coded instead of their values.

The DC coefficients are in the range �2048 , 2047½ � and are coded by two symbols:

the first symbol is the number of bits (size) used to represent the amplitude, while

the second symbol is the amplitude itself.

The amplitude for both DC and AC coefficients are encoded by using the

variable-length integer code, as shown in the Table 4.1.

Consider an example of JPEG compression applied to the 8� 8 block. The pixel

values (Fig. 4.23a) from range [0,255] are initially shifted to range [�128,127]

Table 4.1 Encoding of the

coefficients amplitudes
Amplitude range Size

-1,1 1

-3,-2,2,3 2

-7,-6,-5,-4,4,5,6,7 3

-15 ,. . . ,-8,8 ,. . . ,15 4

-31 ,. . . ,-16,16 ,. . . ,31 5

-63 ,. . . ,-32,32 ,. . . ,63 6

-127 ,. . . ,-64,64 ,. . . ,127 7

-255 ,. . . ,-128,128 ,. . . ,255 8

-511 ,. . . ,-256,256 ,. . . ,511 9

-1023 ,. . . ,-512,512 ,. . . ,1023 10

Fig. 4.23 (a) 8� 8 image block, (b) values of pixels after shifting to the range [�128, 127], (c)
DCT coefficients (rounded to integers) for the given block, (d) quantization matrix QF¼ 70, (e)
DCT coefficients after quantization
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(Fig. 4.23b). The values of DCT coefficients are shown in Fig. 4.23c. Note that, for

the sake of simplicity, the DCT coefficients are rounded to the nearest integers. The

quantization matrix is used with a quality factor QF¼ 70 % (Fig. 4.23d) and the

quantized DCT coefficients are shown in Fig. 4.23e.

The zig-zag sequence is obtained in the form:

18, �1, 1,�1, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,

�1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

and by using symbols for DC and AC coefficients, we obtain the intermediate

symbol sequence:

(5)(18), (0,1)(�1), (0,1)(1), (0,1)(�1) (0,3)(4), (0,3)(4), (1,1)(1), (10,2)(2), (1,1)(1),

(3,1)(1), (0,1)(1), (6,1)(�1), (0,0)

The symbols for AC components ((a,b)¼ (runlength,size)) are coded by using

the Huffman tables, specified by the JPEG standard and given at the end of this

chapter (for luminance component). The symbols used in this example are provided

in the Table 4.2.

The entire 8� 8 block in encoded form is given by:

(101)(10010) (00)(0) (00)(1) (00)(0) (100)(100) (100)(100) (1100)

(1) (1111111111000111)(10) (1100)(1) (111010)(1) (00)(1) (1111011)(0) (1010)

Note that in this example we have coded the DC coefficient value, not the DC

coefficients difference, since we have examined a single block.

Decoding is performed using the blocks in Fig. 4.24.

We first return the sequence of samples into the matrix form. Next, we perform

de-quantization followed by the inverse DCT. In other words, after we get:

Table 4.2 Code words for

the symbols obtained in the

example

Symbol (a,b) Code word

(0,1) 00

(0,3) 100

(1,1) 1100

(3,1) 111010

(6,1) 1111011

(10,2) 1111111111000111

(0,0) EOB 1010

Fig. 4.24 JPEG decoder

196 4 Digital Image



DCTdq ¼ DCTq k1; k2ð Þ � Q k1; k2ð Þ; ð4:65Þ

we apply the inverse DCT transformation:

a i; jð Þ ¼
X7
k1¼0

X7
k2¼0

C k1ð Þ
2

C k2ð Þ
2

DCTdq k1; k2ð Þ cos 2iþ 1ð Þk1π
16

� �
cos

2 jþ 1ð Þk2π
16

� �

ð4:66Þ

It is obvious that quantization/de-quantization procedures and rounding procedures

introduce an error proportional to the quantization step.

In order to illustrate the efficiency of JPEG compression in terms of the com-

promise between the compression factor and image quality, the examples of

compressed images with different qualities are shown in Fig. 4.25.

Fig. 4.25 (a) Original “Lena” image, (b) “Lena” image after applying JPEG compression with

QF¼ 70 %, (c) “Lena” image after JPEG compression with QF¼ 25 %, (d) “Lena” image after

JPEG compression with QF¼ 5 %
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4.9.2 JPEG Lossless Compression

The JPEG lossless compression provides a compression ratio approximately equal

to 2:1. It uses a prediction approach to encode the difference between the current

pixel X and the one predicted from three neighboring pixels A, B, C, as illustrated

below:

C B

A X

The prediction sample Xp can be obtained using one of the formulas:

Case Prediction formula

1 Xp¼A

2 Xp¼B

3 Xp¼C

4 Xp¼AþB�C

5 Xp¼Aþ (B�C)/2

6 Xp¼Bþ (A�C)/2

7 Xp¼ (AþB)/2

Then the difference ΔX¼X�Xp is encoded by using the Huffman code.

4.9.3 Progressive JPEG Compression

Spectral Compression
During the image transmission, it is often demanded that a receiver gradually

improves the image resolution. Namely, a rough version of the image is firstly

transmitted (which can be done with a high compression factor), and then we

transmit the image details. This is achieved with progressive compression methods.

In the algorithm for progressive compression, coding is implemented by using

several spectral bands. The bands are divided according to their importance. For

example, the first band can be dedicated only to DC coefficients; the second band

may be dedicated to the first two AC coefficients (AC1 and AC2); the third band

contains the next four AC coefficients, while the fourth band may contain

remaining coefficients.

Successive approximations
In this algorithm the coefficients are not initially sent with the original values, i.e.,

they are sent with fewer bits (lower resolution) and then refined. For example, in the

first all DCT coefficients are scanned with 2 bits left out (divided by 4), and in the

successive scans the least significant bits are added until all the bits are sent.
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Combined progressive algorithms
This algorithm combines the two previously described algorithms. Specifically, all

the coefficients are grouped into the spectral bands (as in the spectral algorithm),

and then the information from all bands is sent with different resolutions (in terms

of the number of bits), as in the second algorithm. An example of this algorithm is

shown in Fig. 4.26. Namely, an image divided into eight combined scans. In the first

scan only the DC coefficients from DC band-1 will be sent (with lower resolution,

i.e., divided by two), then for example AC band-1 coefficients, etc.

4.9.4 JPEG Compression of Color Images

JPEG compression of color images can be performed by compressing each color

channel as described for the grayscale images. In JPEG compression, the RGB

model can be transformed into the YCbCr space (Fig. 4.27). Y channel contains

information about luminance, and Cb and Cr channels are related to the color along

the axes red-green and yellow-blue, respectively. Then, each channel is treated

separately, because it is not necessary to encode them with the same precision.

During decompression, the process is reversed: each channel is decoded indi-

vidually and then the information is merged together. Lastly, we convert from the

YCbCr to the RGB color space.

However, a drawback of this approach is that the color components appear

sequentially until the complete image is displayed: the red color is displayed first,

Fig. 4.26 An example of

using the combined

progressive JPEG algorithm

Fig. 4.27 Y, Cb, and Cr

component
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then the green color is joined, and finally the blue color. In the real applications

where the image is decompressed and displayed simultaneously, the interleaved

ordering approach is used to combine data from different color channels. Let us

consider the case of an image with four components of different resolutions.

In addition, each component is divided into rectangular regions with resolutions

{Hi,Vi}. Specifically, factors Hi and Vi define the horizontal and vertical resolutions

for each component (Fig. 4.28).

The coefficients are combined from the rectangular regions of different compo-

nents. Each component has the same number of rectangular regions (e.g., 6 regions)

as shown in Fig. 4.28. The basic coding units (Minimum Coded Units—MCU) are

formed by using one region from each component. The coefficients in each region

are sorted from left to right and from top to bottom. Each MCU can contain up to

10 coefficients.

In the example in Fig. 4.28, the basic MCUs for encoding are:

MCU1 ¼ a100a
1
01a

1
10a

1
11a

2
00a

2
01a

3
00a

3
10a

4
00

MCU2 ¼ a102a
1
03a

1
12a

1
13a

2
02a

2
03a

3
01a

3
11a

4
01

MCU3 ¼ a104a
1
05a

1
14a

1
15a

2
04a

2
05a

3
02a

3
12a

4
02

MCU4 ¼ a120a
1
21a

1
30a

1
31a

2
10a

2
11a

3
20a

3
30a

4
10

The described procedure ensures that an image is always displayed with all color

components.

Fig. 4.28 An interleaving procedure for JPEG color image compression
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4.9.5 JPEG2000 Compression

The standard JPEG algorithm based on the 8� 8 DCT blocks often leads to visible

block distortions (block effects). To avoid these effects, a JPEG2000 compression

algorithm based on the wavelet transform is introduced.

In this algorithm, the entire system can be divided into three parts: (1) image

preprocessing, (2) compression, and (3) encoding.

1. Image preprocessing contains some of the optional functions including:

• Dividing large images into regions (this process is called tiling).

• DC level shifting.

• Color components transformation.

Dividing large images (usually larger than 512� 512) into smaller rectangular

areas that are separately analyzed is required in order to avoid large buffers in the

implementation of the algorithm.

Similarly to the standard JPEG compression, DC level shifting (I(x,y)¼ I(x,y)�
2n�1) is also used in order to obtain an image with dynamic range that is centered

around zero. Values in the range [0,2n�1] are shifted to the values in the range

[�2n�1, 2n�1�1] (n is the number of bits used to represent pixel values).

This algorithm is defined for the color images consisting of three components.

The JPEG2000 standard supports two color transforms: the reversible color trans-

form (RCT) and the irreversible color transform (ICT). ICT is called “irreversible”

since it needs to be implemented in floating or fix-point, which will cause rounding

errors. RCT can be applied for both lossy and lossless compression, while ICT can

be used only for lossy compression. ICT uses the YCbCr color space, while the

RCT uses a modified YUV color space that does not introduce quantization errors.

The RCT transform (integer-to-integer) is defined as:

Yr ¼ Rþ 2Gþ B

4

� �
, Ur ¼ B� G, Vr ¼ R� G: ð4:67Þ

In the case of RCT, the pixels can be exactly reconstructed by using the inverse

RCT defined as follows:

R ¼ Vr þ G, G ¼ Yr � Ur þ Vr

4

� �
, B ¼ Ur þ G: ð4:68Þ

The ICT is actually based on YCbCr color model (real-to-real transform):

Y
Cb

Cr

2
4

3
5 ¼

0:299 0:587 0:114
�0:168 �0:331 0:5
0:5 �0:41 �0:08

2
4

3
5 R

G
B

2
4

3
5; ð4:69Þ
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while the inverse transform is given as:

R
G
B

2
4

3
5 ¼

1:0 0:0 1:402
1:0 �0:344136 �1:714136
1:0 1:772 0:0

2
4

3
5 Y

Cb

Cr

2
4

3
5: ð4:70Þ

2. Compression

JPEG 2000 algorithm uses two types of the wavelet transforms. These are (9,7)

floating-point wavelets (irreversible) and (5,3) integer wavelet transform (revers-

ible). Only the (5,3) integer transform, which is fully reversible, can be used for

lossless compression.

Consider a sequence of pixels denoted as Ik, Ikþ1, Ikþ2, . . ., Im that belong to an

image row. To calculate the wavelet transform, it is necessary to use a few pixels

with indices less than k and greater than m. Before applying the wavelet transform,

the considered area has to be expanded. An easy way to extend a sequence of pixels

(Ik, Ikþ1, Ikþ2, . . ., Im�2, Im�1, Im) is illustrated in Fig. 4.29.

After expanding the sequence of pixels, the wavelet coefficients are calculated.

For the (5,3) integer wavelet transform, the coefficients are calculated according to:

d j�1, i ¼ I j, 2iþ1 � I j, 2iþ2 þ I j, 2i
2

� �
,

s j�1, i ¼ I j, 2i þ d j�1, i þ d j�1, i�1 þ 2

4

� �
:

ð4:71Þ

Here, d coefficients represent high frequency components, while s coefficients

represent low frequency components.

In the case of the (9,7) floating-point wavelet transform, wavelet coefficients are

obtained as follows:

P j, 2iþ1 ¼ I j, 2iþ1 þ α I j, 2i þ I j, 2iþ2


 	
,

P j, 2i ¼ I j, 2i þ β P j, 2i�1 þ P j, 2iþ1


 	
,

d
0
j�1, i ¼ P j, 2i�1 þ γ P j, 2i�2 þ P j, 2i


 	
,

s
0
j�1, i ¼ P j, 2i þ δ d

0
j�1, i þ d

0
j�1, iþ1


 	
,

d j�1, i ¼ �Kd
0
j�1, i,

s j�1, i ¼ 1=Kð Þs0 j�1, i,

ð4:72Þ

Fig. 4.29 Expansion of a sequence of pixels
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where the constants (wavelet filter coefficients) for the JPEG2000 algorithm are:

α¼�1.586134342, β¼�0.052980118, γ¼ 0.882911075,

δ¼ 0.443506852, K¼ 1.230174105. As in (4.69), d are details, and s are

low-frequency coefficients.

Consider a simple example with five consecutive pixels

I j, 2i�2, I j, 2i�1, I j, 2i, I j, 2iþ1, I j, 2iþ2. The (9,7) wavelet coefficients can be calculated

in four steps:

The first step is:
P j, 2i�1 ¼ I j, 2i�1 þ αI j, 2i�2 þ αI j, 2i,
P j, 2iþ1 ¼ I j, 2iþ1 þ αI j, 2i þ αI j, 2iþ2,

The second step is:
P j, 2i�2 ¼ I j, 2i�2 þ βP j, 2i�3 þ βP j, 2i�1,

P j, 2i ¼ I j, 2i þ βP j, 2iþ1 þ βP j, 2i�1,

The third step is:
d

0
j�1, i ¼ P j, 2i�1 þ γ P j, 2i�2 þ P j, 2i


 	
,

d
0
j�1, iþ1 ¼ P j, 2iþ1 þ γ P j, 2i þ P j, 2iþ2


 	
,

The fourth step is:
s
0
j�1, i ¼ P j, 2i þ δ d

0
j�1, i þ d

0
j�1, iþ1

� �
,

s
0
j�1, iþ1 ¼ P j, 2iþ2 þ δ d

0
j�1, iþ1 þ d

0
j�1, iþ2

� �
:

At the end, d0 coefficients are scaled by the parameter -K and s0 coefficients are
scaled by the parameter 1/K. This procedure is illustrated schematically in

Fig. 4.30.

Fig. 4.30 Calculating the wavelet coefficients
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The considered one-dimensional wavelet transform is usually applied to the

image rows and then to the columns, as it is illustrated in Fig. 4.31.

Subbands can be organized in one of three ways as illustrated in Fig. 4.32.

4.9.5.1 JPEG2000 Quantization

For each subband denoted by b, a quantization step Δb is used for the coefficients in

the subband. Quantization is defined as follows:

Qb u; vð Þ ¼ sign Cb u; vð Þð Þ Cb u; vð Þj j
Δb

� �
; ð4:73Þ

where Cb(u,v) is the original DWT coefficient from the subband b. The operator �b c
represents rounding to integer number. Hence, the value of quantized coefficient is:

Qb(u,v)Δb. The quantization step is defined as follows:

Fig. 4.31 An illustration of applying the wavelet transform to two-dimensional signals

Fig. 4.32 Organization of subbands for JPEG2000
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Δb ¼ 2Rb�εb 1þ μb
211

� �
; ð4:74Þ

where Rb represents the nominal dynamic range of the subband b. The

parameter μb is the 11-bit mantissa and εb is the 5-bit exponent of the quantization
step ( 0 	 μb < 211, 0 	 εb < 25 ). The exponent–mantissa pairs (μb,εb) can be

explicitly signaled in the bit stream syntax for every subband. The dynamic range

depends on the number of bits used to represent the original image tile component

and on the choice of the wavelet transform. For reversible compression, the

quantization step-size is required to be one.

The inverse quantization is defined as:

RQ u; vð Þ ¼
Q u; vð Þ þ δð ÞΔb, for Q u; vð Þ > 0,

Q u; vð Þ � δð ÞΔb, for Q u; vð Þ < 0,

0, for Q u; vð Þ ¼ 0:

8<
: ð4:75Þ

The reconstruction parameter is usually given by0 	 δ < 1and the most commonly

used value is δ ¼ 0:5.

4.9.5.2 Coding the Regions of Interest

One of the important techniques in the JPEG2000 algorithm is coding the regions of

interest (ROI). ROI is expected to be encoded with better quality than the other

regions (e.g., image background). Coding of the ROI aims to scale the ROI

coefficients and place them in the higher bit planes (comparing to the bit planes

of other coefficients). Hence, the ROI coefficients will be progressively transmitted

before the non-ROI coefficients. Consequently, ROI will be decoded before other

image parts and with higher accuracy (Fig. 4.33).

The method based on scaling is implemented as follows:

1. First, the wavelet transform is calculated.

2. Then we form a mask indicating the set of coefficients that belong to ROI.

Specifically, the ROI mask is mapped from the pixels domain into each subband

in the wavelet domain (Fig. 4.34).

Fig. 4.33 Face is coded as

ROI
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3. Wavelet coefficients are quantized.

4. ROI coefficients are scaled and shifted to higher bit planes (MAXSHIFT
method).

5. Finally, the coefficients are encoded.

The value of the scaling factor has to be sufficiently large to ensure that the

lowest value in the ROI is greater than the largest value of the surrounding non-ROI

coefficients. The scaling factor is transmitted with the coefficients in order to be

able to reconstruct the original ROI values. An illustration of this process is shown

in Fig. 4.35.

The most significant bit of each coefficient is indicated by “1” (the first non-zero

bit in each column), while the following bits are denoted by “x” (could be either

0 or 1). The coefficients that belong to the ROI are shaded in gray. The bit planes

that remain after scaling the ROI are filled by “0”.

There are several ways to set the ROI masks. As shown in Fig. 4.36a, the

low-frequency coefficients can be transmitted together with the ROI coefficients

if the ROI masks are placed in all other subbands. Also, ROI regions can be only

used in specific subbands as shown in Fig. 4.36b.

Areas and code blocks
To achieve more efficient coding, each wavelet decomposition subband can be

further divided into precincts. The size of the precincts may vary at different levels

of decomposition, but can be usually expressed as a power of 2. Areas on the same

positions in different subbands are shaded in gray in Fig. 4.37. Each area is further

divided into the code-blocks whose dimensions are also a power of 2. This division

provides memory efficient implementation. Simple coders will use this division. On

the other hand, sophisticated coders will use a large number of code-blocks to

ensure that the decoder performs progressive decompression, as well as to provide

higher bit rate, image zooming, and other operations when decoding only parts of

the image.

Fig. 4.34 ROI mask mapped into subbands
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Fig. 4.35 (a) Quantized wavelet coefficients before scaling, (b) quantized wavelet coefficients

after scaling

Fig. 4.36 (a) The low-frequency subband is coded together with ROI regions in other subbands,

(b) arbitrary ROI mask



The highlighted precincts in Fig. 4.37 correspond roughly to the same N/2�N/2
region in the original image (of size N�N ). Note that the code-blocks in all

subbands are of the same size, except when their size is constrained by the subband

precinct size, as in the low-frequency subbands in Fig 4.37.

4.9.5.3 Entropy Coding

The wavelet coefficients are coded by bit-planes using the arithmetic encoding

scheme. The encoding is done from the most significant to the least significant

bit-plane. We also have to determine the bit context, where the probability of

occurrence for each bit is estimated. The bit value and its probability are forwarded

to an arithmetic coder. Hence, unlike many other compression algorithms which

encode the coefficients of images, the JPEG2000 encodes the sequences of bits.

Each wavelet coefficient should have an indicator of importance (1 if the

coefficient is significant, and 0 if not). At the beginning of coding, all wavelet

coefficients are set to be insignificant. If there are bit-planes that contain all zero

values, the number of these bit-planes is stored in the bit stream.

A most significant non-zero bit plane is encoded in one pass which is called the

cleanup pass. Each subsequent bit plane is encoded within three passes. Here, each

bit-plane is divided into tracks containing four lines (rows), while the tracks are

scanned by using the zig-zag order (from left to right), as shown in Fig. 4.38.

At the beginning, all bits from the most significant non-zero bit-plane are fed to

the encoder (they are encoded in one pass). During this step, the coefficient is

denoted as significant if its bit is equal to 1. The coefficient remains significant until

the end of the encoding process.

The remaining bit-planes are encoded one after the other (from most to least

significant bit-planes), and within the three passes:

Fig. 4.37 An example of

subbands, precincts and

code-blocks partition
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• The first pass involves the coefficients denoted as insignificant which have at

least one significant neighbor (one of its eight nearest neighbors is denoted as

significant). Their bits from the observed bit plane are forwarded to the coder. As

previously described, the coefficients whose bit is 1 are declared significant

(a significance indicator is set to 1).

• The second pass encodes the bits of the coefficients that became significant in

earlier steps, when passing through a previous bit planes.

• The third step considers the bits omitted in the previous two steps. If the bit value

in the third step is 1, the corresponding coefficient is declared significant.

Example: We illustrate the bit-planes encoding process by considering separately

only four isolated wavelet coefficients whose values are 9, 1, 2, and �6, Fig. 4.39.

The coefficients are encoded with 9 bits (1 sign bit and 8 bits for value).

Therefore, 9¼ 0 j 00001001, 1¼ 0 j 00000001, 2¼ 0 j 00000010, �6¼ 1 j
00000110

Bit plane containing the sign bits is considered separately and it is ignored at the

beginning. If we observe just the four given coefficients, the first four bit planes

(planes from 7 to 4) are zero, so the encoding starts from the third plane.

Plane 3: The bit-plane 3 is the most significant non-zero bit-plane and it is encoded

in a single pass. One bit from each coefficient is brought to the encoder. Note that in

the plane 3, a bit for the coefficient with value 9 has the logical value of 1 and the

coefficient is declared as significant. The sign bit for the coefficient 9 is encoded

immediately after this bit.

Plane 2: The bit-plane 2 is encoded after plane 3. We first encode the coefficients

that are insignificant, but they are the neighbors to the significant ones.

Fig. 4.38 The bit-planes

scan method
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The coefficient 1 is insignificant, but it is the adjacent coefficient to 9, which is

significant. Therefore the bit 0 of the coefficient 1 is passed to the encoder. Note that

none of the coefficients have been declared significant at this stage. The second step

includes bits belonging to the significant coefficients. The coefficient 9 is signifi-

cant, and thus its bit 0 is passed to the encoder. Coefficients 2 and �6 are not

significant, and they are not located next to the significant coefficients. Hence, they

will be encoded in the third step. Since the bit of the coefficient �6 (plane 2) has

value 1, coefficients �6 is declared significant, and its sign bit is encoded as well.

Plane 1: The bits of the coefficients 1 and 2 are coded in the first pass (they are

neighbors of significant coefficients), while the bits of the significant coefficients

9 and �6 will be encoded in the second pass. The bit for coefficient 2 is 1, so this

coefficient becomes significant (its sign bit is passed to the encoder as well).

Plane 0: This plane is encoded last. The bit of coefficient 1 is encoded in the first

pass. The coefficient 1 becomes significant and its sign bit is encoded. The

coefficients 9, 2, and �6 are significant, and their bits are encoded in the second

pass.

Arithmetic coding
The sequence of bits from each plane is forwarded to an arithmetic coder. Here, we

use the bit context to determine a probability of a binary symbol. One simple

example of using arithmetic coding with known probabilities of symbols occur-

rences is illustrated in Fig. 4.40. Suppose that we want to encode the binary

sequence 1011, where the probability of occurrence of symbol “1” is equal to 0.6,

while for the symbol “0” it is 0.4.

Fig. 4.39 Part of bit planes that contain four considered coefficients
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At the beginning, we have the interval [0, 1], which is divided into two intervals

according to the probability of symbol occurrence, as shown in Fig. 4.40. The lower

interval [0, 0.6], used to denote the symbol “1”, is then divided again into two

intervals with the same proportions as in the previous case. The second symbol is

“0”, and therefore the upper interval [0.36, 0.6] is divided into two new intervals.

We continue this process until the whole sequence is encoded. At the end, we get

C¼ [0.36, 0.446]. Finally, the sequence 1011 is coded by using one value from the

obtained interval, e.g., value 0.4. The interval should be available during the decoding

process. Note that the encoding is usually applied to much longer sequences.

Determining the context
The bit context is used in each step to estimate the probability for bit encoding. The

following procedure describes how to determine the context of bits in the first pass.

We consider eight neighboring coefficients around the wavelet coefficient X and

their current indicators of importance (1 indicating a significant coefficient, and

0 indicating the insignificant one). Let us assume that the indicators of neighboring

coefficients are denoted as in Fig. 4.41.

The context is selected based on the criteria listed in Table 4.3. Note that there

are 9 contexts, and the criteria depend on the subband (LL, LH, HL, HH), which is

encoded. For example, the context 0 represents the coefficient without any signif-

icant neighbor. JPEG2000 standard defines similar rules for determining the bit

context for the other two passes.

Based on the estimated bit context, the probability estimation process (for

encoding the bit) is done by using lookup tables.

Fig. 4.40 An example of arithmetic coding

Fig. 4.41 Significance

indicators for eight

neighboring coefficients
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4.9.6 Fractal Compression

Having in mind that nowadays the devices (e.g., printers) constantly increase the

resolution, it is necessary to provide that once compressed image can be

decompressed at any resolution. This can be accomplished by using the fractal

compression. In fractal compression, the entire image is divided into pieces (frac-

tals). Using an affine transformation, we are able to mathematically rotate, scale,

Table 4.3 Nine contexts for the first pass

LL and LH subbands

Context
P

Hi

P
Vi

P
Di

2 8

1 �1 7

1 0 �1 6

1 0 0 5

0 2 4

0 1 3

0 0 �2 2

0 0 1 1

0 0 0 0

HL subband

Context
P

Hi

P
Vi

P
Di

2 8

�1 1 7

0 1 �1 6

0 1 0 5

2 0 4

1 0 3

0 0 �2 2

0 0 1 1

0 0 0 0

HH subband

Context
P

Hi þ Við Þ P
Di

�3 8

�1 2 7

0 2 6

�2 1 5

1 1 4

0 1 3

�2 0 2

1 0 1

0 0 0
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skew, and translate a function, and thus certain fractals can be used to “cover” the

whole image.

Affine transformations for two-dimensional case are given by the relation:

W x; yð Þ ¼ axþ byþ e, cxþ dyþ fð Þ; ð4:76Þ

or in the matrix form:

W
x
y

� �
¼ a b

c d

� �
x
y

� �
þ e

f

� �
; ð4:77Þ

where the matrix with elements a, b, c, d determines the rotation, skew, and scaling,

while the matrix with elements e and f defines the translation.
In the algorithm for fractal compression the entire image is firstly divided into

nonoverlapping regions. Then each region is divided into a number of predefined

shapes (e.g., rectangles, squares, or triangles) as shown in Fig. 4.42.

The third step is to determine the affine transformations that closely match the

domain regions. In the final step the image is recorded in the FIF format (Fractional

Image Format) and it contains information about regions selection and the coeffi-

cients of affine transformation (for each region).

4.9.7 Image Reconstructions from Projections

Image reconstruction based on projections has important applications in various

fields (e.g., in medicine when dealing with computer tomography, which is widely

used in everyday diagnosis).

Fig. 4.42 “Lena” image divided into different fractals
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A theoretical approach to this problem is presented below. Consider an object

in space, which can be described by the function f(x,y). The projection of function

f(x,y) along an arbitrary direction AB (defined by an angle φ) can be defined as

follows:

pφ uð Þ ¼
ð
AB

f x; yð Þdl; ð4:78Þ

where u ¼ x cosφþ y sinφ. Thus, the Eq. (4.78) can be written as:

pφ uð Þ ¼
ð1

�1

ð1
�1

f x; yð Þδ x cosφþ y sinφ� uð Þdxdy: ð4:79Þ

The Fourier transform of the projection is given by:

Pφ ωð Þ ¼
ð1

�1
pφ uð Þe� jωudu: ð4:80Þ

Furthermore, the two-dimensional Fourier transform of f(x,y) is defined as:

F ωx;ωy


 	 ¼ ð1
�1

ð1
�1

f x; yð Þe� j ωxxþωy yð Þdxdy: ð4:81Þ

As a special case, we can observe F(ωx,ωy) for ωy¼ 0:

F ωx; 0ð Þ ¼
ð1

�1

ð1
�1

f x; yð Þe� jωxxdxdy ¼
ð1

�1
p0 xð Þe� jωxxdx ¼ P0 ωð Þ: ð4:82Þ

Hence, the Fourier transform of a two-dimensional object along the axis ωy¼ 0 is

equal to the Fourier transform along the projection angle φ¼ 0. Consider now what

happens in the rotated coordinate system:

u
l

� �
¼ cosφ sinφ

� sinφ cosφ

� �
x
y

� �
: ð4:83Þ
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In this case, Eq. (4.80) can be written as:

Pφ ωð Þ ¼
ð1

�1
pφ uð Þe� jωudu ¼

ð1
�1

ð1
�1

f u; lð Þe� jωududl

¼
ð1

�1

ð1
�1

f x; yð Þe� jω x cosφþy sinφð Þdxdy ¼ F ω;φð Þ;
ð4:84Þ

where:

F ω;φð Þ ¼ F ωx;ωy


 	
ωx ¼ ω cosφ
ωy ¼ ω sinφ

����
�:

Now, let us summarize the previous considerations. If we have the object pro-

jections, then we can determine their Fourier transforms. The Fourier transform of a

projection represents the transform coefficients along the projection line of the

object. By varying the projection angle from 0� to 180� we obtain the Fourier

transform along all the lines (e.g., we get the Fourier transform of the entire object),

but in the polar coordinate system. To use the well-known FFT algorithm, we have

to switch from polar to rectangular coordinate system. Then, the image of the object

is obtained by calculating the inverse Fourier transform.

The transformation from the polar to the rectangular coordinate system can be

done by using the nearest neighbor principle, or by using some other more accurate

algorithms that are based on the interpolations.

4.10 Examples

4.1. Calculate the memory requirements for an image of size 256� 256 pixels, in

the case of:

(a) Binary image,

(b) Grayscale image,

(c) Color image.

Solution:

(a) In the case of binary image each sample is represented by a single bit,

and thus the required memory space is (in bits):

256�256�1¼ 65536 b.

(b) Grayscale image is usually represented by 8 bits per pixel, thus having

256 grayscale levels. The memory requirements for such a kind of

image are: 256�256�8¼ 524288 b.
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(c) Color image usually contains three different matrices for each color

channel and requires three time higher memory space than the grayscale

image: 256�256�8�3¼ 1572864 b.

4.2. If the values of R, G, and B components in the RGB systems are known and

for a certain pixel they are given by: R¼ 0.5, G¼ 0.2, B¼ 0.8, determine the

corresponding values of the components in the YUV color model.

Solution:

Y ¼ 0:299Rþ 0:587Gþ 0:114B
U ¼ 0:564 B� Yð Þ
V ¼ 0:713 R� Yð Þ

Y¼ 0.299�0.5þ 0.587�0.2þ 0.114�0.8¼ 0.36

U¼ 0.564�(0.8–0.358)¼ 0.25

V¼ 0.713�(0.5–0.358)¼ 0.1

4.3. Write a Matlab code which will load color image (e.g., lena.jpg), determine

the image size, and then convert the color image into a grayscale version by

using the Matlab built-in function rgb2gray, as well as by using the formula:

Grayscale ¼ RvalueþGvalueþBvalue

3
:

Solution:

I¼imread(’lena.jpg’); % load image

size(I) % image size

ans ¼
512 512 3

I1¼rgb2gray(I);

figure, imshow(I1) % show image

I¼double(I);

I2¼(I(:,:,1)þI(:,:,2)þI(:,:,3))/3;

figure, imshow(uint8(I2));

Note: The color channels are obtained as: I(:,:,1), I(:,:,2),

I(:,:,3).

4.4. Write a code in Matlab that will create a negative of image “cameraman.tif”.

Solution:

I¼imread(’cameraman.tif’);

I¼double(I);

N¼255-I;

figure, imshow(uint8(I))

figure, imshow(uint8(N)) (Fig. 4.43)
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4.5. Write a code in Matlab that will provide a simple image darkening and

brightening procedure by decreasing/increasing original pixels values for

40 %.

Solution:

I¼imread(’cameraman.tif’);

I¼double(I);

IB¼Iþ0.4*I; % brightening

figure(1), imshow(uint8(IB))

ID¼I-0.4*I; % darkening

figure(2), imshow(uint8(ID)) (Fig. 4.44)

4.6. Starting from the grayscale image “cameraman.tif”,make a version of binary

image by setting the threshold on value 128.

Fig. 4.43 (a) Original image “Cameraman,” (b) negative of image “Cameraman”

Fig. 4.44 Image lightening and darkening
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Solution:

A binary image will have values 255 at the positions (i,j) where the original
image has values above the threshold. On the remaining positions the pixels

in the binary image will be 0:

B i; jð Þ ¼ 255, I i; jð Þ>threshold
0, otherwise

n
:

The Matlab code that transforms grayscale into binary image is given in the

sequel.

I¼imread(‘cameraman.tif’);

[m,n]¼size(I);

for i¼1:m

for j¼1:n

if I(i,j)>128

I(i,j)¼255;

else

I(i,j)¼0;

end

end

end

figure, imshow(I) (Fig. 4.45)

4.7. Consider a color image “lena.jpg”. Transform the image into grayscale one

and add a white Gaussian noise with variance 0.02.

Solution:

I¼imread(’lena.jpg’);

I¼rgb2gray(I);

I1¼imnoise(I,’gaussian’,0,0.02);

figure, imshow(uint8(I1))

Fig. 4.45 Binary image

“Cameraman”
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4.8. Calculate the mean and median values for vectors:

(a) v1¼ [ 12 22 16 41 �3]; b) v2¼ [12 9 22 16 41 �3];

Solution:

(a) v1¼ [ 12 22 16 41 �3];

mean¼ 17.6

sorted_v1¼ [�3 12 16 22 41];

median¼ 16.

(b) v2¼ [12 9 22 16 41 �3]

mean¼ 16.17

sorted_ v2¼ [�3 9 12 16 22 41]

median¼ (12þ 16)/2¼ 14.

4.9. By using the Matlab function imnoise, add the impulse noise (‘salt & pepper’
with a density 0.1) to the image “lena.jpg”. Then perform the image filtering by

using the two-dimensional median filter realized by Matlab function medfilt2.

Solution:

I¼imread(’lena.jpg’);

I¼rgb2gray(I);

figure, imshow(I)

In¼imnoise(I,’salt & pepper’,0.1);

figure, imshow(In)

If¼medfilt2(In);

figure, imshow(If)(Fig. 4.46)

4.10. Write your own code for median filtering in Matlab: the filtering should be

applied to image “cameraman.tif” which is corrupted by the impulse noise

with density 0.1. Use the window of size 3� 3. It is necessary to include the

image boundaries as well.

Solution:

I¼imread(’cameraman.tif’);

In¼imnoise(I,’salt & pepper’,0.03);

Fig. 4.46 (a) Original image, (b) noisy image, (c) filtered image
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[m,n]¼size(In);

IM¼zeros(m,n);

In¼double(In);

for i¼1:m

for j¼1:n

b¼In(max(i,i-1):min(m,iþ1),max( j,j-1):min(n,jþ1));

b¼b(:);

IM(i,j)¼median(b);

end

end

figure(1),imshow(uint8(In))

figure(2),imshow(uint8(IM))(Fig. 4.47)

4.11. Write a Matlab code that filters an image corrupted by Gaussian noise with

zero mean and variance equal to 0.01. The window of size 5� 5 is used.

Solution:

I¼imread(’cameraman.tif’);

In ¼imnoise(I,’gaussian’,0,0.01);

M¼In;

[m,n]¼size(In);

a¼double(In);

for i¼1:m

for j¼1:n

b¼a(max(i,i-2):min(m,iþ2),max( j,j-2):min(n,jþ2));

c¼b(:);

M(i,j)¼mean(c);

end

end

Fig. 4.47 (a) Noisy image, (b) filtered image
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figure(1),imshow(In)

figure(2),imshow(uint8(M))(Fig. 4.48)

4.12. For a given matrix of size 5� 5, determine the corresponding co-occurrence

matrix and the measure of contrast.

12 11 11 11 14

12 11 11 11 14

12 11 11 14 14

13 11 11 14 14

13 13 12 12 12

Solution:

Co-occurrence matrix c(x,y) is obtained in the following form:

x/y 11 12 13 14

11 6 0 0 4

12 3 2 0 0

13 1 1 1 0

14 0 0 0 2

The measure of contrast is given by:

Con ¼
X3
x¼0

X3
y¼0

x� yð Þ2c x; yð Þ ¼ 44:

4.13. For a given block of 8� 8 DCT coefficients and the given JPEG quantization

matrix Q, perform the quantization, zig-zag scanning and determine the

coded sequence.

Fig. 4.48 (a) Noisy image (Gaussian noise), (b) filtered image
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D ¼

80 50 26 10 33 11 0 0

22 �28 34 10 0 0 0 0

14 10 17 11 5 0 5 0

56 17 20 12 0 12 8 0

10 12 8 3 2 0 7 0

10 13 17 3 0 2 2 0

6 0 5 10 14 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

Q ¼

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

2
66666666664

3
77777777775

Solution:

DCT coefficients from the 8� 8 block are divided by the quantization matrix

and rounded to the integer values, as follows:

Dq ¼ round D=Qð Þ ¼

27 10 4 1 3 1 0 0

4 �4 4 1 0 0 0 0

2 1 2 1 0 0 0 0

6 2 2 1 0 1 0 0

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

After performing the zig-zag scanning of the matrix Dq, the sequence is

obtained in the form:

27, 10, 4, 2, �4, 4, 1, 4, 1, 6, 1, 2, 2, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, . . .

The intermediate symbol sequence is given by:

(5)(27), (0,4)(10), (0,3)(4), (0,2)(2), (0,3)(�4), (0,3)(4), (0,1)(1), (0,3)(4),

(0,1)(1), (0,3)(6), (0,1)(1), (0,2)(2), (0,2)(2), (0,1)(1), (0,2)(3), (0,1)(1),

(1,1)(1), (0,2)(2), (0,1)(1), (0,1)(1), (1,1)(1), (0,1)(1), (0,1)(1), (8,1)(1),

(6,1)(1), (9,1)(1), (0,0).

The code words for the symbols (a,b) are given in the table:

Symbol (a,b) Code word

(0,1) 00

(0,2) 01

(0,3) 100

(0,4) 1011

(1,1) 1100

(6,1) 1111011

(8,1) 111111000

(9,1) 111111001

(0,0) EOB 1010
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Hence, the coded sequence is:

(101)(11011) (1011)(1010) (100)(100) (01)(10) (100)(011) (100)(100) (00)

(1) (100)(100) (00)(1) (100)(110) (00)(1) (01)(10) (01)(10) (00)(1) (01)

(11) (00)(1) (1100)(1) (01)(10) (00)(1) (00)(1) (1100)(1) (00)(1) (00)

(1) (111111000)(1) (1111011)(1) (111111001)(1) (1010)

4.14. Consider four 8-bit coefficients A, B, C and D with values A¼�1, B¼�3,

C¼ 11, D¼ 5. Explain the encoding procedure using the bit-planes concept

as in JPEG2000 compression.

Solution:

Bit plane sign A B C D

8 1 1 0 0

7 0 0 0 0

6 0 0 0 0

5 0 0 0 0

4 0 0 0 0

3 0 0 1 0

2 0 0 0 1

1 0 1 1 0

0 1 1 1 1

The coding starts from the bit-plane 3 since it is the first bit-plane that

contains the non-zero coefficients.

Bit-plane 3: This bit-plane is encoded within a single encoding pass. C is

declared significant, since its bit has value 1. The sign bit is encoded

immediately after bit 1.

Bit-plane 2: The coefficients B and D are insignificant, but they are neighbors

of the significant coefficient C. Hence, their bits are encoded in the first pass.

The corresponding bit of coefficient D is 1, and thus D is declared significant

(sign bit is encoded as well).

The bits of significant coefficients are encoded in the second pass, i.e., the

bit of the coefficient C. Bit of the coefficient A is encoded in the third pass.

Bit-plane 1: The bit of the coefficient B is encoded in the first pass, since B is

a neighbor of the significant coefficient C (the sign bit of B is encoded after its

bit 1). The bits of significant coefficients C and D are encoded in the second

pass. The bit of coefficient A is encoded in the third pass.

Bit-Plane 0: Bit of coefficient A is encoded in the first pass, and since the bit

is 1, the sign bit is encoded as well. The bits of coefficients B, C and D are

encoded in the second pass.
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Appendix: Matlab Codes for Some of the Considered
Image Transforms

Image Clipping

I¼imread(’lena512.bmp’);

I¼I(1:2:512,1:2:512);

I¼double(I);

for i¼1:256

for j¼1:256

if I(i,j)<100

I(i,j)¼100;

elseif I(i,j)>156

I(i,j)¼156;

end

end

end

I¼uint8(I);

imshow(I)

Transforming Image Lena to Image Baboon

Ia¼imread(’lena512.bmp’);

Ia¼Ia(1:2:512,1:2:512);

Ia¼double(Ia);

Ib¼imread(’baboon.jpg’);

Ib¼rgb2gray(Ib);

Ib¼double(Ib);

for i¼1:10

Ic¼(1-i/10)*Iaþ(i/10)*Ib;

imshow(uint8(Ic))

pause(0.5)

end

Geometric Mean Filter

clear all

I¼imread(’board.tif’);

I¼imnoise(I,’gaussian’,0,0.025);

I¼double(I);
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[m,n]¼size(I);

Im¼zeros(size(I));

for i¼1:m

for j¼1:n

a¼I(max(i,i-1):min(m,iþ1),max(j,j-1):min(n,jþ1));

Im(i,j)¼geomean(a(:));

end

end

figure(1), imshow(uint8(I))

figure(2), imshow(uint8(Im))

Consecutive Image Rotations (Image Is Rotated
in Steps of 5� up to 90�)

I¼imread(’lena512.bmp’);

I¼I(1:2:512,1:2:512);

for k¼5:5:90

I1¼imrotate(I,k,’nearest’);

imshow(I1)

pause(1)

end

Sobel Edge Detector Version1

I¼imread(’cameraman.tif’);

subplot(221),imshow(I)

edge_h¼edge(I,’sobel’,’horizontal’);

subplot(222),imshow(edge_h)

edge_v¼edge(I,’sobel’,’vertical’);

subplot(223),imshow(edge_v)

edge_b¼edge(I,’sobel’,’both’);

subplot(224),imshow(edge_b)

Sobel Edge Detector Version2: with an Arbitrary
Global Threshold

clear all

I¼imread(’lena512.bmp’);

I¼I(1:2:512,1:2:512);

[m,n]¼size(I);
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I¼double(I);

H¼[1 2 1; 0 0 0; -1 -2 -1];

V¼[1 0 -1; 2 0 -2; 1 0 -1];

Edge_H¼zeros(m,n);

Edge_V¼zeros(m,n);

Edges¼zeros(m,n);

thr¼200;

for i¼2:m-1

for j¼2:n-1

Lv¼sum(sum(I(i-1:iþ1,j-1:jþ1).*V));

Lh¼sum(sum(I(i-1:iþ1,j-1:jþ1).*H));

L¼sqrt(Lv^2þLh^2);

if Lv>thr

Edge_V(i,j)¼255;

end

if Lh>thr

Edge_H(i,j)¼255;

end

if L>thr

Edges(i,j)¼255;

end

end

end

figure, imshow(uint8(Edge_H))

figure, imshow(uint8(Edge_V))

figure, imshow(uint8(Edges))

Wavelet Image Decomposition

I¼imread(’lena512.bmp’);

I¼double(I);

n¼max(max(I));

%First level decomposition

[S1,H1,V1,D1]¼dwt2(I,’haar’);

S1¼wcodemat(S1,n);

H1¼wcodemat(H1,n);

V1¼wcodemat(V1,n);

D1¼wcodemat(D1,n);

dec2d_1 ¼ [S1 H1; V1 D1];

%Next level decomposition

I¼S1;

[S2,H2,V2,D2]¼dwt2(I,’haar’);
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S2¼wcodemat(S2,n);

H2¼wcodemat(H2,n);

V2¼wcodemat(V2,n);

D2¼wcodemat(D2,n);

dec2d_2 ¼ [S2 H2; V2 D2];

dec2d_1 ¼ [dec2d_2 H1; V1 D1];

imshow(uint8(dec2d_1))

JPEG Image Quantization

I¼imread(’lena.jpg’);

I¼rgb2gray(I);

I¼double(I(1:2:512,1:2:512));

Q50¼[16 11 10 16 24 40 51 61;

12 14 19 26 58 60 55;

14 13 16 24 40 57 69 56;

14 17 22 29 51 87 80 62;

18 22 37 56 68 109 103 77;

24 35 55 64 81 104 113 92;

49 64 78 87 103 121 120 101;

72 92 95 98 112 100 103 99];

QF¼70;

q¼2-0.02*QF; %q¼50/QF;

Q¼round(Q50.*q);

I1¼zeros(256,256);

for i¼1:8:256-7

for j¼1:8:256-7

A¼I(i:iþ7,j:jþ7);

dct_block¼dct2(A);

dct_Q¼round(dct_block./Q).*Q;

I1(i:iþ7,j:jþ7)¼idct2(dct_Q);

end

end

figure(1), imshow(uint8(I))

figure (2), imshow (uint8(I1))
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Table 4.4 Symbols and corresponding code words for AC luminance components

(a,b) Code word (a,b) Code word

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(0,8)

(0,9)

(0,A)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,8)

(1,9)

(1,A)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(2,8)

(2,9)

(2,A)

(3,1)

(3/2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(3,8)

(7,8)

(7,9)

(7,A)

(8,1)

(8,2)

(8,3)

(8,4)

(8,5)

(8,6)

(8,7)

(8,8)

1010

00

01

100

1011

11010

1111000

11111000

1111110110

1111111110000010

1111111110000011

1100

11011

1111001

111110110

11111110110

1111111110000100

1111111110000101

1111111110000110

1111111110000111

1111111110001000

11100

11111001

1111110111

111111110100

1111111110001001

1111111110001010

1111111110001011

1111111110001100

1111111110001101

1111111110001110

111010

111110111

111111110101

1111111110001111

1111111110010000

1111111110010001

1111111110010010

1111111110010011

1111111110110011

1111111110110100

1111111110110101

111111000

111111111000000

1111111110110110

1111111110110111

1111111110111000

1111111110111001

1111111110111010

1111111110111011

(3,9)

(3,A)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(4,8)

(4,9)

(4,A)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(5,8)

(5,9)

(5,A)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(6,8)

(6,9)

(6,A)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)

(C,1)

(C,2)

(C,3)

(C,4)

(C,5)

(C,6)

(C,7)

(C,8)

(C,9)

(C,A)

(D,1)

1111111110010100

1111111110010101

111011

1111111000

1111111110010110

1111111110010111

1111111110011000

1111111110011001

1111111110011010

1111111110011011

1111111110011100

1111111110011101

1111010

11111110111

1111111110011110

1111111110011111

1111111110100000

1111111110100001

1111111110100010

1111111110100011

1111111110100100

1111111110100101

1111011

111111110110

1111111110100110

1111111110100111

1111111110101000

1111111110101001

1111111110101010

1111111110101011

1111111110101100

1111111110101101

11111010

111111110111

1111111110101110

1111111110101111

1111111110110000

1111111110110001

1111111110110010

1111111010

1111111111011001

1111111111011010

1111111111011011

1111111111011100

1111111111011101

1111111111011110

1111111111011111

1111111111100000

1111111111100001

11111111000

(continued)
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(8,9)

(8,A)
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(9,5)

(9,6)

(9,7)

(9,8)

(9,9)
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(A,5)
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(B,2)

(B,3)
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(B,8)
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(E,9)

(E,A)

(F,0)
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(F,3)
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1111111111100010

1111111111100011

1111111111100100
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1111111111101000

1111111111101001
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1111111111101100
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1111111111101110

1111111111101111
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1111111111110010

1111111111110011

1111111111110100

11111111001

1111111111110101

1111111111110110

1111111111110111

1111111111111000

1111111111111001

1111111111111010

1111111111111011

1111111111111100

1111111111111101

1111111111111110
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Chapter 5

Digital Video

Unlike digital audio signals that are sampled in time or digital images sampled in

the spatial domain, a digital video signal is sampled in both space and time, as

illustrated in Fig. 5.1.

Time sample is called frame. The sampling rate is 25 frames/s or 30 frames/s.

Instead of a frame, two fields can be used, one containing even and the other odd

lines. In this case, the sampling rate is 50 fields/s or 60 fields/s.

The color space widely used for video representation is YCbCr color space. The

luminance or brightness component, denoted by Y, contains intensity information,

whereas chrominance components Cb and Cr provide the information about hue

and saturation. The YCbCr color model is related to the RGB model as follows:

Y ¼ 0:299Rþ 0:587Gþ 0:114B,
Cb ¼ 0:564 B� Yð Þ,
Cr ¼ 0:713 R� Yð Þ:

The human eye is more sensitive to change in brightness than in color. Thus, Cb and

Cr components can be transmitted at lower rates compared to Y component.

Different sampling schemes are available depending on the resolution of the

luminance Y and the chrominance components Cb and Cr. They have been

known as: 4:4:4, 4:2:2, and 4:2:0.

The 4:4:4 scheme means that all components are used with the full resolution:

each pixel contains Y, Cb, and Cr component, as shown in Fig. 5.2a. For 4:2:2

scheme, the Cb and Cr components are represented with a twice lower resolution

compared to Y. Observing the four pixels, we see that for 4 Y samples, there are

2 Cb and 2 Cr samples, Fig. 5.2b. Lastly, the 4:2:0 sampling scheme has a four

times lower resolution for Cb and Cr components comparing to the Y component.

Thus, among four pixels only one contains Cb and Cr component, Fig. 5.2c.

Now, let us compute a required number of bits per pixel for each of the

considered sampling schemes. Again we consider four neighboring pixels. In the
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4:4:4 scheme, all pixels contain three components (YCbCr), and if each of them

requires 8 bits, we have:

4� 3� 8¼ 96 b in total, i.e., 96/4¼ 24 b/pixel.

In the 4:2:2 scheme, two pixels contain three components and the other two

pixels contain only one component. Hence, the average number of bits per pixel is

calculated as:

2� 3� 8 + 2� 1� 8¼ 64 b in total, i.e., 64/4¼ 16 b/pixel.

In analogy to the previous case, for the 4:2:0 scheme we obtain:

1� 3� 8 + 3� 1� 8¼ 48 b in total, i.e., 48/4¼ 12 b/pixel.

In the sequel, we consider one simple example to illustrate how the sampling

schemes 4:4:4 and 4:2:0 influence the amount of data. The frame size is 352� 288.

In the first case (4:4:4) we have: 352� 288 pixel� 24b/pixel¼ 2.433 Mb. In the

second case (4:2:0): 352� 288 pixel� 12 b/pixel¼ 1.216 Mb.

5.1 Digital Video Standards

The standard for digital video broadcasting is ITU-R BT.601-5 (International

Telecommunication Union, Radiocommunications Sector—ITU-R). This standard

specifies:

Fig. 5.1 An illustration of video signal sampling

Fig. 5.2 Sampling schemes: (a) 4:4:4, (b) 4:2:2, (c) 4:2:0
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• 60 fields/s for NTSC or 50 fields/s for PAL system

• NTSC requires 525 lines per frame (858 luminance samples per line, 2� 429

chrominance samples per line), while PAL system requires 625 lines (864 lumi-

nance samples per line, 2� 432 chrominance samples per line), with 8 b/sample

in both systems.

The bit rate of video data is 216 Mb/s in both cases.

In addition to the considered sampling schemes, an important resolution param-

eter is video signal format. The most frequently used formats are:

• High Definition (full HD) 1080p 1920� 1080;

• HD 720p 1280� 720;

• Standard Definition (SD) 640� 480;

• 4CIF with the resolution 704� 576 (it corresponds to broadcasting standard);

• CIF 352� 288;

• QCIF 176� 144;

• SubQCIF 128� 96.

The video signal bit rate depends on the video frame format. The mentioned bit

rate of 216 Mb/s corresponds to the quality used in standard television. Only 187 s

of such a signal can be stored on a 4.7 GBDVD. For the CIF format with 25 frames/s

and the 4:2:0 scheme, we achieve the bit rate of 30 Mb/s. Similarly, for the QCIF

format with 25 frames/s, the bit rate is 7.6 Mb/s. Consider now these video bit rates

in the context of the ADSL network capacity. For example, typical bit rates in the

ADSL networks are 1–2 Mb/s. Hence, it is obvious that the signal must be

compressed in order to be transmitted over the network.

Since we will deal with video compression later on, here we only mention that

the compression algorithms belong to the ISO (International Standard Organiza-

tion) and ITU (International Telecommunication Union) standards. The MPEG

algorithms belong to the ISO standard, while the ITU standards cover VCEG

algorithms. In order to improve the compression ratio and the quality of the

compressed signal, compression algorithms have been improved over time, so

today we have: MPEG-1, MPEG-2, MPEG-4, MPEG-7, and MPEG-21. The

VCEG standards include: H.261, H.263, H.264 (widely used in many application),

and the most recent standard H.265 (which is not yet finalized).

5.2 Motion Parameters Estimation in Video Sequences

Motion estimation is an important part of video compression algorithms. One of the

simplest methods for motion estimation is a block matching technique. Namely, we

consider a block of pixels from the current frame, and in order to estimate its

position (motion vector), we compare it with the blocks within a predefined region

in the reference frame. As a comparison parameter, it is possible to use the mean

square error (MSE) or the sum of absolute errors (SAE):
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MSE ¼ 1

N2

XN
i¼1

XN
j¼1

Ci, j � Ri, j

� �2
; ð5:1Þ

SAE ¼
XN
i¼1

XN
j¼1

Ci, j � Ri, j

�� ��; ð5:2Þ

where Ri,j and Ci,j are the pixels in the reference and current frame, respectively,

and the frame size is N�N. Hence, MSE or SAE are calculated for a set of

neighboring blocks in the reference frame. The minimal error obtained for the

best-matching block is compared with a certain threshold. If the minimal error is

below a certain predefined threshold, the best-matching block position determines

the motion vector. This vector indicates the motion of the considered block within

the two frames. If the difference between current and reference block is too large,

then the current block should be encoded without exploiting temporal redundancy.

Let us illustrate the block matching procedure on a simplified example of a 3� 3

block (larger blocks are used in practical applications), shown in Fig. 5.3.

Compute the MSE for the central position (0,0):

MSE00 ¼
�
2� 3ð Þ2 þ 1� 3ð Þ2 þ 2� 4ð Þ2 þ 2� 3ð Þ2 þ 3� 1ð Þ2þ
4� 3ð Þ2 þ 1� 2ð Þ2 þ 3� 3ð Þ2 þ 1� 2ð Þ2�=9 ¼ 1:89:

ð5:3Þ

In analogy with Eq. (5.3), the MSEs for other positions are obtained as:

�1, � 1ð Þ ! 4:11
0, � 1ð Þ ! 4:44
1, � 1ð Þ ! 9:44
�1, 0ð Þ ! 2:56

1; 0ð Þ ! 4:22
�1, 1ð Þ ! 0:44
0; 1ð Þ ! 1:67
1; 1ð Þ ! 4

We see that min MSEnkf g ¼ MSE�1,1 and the vector (�1,1) is selected as a motion

vector since this position gives the best match candidate for current block.

A procedure for motion vectors estimation in the case of larger blocks is

analyzed in the sequel, and it is known as the full search algorithm. It compares

Fig. 5.3 Motion vector estimation for a 3� 3 block
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blocks of size 16� 16, within the search area of 31� 31 pixels. It means that the

search is done over 15 pixels on each side from the central position (0,0), Fig. 5.4.

This method is computationally demanding, since we need to calculate

31 · 31¼ 961 MSEs for 16� 16 blocks.

Therefore, fast search algorithms are defined to reduce the number of calcula-

tions, still providing sufficient estimation accuracy. The search procedure based on

the three steps algorithm is shown in Fig. 5.5. In the first step, we observe the eight

positions at the distance of p pixels (e.g., p¼ 4) from the central point (0,0). The

MSEs are calculated for all nine points (denoted by 1 in Fig. 5.5). The position that

provides the lowest MSE becomes the central position for the next step.

In the second step, we consider locations on a distance p/2 from the new central

position. Again, the MSEs are calculated for eight surrounding locations (denoted

by 2). The position related to the lowest MSE is a new central position. In the third

step, we consider another 8 points around the central position, with the step p/4. The
position with minimal MSE in the third step determines the motion vector.

Another interesting search algorithm has been known as the logarithmic search

(Fig. 5.6). In the first iteration, it considers the position that form a “+” shape

(positions denoted by 1 in Fig. 5.6). The position with the smallest MSE is chosen

for the central point. Then, in the second iteration, the same formation is done

around the new central point and the MSE is calculated. The procedure is repeated

until the same position is chosen twice in two consecutive iterations. Afterwards,

the search continues by using the closest eight points (denoted by 5). Finally, the

position with the lowest MSE defines the motion vector.

Fig. 5.4 Illustration of full

search
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The motion vectors search procedures can be combined with other motion

parameters estimation (e.g., velocity) algorithms to speed up the algorithms.

Video encoding procedure performs the motion estimation and motion compen-

sation for each block in the current video frame, based on the following steps:

Fig. 5.5 Illustration of

three-step search

Fig. 5.6 Illustration of the

logarithmic search
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Motion Estimation

– Calculate the MSE or SAE between the current block and a neighboring blocks

in the reference frame

– Choose the region that provides the lowest error, i.e., the best matching between

the current frame and blocks in the reference frame

– Determine the motion vector as a position of the matching region

Motion Compensation

– Calculate the difference block (prediction error) by subtracting the current block

and the matching block (from the reference frame). The difference block should

contain small values and low entropy, and thus it is suitable for coding.

Finally, to complete the process for the current block, it is necessary to encode

and transmit the difference block and the motion vector.

5.3 Digital Video Compression

Compression algorithms are of great importance for digital video signals. In fact, as

previously demonstrated, uncompressed video contains large amount of data that

requires significant transmission and storage capacities. Hence, the powerful

MPEG algorithms are developed and used.

5.3.1 MPEG-1 Video Compression Algorithm

The primary purpose of the MPEG-1 algorithm was to store 74 min of digital video

recording on a CD, with a bit rate 1.4 Mb/s. This bit rate is achieved by using the

MPEG-1 algorithm, but with a VHS (Video Home System) video quality. A low

video quality obtained by the MPEG-1 algorithm was one of the main drawbacks

that prevented a wide use of this algorithm. However, the MPEG-1 algorithm

served as a basis for the development of the MPEG-2 and was used in some Internet

applications, as well.

The main characteristics of the MPEG-1 algorithm are the CIF format

(352� 288) and the YCbCr 4:2:0 sampling scheme. The basic coding units are

16� 16 macroblocks. Therefore, the 16� 16 macroblocks are used for the Y

component while, given the 4:2:0 scheme, the 8� 8 macroblocks are used for the

Cb and Cr components.
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5.3.1.1 Structure of Frames

The MPEG-1 algorithm consists of I, B and P frames. The I frame is firstly

displayed, followed by B and then by P frames. The scheme continuously repeats

as shown in Fig. 5.7.

The I frames are not encoded by using motion estimation. Thus, the I frames use

only intra coding, where the blocks are compared within the same frame. P is inter
coded frame and it is based on the forward prediction. It means that this frame is

coded by using motion prediction from the reference I frame.

B frame is the intercoded frame as well, but unlike the P frame, the forward and

backward motion predictions (bidirectional prediction) are used. In other words,

bidirectional temporal prediction uses two reference frames: the past and the future

reference frame.

Let us consider the following example. Assume that we have a video scene in

which there is a sudden change in the background at the position of the second B

frame. In this case, it is much more efficient to code the first B frame with respect to

I frame, while the second B frame should be coded with respect to the P frame.

Having in mind the role of individual frames in video decoding, the sequence of

frames used for transmission is depicted in Fig. 5.8. Note that this is just an

example, but other similar structures of frames sequences can be used in practice.

So an I frame is transmitted first, followed by P and then by B frames. For the

considered case, the frame transfer order is:

I1 P4 B2 B3 P7 B5 . . .
To reconstruct the video sequence, we use the following order:

I1 B2 B3 P4 B5 . . .

Fig. 5.7 Structure of frames in MPEG-1 algorithm

Fig. 5.8 The order of I, B and P frames during transmission
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5.3.1.2 Inter Coding for Exploiting the Temporal Redundancy

The temporal redundancy in MPEG-1 algorithm is exploited by computing the

prediction error. In order to perform the motion estimation, the frame is divided into

16� 16 macroblocks (16� 16 luminance component and associated chrominance

components). For the P frames, the forward prediction is performed for each

macroblock in the current frame, such that the current macroblock is matched

with a certain macroblock in the referent frame (prediction macroblock). The

reference frames for a certain P frame should be either previous P or I frame. The

position of the best-matching prediction block defines a motion vector. Note that

the MPEG-1 algorithm allows the motion estimation with half pixel precision to

provide an improved prediction. This concept is discussed in detail later in this

chapter. The difference between the current macroblock and the prediction block in

the reference frame represents the prediction error (usually called residual).

In the case of B frames, a 16� 16 macroblock (for luminance component) in the

current frame can be predicted using 16� 16 macroblock from the past reference

frame (forward prediction), or future reference frame (backward prediction). Also,

the average value of 16� 16 macroblocks (one from each reference picture) can be

used. In the case of bidirectional prediction, each macroblock may have up to two

motion vectors. Reference frames for B frames are either P or I frames.

Transform and coding: The prediction error is firstly transformed using 2D DCT

applied to the 8� 8 residual blocks. The 2D DCT transform is used to de-correlate

spatial redundancy. Furthermore, the DCT coefficients are quantized using the

quantization matrices and quantization scale to obtain a demanded compression

ratio for specific applications. MPEG 1 algorithm uses different quantization

matrices for intra and inter coding (Fig. 5.9). The quantized DCT coefficients

from the 8� 8 blocks for intra mode are given by:

DCTQ i; jð Þ ¼ round
8� DCT i; jð Þ
Q1 i; jð Þ � scale

� �
; ð5:4Þ

Fig. 5.9 Default quantization matrix for intra coding (Q1) and inter coding (Q2)
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while in the case of inter coding we have:

DCTQ i; jð Þ ¼ round
8� DCT i; jð Þ
Q2 i; jð Þ � scale

� �
: ð5:5Þ

The quantization “scale” parameter ranges from 1 to 31. Larger numbers give better

compression, but worse quality. It is derived from the statistics of each block to

control the loss of information depending on the block content or the bit rate

requirements.

After the quantization, the entropy coding is applied based on a Variable Length

Coder (VLC). The motion vectors are coded and transmitted along with the

prediction error.

The data structure of MPEG-1 algorithms
The data in MPEG-1 are structured in several levels.

1. Sequence layer. The level of sequence contains information about the image

resolution and a number of frames per second.

2. Group of pictures layer. This level contains information about I, P, and B

frames. For example, a scheme consisted of 12 frames can be: 1 I frame, 3 P

frames, and 8 B frames.

3. Picture layer. It carries information on the type of pictures (e.g., I, P, or B

frame), and defines when the picture should be displayed in relation to other

pictures.

4. Slice layer. Pictures consist of slices, which are further composed of

macroblocks. The slice layer provides information about slice position within

the picture.

5. Macroblock layer. The macroblock level consists of six 8� 8 blocks (four

8� 8 blocks represent the information about luminance and two 8� 8 blocks are

used to represent colors).

6. Block layer. This level contains the quantized DCT transform coefficients from

8� 8 blocks.

5.3.2 MPEG-2 Compression Algorithm

The MPEG-2 is a part of the ITU-R 601 standard and it is still present in digital TV

broadcasting. MPEG-2 is optimized for data transfer at bit rates 3–5 Mb/s. The

standard consists of the MPEG-1 audio algorithm, MPEG-2 video algorithm, and a

system for multiplexing and transmission of digital audio/video signals. The picture

resolutions in MPEG-2 can vary from CIF (352� 288 with 25 or 30 frames per

second) to HDTV with 1920� 1080 with 50 and 60 frames per second. Unlike the

MPEG-1 video which mainly works with so-called progressive full frames, most of

the frames in MPEG-2 are interlaced: a single frame is split into two half-frames

(with odd and even numbered lines) called fields. MPEG-2 can encode either frame
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pictures or field pictures (two fields are encoded separately). The term picture is

used in a general sense, because a picture can be either a frame or a field.

Consequently, we have two types of predictions: frame-based and field-based

prediction, depending whether the prediction is done using the reference frame or

reference field. Frame-based prediction uses one 16� 16 block, while field-based

prediction uses two 16� 8 blocks. In field pictures, the DCT coefficients are

organized as independent fields. In frame pictures, the DCT can be performed on

the macroblocks of frames (frame DCT coding) or fields (field DCT coding). In

other words, a frame picture can have frame-coded macroblocks and/or field-coded

macroblocks. Frame DCT coding is similar to MPEG-1: the luminance 16� 16

macroblock is divided into four 8� 8 DCT blocks, where each block contains the

lines from both fields. In Field DCT, the luminance macroblock is also divided into

four 8� 8 DCT blocks, but the top two luminance blocks contain only the samples

from the upper field (odd lines), while the two bottom luminance components

contain the samples from bottom field (even lines). This representation provides a

separate motion estimation/compensation for the two fields, which means that each

of the fields will have its own motion vector. Therefore, in order to improve

prediction efficiency, MPEG-2 supports 16� 8 motion compensation mode. The

first motion vector is determined for 16� 8 block in the first field and the second

motion vector is determined for 16� 8 block in the second field. Another mode is

dual-prime adaptive motion prediction (for P pictures only). When prediction of a

current field is based on two adjacent reference fields (top and bottom), the motion

vectors usually look very similar. If we code them independently, it would cause

redundant information. The Dual prime motion prediction tends to send only the

minimal differential information about motion vectors, by exploiting the similarity

between motion vectors of adjacent fields. Hence, the first motion vector is formed

by prediction of the same parity reference field. Instead of the second motion vector

predicted from the opposite parity reference field, only the differential information

(difference motion vector) needs to be sent as a correction of the former motion

vector. In order to reduce the noise, the motion-compensated prediction is obtained

as the average value of two preliminary predictions from two adjacent fields of

opposite parity (odd and even).

Therefore, we can define 5 different prediction modes in MPEG-2 algorithm.

1. Frame prediction for frame pictures

This mode is the same as in the case of MPEG-1. The prediction is done on the

macroblocks 16� 16. In the case of P frames, the prediction is made using

blocks from the reference frame, resulting in one motion vector for macroblock.

For the prediction of B frames, one may use the previous, future or averaged past

and future reference frames, to determine the two motion vectors (forward and

backward).

2. Field prediction for field pictures

It is similar to the previous mode except that the macroblocks (both current and

reference) are made of pixels that belong to the same field (top or bottom). In the

case of P pictures, the reference macroblocks may belong to any of the two most
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recent fields. Let us denote the top and bottom fields in the reference frame as:

Rtop and Rbottom, while in the current frame we have Ctop and Cbottom, appearing

in the order: [Rtop, Rbottom, Ctop, Cbottom], Fig. 5.10. Then, the prediction for the

current macroblock Ctop of a P frame, may come either from Rtop or Rbottom. The

prediction of Cbottom can be done from its two recent fields: Ctop or Rbottom.

Similarly, for B pictures, the prediction macroblocks are taken from the two

most recent reference pictures (I or P). Due to the forward and backward

prediction, there will be two motion vectors for each B field.

3. Field prediction for frame pictures
In this prediction mode, a 16� 16 macroblock of a frame picture is divided into

two fields (top and bottom), and field prediction is done independently for each

16� 8 block from the field (Fig. 5.11). In the case of P pictures, this will results

in two motion vectors for each 16� 16 macroblock. The 16� 8 predictions can

be taken from the two most recently decoded reference pictures. Unlike the

Fig. 5.10 Field prediction

for field pictures (P picture

macroblocks)

Fig. 5.11 16� 16 macroblock divided into two 16� 8 fields
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previous case, 16� 8 field prediction cannot belong to the same frame. In the

case of B pictures, again we have forward and backward motion. It means that

for 16� 16 macroblock made of two 16� 8 fields, we can have two or four

motion vectors (one or two per field). The 16� 8 predictions may be taken from

either field of the two most recently decoded reference pictures.

4. Dual-prime prediction for P pictures

Dual-prime is used only for P picture and when there are no B pictures between

these predicted P pictures and reference pictures. Two independently coded

predictions are made: one for the top 8 lines (top filed), another for the 8 bottom

field lines. In this prediction mode, there is only one motion vector coded in full

format and a small differential motion vector correction. The components of

differential motion vector can take the values: �0.5, 0, or 0.5. The first motion

vector and its correction are used to obtain the second motion vector. Then, the

two motion vectors are used to obtain two predictions from the two adjacent

reference fields (top and bottom). The average value of the two predictions

represents the final prediction.

5. 16� 8 motion compensation for field pictures

Unlike the case 2 (Field prediction for field pictures), where a frame macroblock

is split into two field blocks (top and bottom), in this mode, a 16� 16 field

macroblock is split into upper half and lower half (two 16� 8 blocks). Then the

separate field prediction is carried out for each. Two motion vectors are trans-

mitted for each P picture macroblock, and two or four motion vectors for the B

picture macroblock.

Quantization in MPEG-2
Another novelty in MPEG-2 algorithm is that the algorithm supports both the linear

and nonlinear quantization of the DCT coefficients, which is the advantage over

MPEG-1 algorithm. The nonlinear quantization increases the precision at high bit

rates by using lower step sizes, while for the lower bit rates it employs larger step

sizes.

5.3.3 MPEG-4 Compression Algorithm

The MPEG-4 compression algorithm is designed for low bit rates. The main

difference in comparison to the MPEG-1 and MPEG-2 is reflected in the object-

based coding and content-based coding. Hence, the algorithm uses an object as the

basic unit instead of a frame (the entire scene is split into the objects and back-

ground). Equivalently to the frame, in the MPEG-4 we have a video object plane.

This concept provides higher compression ratio, because the interaction between

objects is much higher than among frames.

MPEG-4 video algorithm with very low bit rate (MPEG-4 VLBV) is basically

identical to the H.263 protocol for video communications. The sampling scheme is

4:2:0 and it supports formats 16CIF, 4CIF, CIF, QCIF, SubQCIF, with 30 frames/s.
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The motion parameters estimation is performed for 16� 16 or 8� 8 blocks. The

DCT is used together with the entropy coding.

The data structure of MPEG-4 VLBV algorithm is:

1. Picture layer. It provides the information about the picture resolution, its

relative temporal positions among other pictures and the type of encoding

(inter, intra).

2. Group of blocks layer. This layer contains a group of macroblocks (with a fixed

size defined by the standard) and has a similar function as slices in the MPEG-1

and MPEG-2.

3. Macroblock layer consists of 4 blocks carrying information about luminance

and 2 blocks with chrominance components. Therefore, its header contains

information about the type of macroblock, about the motion vectors, etc.

4. Block layer consists of quantized and coded transform coefficients from the

8� 8 blocks.

Shape coding is used to provide information about the shape of video object

plane (VOP). In other words, it is used to determine whether a pixel belongs to an

object or not, and thus, it defines the contours of the video object. The shape

information can be coded as a binary (pixel either belongs to the object or not) or

gray scale information (coded by 8 bits to provide more description about possible

overlapping, pixel transparency, etc.). The binary and greyscale shape masks need

to be sufficiently compressed for efficient representation.

Objects are encoded by using the 16� 16 blocks. Note that all pixels within the

block can completely belong to an object, but can also be on the edge of the object.

For blocks that are completely inside the object plane, the motion estimation is

performed similarly to the MPEG-1 and MPEG-2 algorithms. For the blocks

outside the object (blocks with transparent pixels) no motion estimation is

performed. For the blocks on the boundaries of the video object plane, the motion

estimation is done as follows. In the reference frame, the blocks (16� 16 or 8� 8)

on the object boundary are padded by the pixels from the object edge, in order to fill

the transparent pixels. Then the block in the current frame is compared with the

blocks in the referent frame. The MSE (or SAE) is calculated only for pixels that are

inside the video object plane.

Motion estimation is done for video object plane as follows:

– For the I frame, the motion estimation is not performed;

– For the P frame, the motion prediction is based on the I frame or the previous P

frame;

– For the B frame, the video object plane is coded by using the motion prediction

from I and P frames (backward and forward).

The MPEG-4 in its structure contains spatial and temporal scalability. We can

change the resolution with spatial scaling, while the time scaling can change the

time resolution for objects and background (e.g., we can display objects with more

frames/s, and the background with less frames/s). Also, at the beginning of the

video sequence, we can transmit larger backgrounds than the one that is actually
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displayed at the moment. Hence, when zooming or moving the camera, the back-

ground information already exists. This makes the compression more efficient.

5.3.4 VCEG Algorithms

The VCEG algorithms are used for video coding and they belong to the ITU

standards. Thus, they are more related to the communication applications. Some

of the algorithms belonging to this group are described in the sequel, particularly:

H.261, H.263, and H.264 (which is currently the most widely used codec).

5.3.5 H.261

This standard was developed in the late 80s and early 90s. The main objective was

to establish the standards for video conferencing via an ISDN network with a bit

rate equal to p� 64 Kb/s. A typical bit rates achieved with this standard are in the

range 64–384 Kb/s. The CIF and QCIF formats are used with the 4:2:0 YCbCr

scheme. The coding unit is a macroblock containing 4 luminance and 2 chromi-

nance blocks (of size 8� 8). This compression approach requires relatively simple

hardware and software, but has a poor quality of video signals at bit rates below

100 Kb/s.

5.3.6 H.263

In order to improve compression performance, the H.263 standard is developed as

an extension of H.261. It can support video communication at bit rates below

20 Kb/s with a quite limited video quality that may be used, for example, in

video telephony. The functionality of H.263 is identical to the MPEG-4 algorithm.

It uses 4:2:0 sampling scheme. The motion prediction can be done separately for

each of the four 8� 8 luminance blocks or for the entire 16� 16 block. The novelty

of this approach can be seen in introducing an extra frame, called a PB frame,

whose macroblocks contain data from the P and B frames, which increases the

efficiency of compression (H.263+ optional modes).

An illustration of bit rate variations, depicted as a function of frames, is given in

Fig. 5.12. Note that the compression of the P frames is up to 10 times higher than for

the I frames.
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5.3.7 H.264/MPEG4-AVC

H.264/MPEG4-AVC is one of the latest standards for video encoding and has been

introduced as a joint project of the ITU-T Video Coding Experts Group (VCEG)

and ISO/IEC Moving Picture Experts Group (MPEG). This standard covers many

current applications, including the applications for mobile phones (mobile TV),

video conferencing, IPTV, HDTV, and HD video applications. H.264 replaced

H.263 in telecommunications and is used for both terrestrial and satellite broadcast

of digital high definition TV (HDTV). Although the broadcast of digital TV in

Europe was mainly established on the basis of MPEG-2 (which was the only

available at that time), there is a tendency to start broadcasting digital SDTV

using H.264, due to its better compression performance over MPEG-2 (at least

twice).

Some of the most important new features introduced with H.264 are listed

below:

– Multiple reference pictures motion estimation and compensation

– Variable block size for motion estimation: 4� 4 to 16� 16

– Quarter-pixel precision for motion compensation with lower interpolation

complexity

– Directional spatial prediction in intra coded macroblocks for efficient

compression

– DCT is replaced by integer transform (block size 4� 4 or 8� 8)

– Using de-blocking filter to remove artifacts caused by motion compensation and

quantization

– Two entropy coding schemes: context-adaptive variable length coding

(CAVLC) and context-adaptive binary arithmetic coding (CABAC)

Some additional advantages are more error resiliency through flexible arrange-

ment of macroblocks, transmission protection using data segmentation and

Fig. 5.12 Illustration of the bit rate (bit rate profile)
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packetization into three priority levels and decreasing data loss by redundant

transmission of certain regions.

The H.264/AVC is a block based video standard, which generally partitions the

frame using 4:2:0 sampling scheme. There are five types of frames defined by

H.264 standard (I, P, B, SP, and SI). The frame is partitioned into 16� 16

macroblocks. The macroblocks are further partitioned into 16 subblocks of

4� 4 pixels for prediction process, and they are then intra or inter coded depending

on the frame type. The H.264 algorithm is summarized in the sequel.

H.264/AVC uses aggressive spatial and temporal prediction techniques in order

to improve the compression efficiency. The block diagrams of H.264/AVC encoder

is presented in Fig. 5.13. The encoder consists of spatial (intra) and temporal (inter)

prediction algorithms. Intra prediction is performed only within the I frames,

whereas Inter prediction is processed on both P and B frames. Intra prediction

computes the prediction of one pixels block by using various interpolation filters.

Inter prediction compares the block pixels from the current frame with the predic-

tion blocks in the reference frame (or multiple frames), and finds the best-matching

prediction block by computing the SAE. The differences between the best predic-

tion block and current block (residuals or prediction error) are transformed by

integer transform and quantized. Quantized coefficients are further entropy encoded

for efficient binary representation. Also, these quantized residuals coefficients are

sent back to inverse quantization and inverse transform, then added to the best

prediction block in order to be reused in the prediction process as a reference for

neighboring blocks.

5.3.7.1 Five Types of Frames

As mentioned earlier, the H.264/MPEG4-AVC supports five types of frames: I,

P, B, SP, and SI frames. SP and SI frames are used to provide transitions from one

bit rate to another.

Fig. 5.13 Block diagram of H.264/AVC encoder
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SP and SI frames
The SP and SI frames are specially encoded and they are introduced to provide a

transition between different bit rates. These frames are also used to provide other

operations such as frame skipping, fast forwarding, the transition between two

different video sequences, and so on. The SP and SI frames are added only if it is

expected that some of these operations will be carried out. The application of these

special frames can be illustrated by the following example. During the transfer of

signals over the Internet, the same video is encoded for different (multiple) bit rates.

The decoder attempts to decode the video with the highest bit rate, but often there is

a need to automatically switch to a lower bit rate, if the incoming data stream drops.

Let us assume that during the decoding of sequence with bit rate A, we have to

switch automatically to the bit rate C (Fig. 5.14). Also, assume that the P frames are

predicted from one reference I frame. After decoding P frames denoted by A0 and

A1 (sequence A), the decoder needs to switch to the bit rate C and to decode frames

C2, C3, etc. Now, since the frames in the sequence C are predicted from other I

frames, the frame in A sequence is not appropriate reference for decoding the frame

in C sequence.

One solution is to determine a priori the transition points (e.g., the C2 frame

within the C sequence) and to insert an I frame, as shown in Fig. 5.14.

Fig. 5.14 Switching from one to another bit rate by using I frames
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As a result of inserting I frames, the transitions between two video sequences

would produce peaks in the bit rate. Therefore, the SP frames are designed to

support the transition from one bit rate to another, without increasing the number of

I frames. Transition points are defined by the SP frames (in the example these are

the frames A2, C2, and AC2 that are shown in Fig. 5.15). We can distinguish two

types of SP frames: the primary (A2 and C2, which are the parts of the video

sequences A and C) and the switching SP frame. If there is no transition, the SP

frame A2 is decoded by using the frame A1, while the SP frame C2 is decoded using

C1. When switching from A to C sequence, the switching secondary frame (AC2) is

used. This frame should provide the same reconstruction as the primary SP frame

C2 in order to be the reference frame for C3. Also, the switching frame needs to have

characteristics that provide the smooth transition between the sequences. Unlike

coding of the P frames, the SP frames coding requires an additional re-quantization

Fig. 5.15 Switching between different bit rates by using SP frames
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procedure with a quantization step that corresponds to the step used for the

switching SP frame. Obviously, the switching frame should also contain the

information about the motion vectors corrections in order to provide an identical

reconstruction in both cases: with and without the switching between the sequences.

In the case of switching from C to A bit rate, the switching frame CA2 is needed.

Another application of SP frames is to provide arbitrary access to the frames of a

video sequence, as shown in Fig. 5.16. For example, the SP frame (A10) and the

switching SP frame (A0–10) are on the position of the 10th frame. The decoder

performs a fast forward from A0 frame to A11 frame, by first decoding A0, then the

switching SP frame A0–10, which will use the motion prediction from A0 to decode

the frame A11.

The second type of transition frames are the SI frames. They are used in a similar

way as the SP frames. These frames can be used to switch between completely

different video sequences.

5.3.7.2 Intra Coding in the Spatial Domain

Unlike other video encoding standards where intra coding is performed in the

transform domain, the H.264/AVC intra coding is performed in the spatial domain.

The pixels of the current block are predicted using the reconstructed pixels of

neighboring blocks. There are proposed three types of predictions with respect to

the block size: Intra 4� 4 and Intra 16� 16 for luminance component, while Intra

8� 8 is used for chrominance component. Intra 4� 4 coding is based on the

prediction of 4� 4 blocks, and it is used to encode the parts of pictures that contain

the details. Intra 16� 16 coding is based on the 16� 16 blocks that are used to

encode uniform (smooth) parts of the frame. Different prediction modes are

Fig. 5.16 Illustration of the fast-forward procedure using the SP frames
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available for each intra prediction type (Fig. 5.17). Luminance 16� 16 and chro-

minance 8� 8 predictions have 4 prediction modes (horizontal, vertical, DC, and

plane mode as a linear prediction between the neighboring pixels to the left and

top), whereas luminance 4� 4 has 9 prediction modes.

For the intra coding, the prediction of each 4� 4 block is based on the neigh-

boring pixels. Sixteen pixels in the 4� 4 block are denoted by a, b, . . ., p

(Fig. 5.18a). They are coded by using the pixels: A, B, C, D, E, F, G, H, I, J, K,

L, M, belonging to the neighboring blocks. One DC mode (mean value) and eight

directional modes are defined in Intra 4� 4 prediction algorithm. Fig. 5.18a shows

the block that is used in the prediction and Fig. 5.18b depicts prediction directions.

Fig. 5.19 illustrates the way of using some directions for block prediction.

The reference pixels used in the prediction process depend on the prediction

mode. The vertical prediction, as shown in Fig. 5.19, indicates that the pixels above

the current 4� 4 block are copied to the appropriate positions according to the

illustrated direction. Horizontal prediction indicates that the pixels are copied to the

marked positions on the left side. DC prediction is a mean value of upper and left

reference pixels. The diagonal modes are composed of 2-tap and 3-tap filters. For

example, Fig. 5.20 shows the use of the filters depending on the orientation of

vertical-right (VR) mode.

Fig. 5.17 Different Intra prediction modes
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Fig. 5.18 (a) Intra 4� 4 prediction of block a-p based on the pixels A-M, (b) Eight prediction
directions for Intra coding

Fig. 5.19 Nine 4� 4 intra prediction modes

Fig. 5.20 VR mode prediction filters
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Filter equations of VR prediction mode for each pixel within 4� 4 block are

defined as:

a ¼ Mþ Aþ 1ð Þ >> 1 i ¼ Jþ 2IþMþ 2ð Þ >> 2

b ¼ Aþ Bþ 1ð Þ >> 1 j ¼ Mþ Aþ 1ð Þ >> 1

c ¼ Bþ Cþ 1ð Þ >> 1 k ¼ Aþ Bþ 1ð Þ >> 1

d ¼ Cþ Dþ 1ð Þ >> 1 l ¼ Bþ Cþ 1ð Þ >> 1

e ¼ Iþ 2Mþ Aþ 2ð Þ >> 2 m ¼ Kþ 2Jþ Iþ 2ð Þ >> 2

f ¼ Mþ 2Aþ Bþ 2ð Þ >> 2 n ¼ Iþ 2Mþ Aþ 2ð Þ >> 2

g ¼ Aþ 2Bþ Cþ 2ð Þ >> 2 o ¼ Mþ 2Aþ Bþ 2ð Þ >> 2

h ¼ Bþ 2Cþ Dþ 2ð Þ >> 2 p ¼ Aþ 2Bþ Cþ 2ð Þ >> 2

where the operator >> denotes bit-shifting (to the right).

Fig. 5.21 presents an example with five 4� 4 blocks within macroblock. The

reference pixels in neighboring blocks used for prediction computations are marked

by red.

The vertical (V) prediction pixels are copies of the pixels from the last row of the

upper reference block.

Fig. 5.21 Slice of the reference frame used for prediction
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a ¼ A ¼ 60 i ¼ A ¼ 60

b ¼ B ¼ 55 j ¼ B ¼ 55

c ¼ C ¼ 52 k ¼ C ¼ 52

d ¼ D ¼ 50 l ¼ D ¼ 50

e ¼ A ¼ 60 m ¼ A ¼ 60

f ¼ B ¼ 55 n ¼ B ¼ 55

g ¼ C ¼ 52 o ¼ C ¼ 52

h ¼ D ¼ 50 p ¼ D ¼ 50:

The DC prediction pixels are mean value of the reference pixels in left and upper

neighboring block:

DCmode ¼ round
Aþ Bþ Cþ Dþ Iþ Jþ Kþ L

8

� �
¼ 49:

The VR prediction pixels are obtained by inserting the reference pixel values into

the filter functions as follows:

a ¼ ð58þ 60þ 1Þ>>1 ¼ ð119Þ10>>1 ¼ ð1110111Þ2>>1 ¼ ð111011Þ2 ¼ ð59Þ10
b ¼ ð60þ 55þ 1Þ>>1 ¼ ð116Þ10>>1 ¼ ð1110100Þ2>>1 ¼ ð111010Þ2 ¼ ð58Þ10
c ¼ ð55þ 52þ 1Þ>>1 ¼ ð108Þ10>>1 ¼ ð1101100Þ2>>1 ¼ ð110110Þ2 ¼ ð54Þ10
d ¼ ð52þ 50þ 1Þ>>1 ¼ ð103Þ10>>1 ¼ ð1100111Þ2>>1 ¼ ð110011Þ2 ¼ ð51Þ10
e ¼ ð50þ 2� 58þ 60þ 2Þ>>2 ¼ ð228Þ10>>2 ¼ ð11100100Þ2>>2 ¼ ð57Þ10
f ¼ ð58þ 2� 60þ 55þ 2Þ>>2 ¼ ð235Þ10>>2 ¼ ð11101011Þ2>>2 ¼ ð58Þ10
g ¼ ð60þ 2� 55þ 52þ 2Þ>>2 ¼ ð224Þ10>>2 ¼ ð11100000Þ2>>2 ¼ ð56Þ10
h ¼ ð55þ 2� 52þ 50þ 2Þ>>2 ¼ ð211Þ10>>2 ¼ ð11010011Þ2>>2 ¼ ð52Þ10
i ¼ ð45þ 2� 50þ 58þ 2Þ>>2 ¼ ð205Þ10>>2 ¼ ð11001101Þ2>>2 ¼ ð51Þ10
j ¼ a ¼ ð59Þ10
k ¼ b ¼ ð58Þ10
l ¼ c ¼ ð54Þ10
m ¼ ð40þ 2� 45þ 50þ 2Þ>>2 ¼ ð182Þ10>>2 ¼ ð10110110Þ2>>2 ¼ ð45Þ10
n ¼ e ¼ ð57Þ10
o ¼ f ¼ ð58Þ10
p ¼ g ¼ ð56Þ10

The computed predicted pixels for VR mode within the active block are presented

in Fig. 5.22.

The best mode among defined modes is found by computing the SAE between

original block in the current frame and the predictions.

5.3.7.3 Inter Frame Prediction with Increased Accuracy of Motion

Parameters Estimation

As in the previously described standards, inter prediction is the process of

predicting blocks from the reference pictures that has previously been encoded.
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Recall that the search area in the reference frame is centered on the current block

position and can vary in size. The searching procedure results in the best-matched

block, which becomes the predictor for the current block in the current frame

(motion estimation). The differences between block in the current frame and its

best prediction are further encoded and transmitted (motion compensation).

Having in mind that the inter frame prediction and coding includes motion

estimation and motion compensation, H.264 has three significant improvements

over the other mentioned standards: variable block size motion estimation, quarter-

pixel precision for determination of moving vectors, and multiple reference frames

for motion compensation. Namely, the inter prediction in H.264 uses blocks of sizes

16� 16, 16� 8, 8� 16, and 8� 8. The 8� 8 can be further divided into the sub-

blocks of sizes 8� 4, 4� 8, or 4� 4, as shown in Fig. 5.23.

The macroblocks are partitioned into smaller blocks in order to reduce the cost

of coding. In flat areas, it is suitable to use the larger blocks since we will have less

motion vectors to encode (consequently, less bits are required). In busy areas,

smaller blocks sizes are used since it will significantly reduce the prediction

error. Therefore, the total bit rate of encoded data will be reduced.

Fig. 5.22 Prediction pixels for three modes in intra 4� 4 prediction

Fig. 5.23 Macroblocks and subblocks
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5.3.7.4 Quarter Pixel Precision

In comparison to other algorithms, the H.264/MPEG-4 standard provides higher

precision for the motion vectors estimation. Namely, its accuracy is equal to 1/4 of

pixels distance in the luminance component. For other algorithms, the precision is

usually 1/2 of the distance. Starting from the integer positions within the existing

pixels grid, the half-distance pixels can be obtained by using the interpolation.

After the best prediction block is found in integer-pixel motion estimation within

the search region, the encoder searches for half-pixel positions around that integer

position. If a better match is found on half-pixel interpolated samples, the search

continues on quarter-pixel level around the best half-pixel position.

A 6-tap FIR filter is used to obtain the interpolation accuracy equal to 1/2. Filter

coefficients are (1, �5, 20, 20, �5, 1), which can be considered as a low-pass filter.

Then the bilinear filter is applied to obtain the precision equal to 1/4 pixel.

The pixels b, h, j, m, and s (Fig. 5.24) are obtained following the relations

(1/2 pixel precision):
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Fig. 5.24 Interpolation method for ¼ pixel precision (luminance component)
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b ¼ E � 5F þ 20G þ 20H � 5I þ Jð Þ þ 16ð Þ=32
h ¼ A � 5C þ 20G þ 20M � 5R þ Tð Þ þ 16ð Þ=32
m ¼ B � 5D þ 20H þ 20N � 5S þ Uð Þ þ 16ð Þ=32
s ¼ K � 5L þ 20M þ 20N � 5P þ Qð Þ þ 16ð Þ=32
j ¼ cc � 5dd þ 20h þ 20m � 5ee þ ffð Þ þ 512ð Þ=1024
or j ¼ aa � 5bb þ 20b þ 20s � 5gg þ hhð Þ þ 512ð Þ=1024

ð5:6Þ

To obtain a pixel j, it is necessary to calculate the values of pixels cc, dd, ee, and ff,
or aa, bb, gg, and hh. Pixels placed at the quarter of the distance between the pixels
a, c, d, e, f, g, i, k, n, p, q are obtained as (1/4 pixel precision):

a ¼ Gþ bþ 1ð Þ
2

c ¼ H þ bþ 1ð Þ
2

d ¼ Gþ hþ 1ð Þ
2

n ¼ M þ hþ 1ð Þ
2

f ¼ bþ jþ 1ð Þ
2

i ¼ hþ jþ 1ð Þ
2

k ¼ jþ mþ 1ð Þ
2

q ¼ jþ sþ 1ð Þ
2

e ¼ bþ hþ 1ð Þ
2

g ¼ bþ mþ 1ð Þ
2

p ¼ hþ sþ 1ð Þ
2

r ¼ mþ sþ 1ð Þ
2

ð5:7Þ

5.3.7.5 Multiple Reference Frames

The H.264 introduces the concept of multiple reference frames (Fig. 5.25). Specif-

ically, the decoded reference frames are stored in the buffer. It allows finding the

best possible references from the two sets of buffered frames (List 0 is a set of past

frames, and List 1 is a set of future frames). Each buffer contains up to 16 frames.

The prediction for the block is calculated as a weighted sum of blocks from

different multiple reference frames. The motion estimation based on multiple

reference frames increases computational cost, but can improve motion prediction

performance, especially in the scenes where there is a change in perspective, zoom,

or the scene where new objects appear.

Another novelty with the H.264 standard is a generalization of the B frames

concept. B frames can be encoded using List 0, List 1, or bidirectional prediction
where the macroblocks are predicted as the weighted average of different frames

from the List 0 and List 1.

5.3.7.6 Coding in the Transform Domain Using Integer Transform

The H.264/AVC as well as other coding standards encodes the difference between

the current and the reference frame. However, unlike the previous standards (such
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as MPEG-2 and H.263) based on the DCT coefficients, the H.264/AVC uses integer

transform (based on the 4� 4 or 8� 8 transform matrices), which is simpler to

implement and allows accurate inverse transform. The commonly used 4� 4

transform matrix is given by:

H ¼
1 1 1 1

2 1 �1 �2

1 �1 �1 1

1 �2 2 �1

2
664

3
775, H�1 ¼

1 1 1 1

1 1=2 �1=2 �1

1 �1 �1 1

1=2 �1 1 �1=2

2
664

3
775 ð5:8Þ

where H�1 denotes the inverse transform. The inverse transform is exact (unlike in

the DCT case). Also, note that the realization of the integer transform can be done

using simple operations such as addition and shift operations.

In order to obtain the orthonormal transformation matrix, the 2D transform

coefficients are multiplied by a scaling matrix E:

X ¼ HBHT
� �� E; ð5:9Þ

where� denotes multiplication of elements at the same positions, B is block of

pixels, and the scaling matrix E is given by:

E ¼

a2
ab

2
a2

ab

2

ab

2

b2

4

ab

2

b2

4

a2
ab

2
a2

ab

2

ab

2

b2

4

ab

2

b2

4

2
666666666664

3
777777777775
, and E�1 ¼

a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2

2
666664

3
777775 ð5:10Þ

Fig. 5.25 Multiple reference frames
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where: a¼ 1/2, b ¼ ffiffiffiffiffiffiffiffi
2=5

p
.

Notation E�1 is used for the inverse scaling matrix, which is used to weight the

2D transform coefficients before the inverse transform.

In the case of intra 16� 16 coding, there is still high spatial redundancy (high

correlation between DC values of sixteen 4� 4 blocks). Therefore, the 4� 4

Hadamard transform is applied to DC coefficients from 4� 4 integer transform

blocks:

HD4�4 ¼
1 1 1 1

1 1 �1 �1

1 �1 �1 1

1 �1 1 �1

2
664

3
775:

The chrominance DC values are transformed using 2� 2 Hadamard transform:

HD2�2 ¼ 1 1

1 �1


 �
:

The high profiles of H.264 (such asHigh profile,High 10 profile,High 4:2:2 profile,
High 4:4:4 profile), as an additional option, can apply 8� 8 integer transform

(instead of 4� 4 defined by Eq. (5.8)) to motion-compensated residual blocks:

H ¼ 1

8

8 8 8 8 8 8 8 8

12 10 6 3 �3 �6 �10 �12

8 4 �4 �8 �8 �4 4 8

10 �3 �12 �6 6 12 3 10

8 �8 �8 8 8 �8 �8 8

6 �12 3 10 �10 �3 12 �6

4 �8 8 �4 �4 8 8 4

3 �6 10 �12 12 �10 6 �3

2
66666666664

3
77777777775
:

5.3.7.7 Quantization

H.264 uses a scalar quantizer, implemented in a way to avoid division and/or

floating point arithmetic. There is a total number of 52 quantization step sizes

denoted by Qstep, ranging from the lowest step size 0.625, to the largest step size

224. The step sizes are addressed using the quantization parameter QP with the

values from 0 to 51. The values of Qstep are given in Table 5.1. The exact relation

between Qstep and QP is given by:

Qstep QPð Þ ¼ Qstep mod QP, 6ð Þð Þ2floor QP=6ð Þ; ð5:11Þ
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where the first six QP and corresponding Qstep are known (mod denotes remainder

after dividing QP by 6, and floor denotes rounding to the smallest integer).

Qstep is doubled for every increment of 6 in QP. The possibility of using

different quantization steps (with large range of values) allows us to efficiently

manage trade-off between bit rate and quality.

Direct quantization and transform. The weighting coefficients from the scaling

matrix E are implemented within the quantizer using the scaling factor (SF). First,
the input block B is transformed to give a block of unscaled coefficients X¼HBHT

(i.e., coefficients that are not yet scaled by E). Then, each coefficient on the position

(i,j), denoted by Xij, is quantized and scaled as follows:

Zi j ¼ round
Xi jSFi j

Qstep

 !
: ð5:12Þ

Wemay observe from Eq. (5.10) that the scaling factor SFij in E can have values a2,
ab/2, or b2/4 depending on the position (i,j) within the 4� 4 matrix:

Position (i,j) Scaling factor SF (direct transform)

(0,0), (2,0), (0,2), (2,2) a2¼ 0.25

(1,1), (1,3), (3,1), (3,3) b2/4¼ 0.1

Other ab/2¼ 0.1581

In the implementation of H.264, the division operation SFij/Qstep is replaced by

the multiplication with factor MFij:

MFi j ¼ SFi j

Qstep

2qbits , and qbits ¼ 15þ floor QP=6ð Þ ð5:13Þ

For simplicity, consider the case: Qstep¼ 1, QP¼ 4, qbits ¼ 15þ floor 4=6ð Þ ¼ 15,

and position (i,j)¼ (0,0), which means that SF¼ a2¼ 0.25.

Therefore: MFij¼ SFij/Qstep2
qbits¼ 0.25∙215¼ 8192.

The multiplication factors are given in Table 5.2 for QP¼ {0,. . .,5}.
If QP> 5, MF is the same as in the case mod(QP,6), but the factor 2qbits will

increase by a factor of 2 for each increment of 6 in QP.
Using the above defined multiplication and shifting operations, the quantization

can be implemented as:

Table 5.1 Quantization step sizes in H.264 standard

QP 0 1 2 3 4 5 6 7 8

Qstep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625

QP 9 10 . . . 18 . . . 24 . . . . . . 51

Qstep 1.75 2 . . . 5 . . . 10 . . . . . . 224
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Zi j

�� �� ¼ Xi j

�� ��MFi j þ f
� �� qbits

sign Zi j

� � ¼ sign Xi j

� �
where f¼ 2qbits/3 for Intra and f¼ 2qbits/6 for Inter blocks. Note that qbits¼ 15 for

QP¼ {0,. . .,5}, qbits¼ 16 for QP¼ {6,. . .,11}, qbits¼ 17 for QP¼
{12,. . .,17}, etc.

Inverse quantization and transform. During the inverse quantization and inverse

transform, the first step is to calculate the rescaled coefficients:

X
0
i j ¼ Zi j � Qstep � SFi j � 64;

where the constant scaling factor 64 is applied to avoid rounding errors, while the

scaling factors SF corresponds to a2, b2, ab (0.25, 0.4, and 0.3162, respectively) for
the inverse scaling matrix E�1:

Position (i,j) Scaling factor SF (inverse transform)

(0,0), (2,0), (0,2),(2,2) a2¼ 0.25

(1,1), (1,3), (3,1), (3,3) b2¼ 0.4

Other ab¼ 0.3162

The total re-scaling parameter is denoted as:

V ¼ Qstep � SF � 64; ð5:14Þ

and it is defined within the standard as a table of values for QP¼ {0,. . .,5} and each
coefficients position (i,j) (Table 5.3). If QP> 5, V is the same as in the case mod

(QP,6).
The rescaling operation can be written as:

X
0
i j ¼ Zi jVi j2

floor QP=6ð Þ; ð5:15Þ

Table 5.2 Multiplication factor MF for different (i,j)

QP (i,j)¼ (0,0),(0,2),(2,0),(2,2) (i,j)¼ (1,1),(1,3),(3,1),(3,3) Other

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559
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or in a matrix form:X0 ¼ 2floor QP=6ð ÞZ� V, with� again denotes the multiplication

of elements at the same positions. Note that the factor 2floor(QP/6) increases the

output by a factor of 2 for every increment of 6 in QP.
The block pixels are then obtained as:

B ¼ H�1X0 H�1
� �T

: ð5:16Þ

5.3.7.8 Arithmetic Coding

H.264 standard provides significantly better compression ratio than the existing

standards. At the same time, it uses advanced entropy coding, such as CAVLC

(Context Adaptive Variable Length Coding), and especially CABAC (Context-

based Adaptive Binary Arithmetic Coding).

Context-Based Adaptive Variable Length Coding (CAVLC)
It is used to encode zig-zag scanned and quantized residuals (4� 4 blocks of

transform domain coefficients). These blocks of coefficients mainly contain zero

values, while the non-zero coefficients are often �1. Furthermore, the number of

nonzero coefficients in neighboring blocks is correlated (left and upper block are

observed). The number of coefficients is encoded using one out of four look-up

tables, where the lookup table is chosen on the basis of the number of nonzero

coefficients in neighboring blocks.

For each transform block, CAVLC encodes the following.

• Coeff_Token which includes the number of non-zero coefficients (TotalCoeffs)

and trailing ones �1 (TrailingOnes).

TotalCoeffs can be between 0 and 16. The number of TrailingOnes can be

between 0 and 3 (even if there are more than 3, only the last three are considered,

the others are coded as normal coefficients). Coeff_token are coded using

4 look-up tables (3 of them with variable-length codes: Table 1 for small number

of coefficients, Table 2 for medium and Table 3 for high number of coefficients),

and the fourth with fixed 6-bit codes to every pair of TotalCoeff and

TrailingOnes (Tables are given in the Appendix). Only one of the tables should

be chosen for encoding, and the choice depends on the number of nonzero

coefficients in the left and upper blocks that are already coded. The table

selection parameter nC for the current block is calculated as the average value

of the number of nonzero coefficients from the left (nCA) and upper 4� 4 block

Table 5.3 Rescaling

coefficients V for

different (i,j)
QP

(i,j)¼ (0,0),(0,2),

(2,0),(2,2)

(i,j)¼ (1,1),(1,3),

(3,1),(3,3) Other

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23
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(nCB). If only one block is available than the parameter is equal to the number of

nonzero coefficients from that block (nC¼ nCA or nC¼ nCB), or it is equal to

zero if both blocks are unavailable. The table selection parameter adapts VLC to

the number of coded coefficients in neighboring blocks (context adaptive). The
values nC¼ 0 and nC¼ 1 select Table 1, values nC¼ 2 and nC¼ 3 selects

Table 2, values nC¼ {4,5,6,7} use Table 3, otherwise Table 4 is used.

As an illustration, let us observe an example of a block with values:

0 4 1 0

0 �1 �1 0

1 0 0 0

0 0 0 0

Zig-zag scanned block: 0,4,0,1,�1,1,0, �1,0,0. . .
We may observe that:

TotalCoeffs¼ 5 (indexed from 4 to 0, starting from the end of sequence, such

that: the last non-zero coefficients with value �1 is indexed by 4, while the

first non-zero coefficients having value 4 is indexed by 0)

TrailingOnes¼ 3 (there are four trailing ones but only three can be encoded)

Assume that the table selection parameter nC< 2 selects Table 1 for coding

(Table 1 is represented as one of the columns of the table in the Appendix).

For the pair TrailingOnes¼ 3 (field TO in the table) and TotalCoeffs¼ 5 we

read the code from Table 1: 0000100.

Element Value Code

Coeff_Token TotalCoeffs¼ 5 0000100

TrailingOnes¼ 3

(e.g., use Table 1 given in the Appendix)

• Encode the sign of TrailingOnes: + sign is encoded by “0” bit, � sign is

encoded by “1” bit. The signs are encoded in reverse order (from the end of

the sequence). Hence, in the example we include the signs:

Element Value Code

Coeff_Token TotalCoeffs¼ 5 0000100

TrailingOnes¼ 3

(use Table 1)

TrailingOne sign(4) � 1

TrailingOne sign(3) + 0

TrailingOne sign(2) � 1

• Levels of remaining nonzero coefficients: starting from the end of sequence,

the sign and magnitude (level) of remaining non-zero coefficients are encoded.

Each level is encoded using a prefix and a suffix. Seven level_VLC tables are

used to encode the level (ITU-T Rec., 2002). The length of the suffix is between

0 and 6 bits and it is adapted according to the each successive coded level

(“context adaptive”): a small value is appropriate for levels with low
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magnitudes, larger value for levels with high magnitudes. The choice of

suffixLength is adapted as follows:

1. Initialize suffixLength to 0, i.e., Level_VLC0 (if the number of nonzero

coefficients is higher than 10, and there are less than 3 trailing ones, initialize

suffixLength to 1, i.e., Level_VLC1).

2. Encode the last nonzero coefficient (encoding is done in reverse order).

3. If the magnitude of this coefficient is larger than a predefined threshold,

increment suffixLength by 1 (or equivalently, move to the next VLC table)

(Table 5.4).

Element Value Code

Coeff_Token TotalCoeffs¼ 5 0000100

TrailingOnes¼ 3

(use Table 1)

TrailingOne sign(4) � 1

TrailingOne sign(3) + 0

TrailingOne sign(2) � 1

Level (1) +1 (use suffixLength¼ 0) 1 (prefix)

Level (0) +4 (use suffixLength¼ 1) 0001 (prefix) 0 (suffix)

• Total number of zeros (totalzeros) before the last nonzero coefficient

In the considered example the total number of zeros is Total zeros¼ 3, and thus

the coding table includes the additional line:

Element Value Code

Coeff_Token TotalCoeffs¼ 5 0000100

TrailingOnes¼ 3

(use Table 1)

TrailingOne sign(4) � 1

TrailingOne sign(3) + 0

TrailingOne sign(2) � 1

Level (1) +1 (use suffixLength¼ 0) 1 (prefix)

Level (0) +4 (use suffixLength¼ 1) 0001 (prefix) 0 (suffix)

Total zeros 3 111

Table 5.4 Suffix length

Current table Threshold suffixLength to be set

Level_VLC0 0 0

Level_VLC1 3 1

Level_VLC2 6 2

Level_VLC3 12 3

Level_VLC4 24 4

Level_VLC5 48 5

Level_VLC6 N/A (highest suffixLength) 6
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The code for totalzeros (depending on the number of non-zero coefficients) is

given in Table 5.5.

• Runs of zeros: the last step is to encode the number of zeros preceding each

nonzero coefficient (run_before, Table 5.6) starting from the end of sequence

(from the last nonzero coefficients). The number of zeros before the first

coefficients (last in reverse coding order) is not necessary to encode. Also, if

there are no more zeros other than totalzeros (zeros before the last nonzero

coefficients), then no run_before is encoded.

Now, after we add run_before in the considered example: 0,4,0,1,�1,1,0,

�1,0,0. . .

run_before(4): 0,4,0,1,�1,�1, 0,1,0,0. . . Zerosleft¼ 3, run_before¼ 1

run_before(3): 0,4,0,1,�1,�1,0,1,0,0. . . Zerosleft¼ 2, run_before¼ 0

run_before(2): 0,4,0,1,�1,�1,0,1,0,0. . . Zerosleft¼ 2, run_before¼ 0

run_before(1): 0,4, 0,1,�1,�1,0,1,0,0. . . Zerosleft¼ 2, run_before¼ 1

run_before(0): 0,4,0,1,�1,�1,0,1,0,0. . . Zerosleft¼ 1, run_before¼ 1

(no code required)

Note that run_before is the number of zeros (0) preceding each observed

non-zero coefficient (marked in red).

Element Value Code

Coeff_Token TotalCoeffs¼ 5 0000100

TrailingOnes¼ 3

(use Table 1)

TrailingOne sign(4) � 1

TrailingOne sign(3) + 0

TrailingOne sign(2) � 1

Level (1) +1 (use suffixLength¼ 0) 1 (prefix)

Level (0) +4 (use suffixLength¼ 1) 0001 (prefix) 0 (suffix)

Total zeros 3 111

run_before(4) ZerosLeft¼ 3; run before¼ 1 10

run_before(3) ZerosLeft¼ 2; run before¼ 0 1

run_before(2) ZerosLeft¼ 2; run before¼ 0 1

run_before(1) ZerosLeft¼ 2; run before¼ 1 01

run_before(0) ZerosLeft¼ 1; run before¼ 1 No code req. (last coeff.)

The encoded sequence for this block is obtained as: 000010010110

0010111101101
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Decoding

The steps of the decoding procedure are summarized below until the decoded

sequence is obtained.

Code Element Value Output array

0000100 coeff token TotalCoeffs¼ 5, TrailingOnes¼ 3 Empty

1 TrailingOne

sign

� �1

0 TrailingOne

sign

+ 1, �1

1 TrailingOne

sign

� �1,1, �1

1 Level +1 (suffixLength¼ 0; increment suffixLength

after decoding)

1, �1,1, �1

00010 Level +4 (suffixLength¼ 1) 4, 1, �1,1,�1

111 Total_zeros 3

10 run before 1 4, 1, �1,1,

0,�1

1 run before 0 4, 1, �1,1,

0, �1

1 run before 0 4, 1, �1,1,

0, �1

01 run before 1 4, 0, 1, �1,1,

0, �1

since Total_zeros¼ 3 ) 0, 4, 0, 1, �1,

1, 0, �1

Table 5.6 Table for run_before

Zeros left

run_before 1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 – 00 01 01 011 001 101

3 – – 00 001 010 011 100

4 – – – 000 001 010 011

5 – – – – 000 101 010

6 – – – – – 100 001

7 – – – – – – 0001

8 – – – – – – 00001

9 – – – – – – 000001

10 – – – – – – 0000001

11 – – – – – – 00000001

12 – – – – – – 000000001

13 – – – – – – 0000000001

14 – – – – – – 00000000001
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The decoded sequence is: 0,4,0,1,�1,1,0,�1,. . .

5.4 Data Rate and Distortion

The video sequences, in general, have variable bit rates that depend on several

factors:

• Applied algorithms—intra and inter coding techniques use different compres-

sion approaches. Hence, it is clear that different types of frames have different

compression factors.

• Dynamics of videos sequence—compression will be higher in the sequences

where there are fewer movements and moving objects.

• Encoding parameters—the choice of quantization steps will also influence the

bit rate.

It is obvious that the video compression ratio is closely related to the degree of

quality distortion, which is in turn related to the degree of quantization Q. There-
fore, an important issue is to provide a compromise between the data rate and

quality distortion, which can be described by:

min Df g for R � Rmax; ð5:17Þ

where D is a distortion, while R is the data rate. The algorithm searches for an

optimal combination of D and R. It can be summarized as follows:

• Encode a video signal for a certain set of compression parameters and measure

the data rate and distortion of decoded signals.

• Repeat the coding procedure for different sets of compression parameters, which

will produce different compression ratio. For each compression ratio, a measure

of distortion is calculated.

• As a result, different points in the R-D (rate-distortion) plane are obtained.

The optimal point in the R-D plane is obtained by using the Lagrangian

optimization:

min J ¼ Dþ λRf g; ð5:18Þ

where λ is the Lagrange constant. It will find the nearest point on the convex

optimization curve.

In practice, most applications require the constant bit rate for the video signals.

For this purpose, the bit rate control system, shown in Fig. 5.26, can be used.

RV indicates the variable bit rates, while RC denotes the constant ones. The

system buffers a video signal with variable bit rate obtained at the output of coder,

and then transmits the buffered signal with the constant bit rate. A buffer feedback

controls the quantization step size, and consequently, the compression ratio.
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Namely, when the bit rate of the input signal to the buffer is high, the buffer may

overflow. Then, the quantization step should be increased to increase compression

and to reduce the bit rate at the output of the encoder.

A field dealing with matching the video quality and transmission capacity of the

network is called the Quality of Service (QoS). On the one side we have the QoS

required by the application and on the other side, the available QoS offered by the

network. QoS differs for different video applications and transmission scenarios.

For example, a one-sided simplex transmission (broadcasting) requires a different

QoS compared to a two-sided duplex transmission (video conferencing). In sim-

plex, it is important to have video and audio synchronization, because the synchro-

nization loss greater than 0.1 s becomes obvious. In duplex, delays greater than 0.4 s

cause difficulties and unnatural communication.

Digital data can be carried over networks with constant or variable bit rates.

Networks with constant rates are the PSTN networks (Public Switched Telephone

Networks—circuit switched networks) and ISDN networks (Integrated Services

Digital Networks). Networks with variable bit rates are the Asynchronous Transfer

Mode networks (ATM—packet switched networks), where the bit rate depends on

the traffic within the network.

Errors that can occur when transferring video material can generally be divided

into spatial and temporal. The spatial error occurs in one of the macroblocks within

the frame and it affects other blocks that are intra coded by using the erroneous

block (Fig 5.27).

Correcting these errors is done by interpolation, using the undamaged parts of

the frame. The most prominent time errors are those that occur in the initial frame

and they are transmitted through the motion vectors to B and P frames. When such

an error is detected, then the motion prediction is done by using the previous error-

free reference frame. An illustration of removing these errors is given in Fig. 5.27.

Alternatively, the error correction can be efficiently done using gradient-based

signal reconstruction algorithm for images presented in Chap. 6, which is able to

recover erroneous blocks by treating them as the missing ones.

Fig. 5.26 Rate control for video signal
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5.5 Communications Protocols for Multimedia Data

In this part we provide an overview of some multimedia protocols used in different

networks. In the PSTN networks (typically ISDN), H.324 and H.320 protocols are

used, and both have a constant bit rate. For multimedia data over the IP and LAN

networks the H.323 protocol can be used, which has a variable delay and unreliable

data transfer.

5.6 H.323 Multimedia Conference

The H.323 protocol provides the multimedia communication sessions (voice and

videoconferencing in point-to-point and multipoint configurations). This standard

involves call signaling, control protocol for multimedia communication, bandwidth

control, etc. The H.323 network usually includes four components: the H.323

terminal, gatekeeper, gateway, and multipoint control units (MCU). The H.323

terminals are the endpoints on the LAN that provide real-time communications.

The gateway provides communication between H.323 networks and other networks

(PSTN or ISDN). The gatekeeper is used to translate IP addresses and to manage the

bandwidth. The MCU allows communication between multiple conference units.

The structure of the H.323 terminal is given in Fig. 5.28.

This protocol requires the audio coding and control protocols, while the video

coding and Real-Time Transport Protocol (RTP) are optional. The audio signals are

encoded using the G.711, G.723, and G.729 standards, while the video signals are

Fig. 5.27 Error reduction by using the older reference frame
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encoded using the H.261 and H.263 standards. The block Q.931 is used to set up the

calls, the H.245 block controls the operation of the network, and the RAS block is

used to communicate with the gatekeeper.

A centralized conference assumes that all connections are routed through the

MCU (unicast communication). Then the MCU is very loaded. In a decentralized

conference (multicast communication) each terminal sends data to all other termi-

nals. The basic transport protocol in the H.323 is the UDP (User Datagram

Protocol).

5.6.1 SIP Protocol

The Session Initiation Protocol (SIP) is a protocol designed for the session control

in the multi-service networks. The software that provides real-time communica-

tions between the end-users can use SIP to establish, maintain, and terminate the

communication between two or more end-points. These applications include the

voice over IP (VoIP), video teleconferencing, virtual reality applications,

multiplayer video games, etc. The SIP does not provide all the functions required

for communication between these programs, but it is an important component that

facilitates communication.

One of the major demands that the network should meet is the maintenance of

QoS for the client application. The SIP is a client–server protocol, based on the

protocols HTTP (HyperText Transfer Protocol) and SMTP (Simple Mail Transfer

Protocol). The SIP can use either UDP or TCP (Transmission Control Protocol) as a

transport protocol.

The SIP messages can be in a form of a request (from a client to a server) or a

response (from a server to a client).

Fig. 5.28 H.323 terminal
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SIP performs five basic functions:

• Determines the location of endpoint.

• Determines the availability of endpoint, i.e., whether the endpoint is able to

participate in a session.

• Determines the characteristics of users, i.e., the parameters of the medium that

are essential for communication.

• Establishes a session or performs the exchange of parameters for establishing a

session.

• Manages sessions.

One of the main reasons for using the SIP is to increase flexibility in multimedia

data exchange. Specifically, users of these applications can change the location and

use different computers, with multiple user names and user accounts, or to com-

municate using a combination of voice, text, and other media that require different

protocols separately. The SIP uses various components of the network to identify

and locate the users. The data go through a proxy server that is used to register and

forward the user connection requests. Given that there are different protocols for

voice, text, video, and other media, the SIP is positioned above any of these

protocols.

The SIP architecture is illustrated in Fig. 5.29. The SIP is independent of

network topology and can be used with different transport protocols such as the

UDP, TCP, X.25, ATM AAL5, CLNP, TP4, IPX, and PPP. The SIP does not

require a reliable transport protocol, and therefore, the client side can use the

UDP. For servers, it is recommended to support both protocols, the UDP and

TCP. The TCP connection is opened only when the UDP connection cannot be

established.

The functionality of SIP is mainly based on signaling. This is its main difference

in comparison to the H.323 which includes all necessary functions to carry out the

Fig. 5.29 SIP architecture
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conference. The SIP architecture is designed to be modular so that the different

functions can be easily replaced. The SIP environment can implement some

components of the H.323 protocol.

For a description of multimedia sessions, SIP uses the Session Description

Protocol (SDP). To transfer in real time, the SIP architecture includes the RTP

protocol. It also includes the Real-Time Streaming Protocol (RTSP), which is a

control protocol for streaming multimedia data in real time. This protocol is suitable

for audio/video on-demand streaming.

In the SIP protocol, the following methods are used:

INVITE—making the connection,

BYE—end connection,

OPTIONS—indicates information about the possibilities,

ACK—is used for reliable messaging,

CANCEL—cancels the last request,

REGISTER—SIP server provides information about the location.

5.7 Audio Within a TV Signal

Audio signal together with a video sequence is an integral part of the TV signal.

Inserting audio in the video signal requires knowledge of many different disciplines

like compression algorithms, multiplexing, standards for packetized data stream,

and algorithms for signal modulation. In the case of digital TV, the compression

algorithms have the main influence to the received signal quality. A system for

transmission of audio and video data is an iso-synchronized system. This means that

both transmitter and receiver use the data buffering to avoid asynchronous data.

Video and audio data from a channel form the elementary stream (ES). Multiple

program channels are combined such that the variable-length elementary stream is

packetized into the fixed length transport stream packets. A simplified block

diagram of this system is shown in Fig. 5.30.

The metadata provides the synchronization of audio and video data (the timing

reference). It should be noted that the stream of coded audio and video data is

packetized by using the PES (Packetized Elementary Stream) blocks, which have a

defined structure for both video and audio data. In video compression, the frames

are not included in the same order as they are generated, so that the video block

must contain a part that takes care of when the frame is played. The Transport

Stream (TS) is composed of the fixed length packets (188 bytes). The TS packet is

made of the header and the data. Multiplexer is an important part of the system,

because it combines data from various channels.
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5.8 Video Signal Processor

An example of a simple video processor (VCPex processor) is shown in Fig. 5.31.

The RISC is the major processor. The SRAM bus is used for lower bit rates, such

as the compressed data (audio and video). The DRAM bus is used for higher bit

rates, as it is the case with the uncompressed material. The RISC and VP6 processor

can be reprogrammed to support different coding standards. The VLE (variable-

length encoding) and VLD (variable-length decoding) are used to encode and

decode the signal.

Fig. 5.30 Transport stream multiplexing and demultiplexing

Fig. 5.31 Video Processor
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5.9 Examples

5.1. Determine the number of bits used to represent 16 pixels, by using the

following sampling schemes:

(a) 4:4:4

(b) 4:2:2

(c) 4:2:0

Solution:

(a) 4:4:4

We observe 4 blocks with 4 pixels, each having the three components (Y,

Cb, Cr)

4∙(4∙3∙8) b¼ 4∙96 b¼ 384 b or 16 pixel · 24 b/pixel¼ 384 b

(b) 4:2:2

According to this scheme, 2 out of 4 pixels within the observed block are

represented by using three components (Y, Cb, Cr), while the remaining

2 pixels contain just the luminance Y.

4∙(2∙3∙8 b) + 4∙(2∙1∙8 b)¼ 256 b or 16 pixel · 16b/pixel¼ 256 b

(c) 4:2:0

In this case only one pixel is represented with a full resolution (Y, Cb, Cr),

while the remaining 3 pixels contains the luminance components

Y. Hence, for the observed 16 pixels, we have:

4∙(1∙3∙8 b) + 4∙(3∙1∙8 b)¼ 192 b or 16 pixel · 12 b/pixel¼ 192 b

5.2. Determine the bit rate of the PAL video sequence for the CIF format and

sampling schemes:

(a) 4:4:4

(b) 4:2:2

(c) 4:2:0

Solution:

The CIF format resolution is 352� 288. Hence, we obtain the following bit

rates:

(a) 352∙288∙24∙25 b/s¼ 60825600 b/s¼ 60.8 Mb/s

(b) 352∙288∙16∙25 b/s¼ 40550400 b/s¼ 40.5 Mb/s

(c) 352∙288∙12∙25 b/s¼ 30412800 b/s¼ 30.4 Mb/s

5.3. How many minutes of the uncompressed video data in the CIF format with

sampling scheme 4:2:2 can be stored on a DVD (capacity 4.7 GB)? The PAL

system is assumed.

Solution:

t ¼ 4:7 � 10243 � 8 b

25 � 352 � 288 � 16 � 60 b=s
	 16:6 min
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5.4. Consider a 4� 4 block of pixels within a current frame and the 6� 6 region

cenetred at the same position in the reference frame. Determine the motion

vector by using the block matching technique based on the MSE assuming that

the motion vector is within the given 6� 6 block.

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

2 5 7 7 19 19

9 11 8 9 5 4

4 6 6 10 1 1

4 6 10 11 4 5

4 8 7 3 1 3

8 15 8 8 11 8

Solution:

The observed 4� 4 block is compared with the corresponding 4� 4 block

(within 6� 6 block) in the reference frame, centered at (0,0). The MSE is

calculated. Then, the procedure is repeated for eight positions around the

central one.

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE00$
11 8 9 5

6 6 10 1

6 10 11 4

8 7 3 1

MSE00¼ ((1� 11)2 + (4� 8)2 + (7� 9)2 + (6� 5)2 + (9� 6)2 + (11� 4)2 +

(8� 10)2 + (11� 1)2 + (4� 6)2 + (4� 10)2 + (6� 11)2 + (11� 4)2

+ (4� 8)2 + (4� 7)2 + (9� 3)2 + (12� 1)2)/16¼ 34.69

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE�10$
9 11 8 9

4 6 6 10

4 6 10 11

4 8 7 3

MSE�10¼ ((1� 9)2 + (4� 11)2 + (7� 8)2 + (6� 9)2 + (9� 4)2 + (11� 6)2 +

(8� 6)2 + (11� 10)2 + (4� 4)2 + (4� 6)2 + (6� 10)2 + (11� 11)2

+ (4� 4)2 + (4� 8)2 + (9� 7)2 + (12� 3)2)/16¼ 18.68

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE�11$
2 5 7 7

9 11 8 9

4 6 6 10

4 6 10 11

MSE�11¼ ((1� 2)2 + (4� 5)2 + (7� 7)2 + (6� 7)2 + (9� 9)2 + (11� 11)2 +

(8� 8)2 + (11� 9)2 + (4� 4)2 + (4� 6)2 + (6� 6)2 + (11� 10)2

+ (4� 4)2 + (4� 6)2 + (9� 10)2 + (12� 11)2)/16¼ 1.125
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1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE11$
7 7 19 19

8 9 5 4

6 10 1 1

10 11 4 5

MSE11¼ ((1� 7)2 + (4� 7)2 + (7� 19)2 + (6� 19)2 + (9� 8)2 + (11� 9)2 +

(8� 5)2 + (11� 4)2 + (4� 6)2 + (4� 10)2 + (6� 1)2 + (11� 1)2 +

(4� 10)2 + (4� 11)2 + (9� 4)2 + (12� 5)2)/16¼ 46.56

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE�1�1$
4 6 6 10

4 6 10 11

4 8 7 3

8 15 8 8

MSE�1�1¼ ((1� 4)2 + (4� 6)2 + (7� 6)2 + (6� 10)2 + (9� 4)2 + (11� 6)2 +-

(8� 10)2 + (11� 11)2 + (4� 4)2 + (4� 8)2 + (6� 7)2 + (11� 3)2-

+ (4� 8)2 + (4� 15)2 + (9� 8)2 + (12� 8)2)/16¼ 19.93

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE0�1$
6 6 10 11

6 10 11 4

8 7 3 1

15 8 8 11

MSE0�1¼ ((1� 6)2 + (4� 6)2 + (7� 10)2 + (6� 1)2 + (9� 6)2 + (11� 10)2 +

(8� 11)2 + (11� 4)2 + (4� 8)2 + (4� 7)2 + (6� 3)2 + (11� 1)2

+ (4� 15)2 + (4� 8)2 + (9� 8)2 + (12� 11)2)/16¼ 25.25

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE1�1$
6 10 1 1

10 11 4 5

7 3 1 3

8 8 11 8

MSE1�1¼ ((1� 6)2 + (4� 10)2 + (7� 1)2 + (6� 1)2 + (9� 10)2 + (11� 11)2 +

(8� 4)2 + (11� 5)2 + (4� 7)2 + (4� 3)2 + (6� 1)2 + (11� 3)2 +

(4� 8)2 + (4� 8)2 + (9� 11)2 + (12� 8)2)/16¼ 20.37

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE10$
8 9 5 4

6 10 1 1

10 11 4 5

7 3 1 3
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MSE10¼ ((1� 8)2 + (4� 9)2 + (7� 5)2 + (6� 4)2 + (9� 6)2 + (11� 10)2 +

(8� 1)2 + (11� 1)2 + (4� 10)2 + (4� 11)2 + (6� 4)2 + (11� 5)2 +

(4� 7)2 + (4� 3)2 + (9� 1)2 + (12� 3)2)/16¼ 32.56

1 4 7 6

9 11 8 11

4 4 6 11

4 4 9 12

MSE01$
5 7 7 19

11 8 9 5

6 6 10 1

6 10 11 4

MSE01¼ ((1� 5)2 + (4� 7)2 + (7� 7)2 + (6� 19)2 + (9� 11)2 + (11� 8)2 +

(8� 9)2 + (11� 5)2 + (4� 6)2 + (4� 6)2 + (6� 10)2 + (11� 1)2 +

(4� 6)2 + (4� 10)2 + (9� 11)2 + (12� 4)2)/16¼ 29.75

Since min(MSEnm)¼MSE�11, we may conclude that the position (�1,1)

represents the motion vector.

5.5. Consider a video sequence with N¼ 1200 frames. The frames are divided into

8� 8 blocks, in order to analyze the stationarity of the coefficients. We assume

that the stationary blocks do not vary significantly over the sequence duration.

The coefficients from the stationary blocks are transmitted only once (within

the first frame). The coefficients from the nonstationary blocks change signif-

icantly over time. In order to reduce the amount of data that will be sent, the

nonstationary coefficients are represented by using K Hermite coefficients,

where N/K¼ 1.4. Determine how many bits are required for encoding the

considered sequence and what is the compression factor? The original video

frames can be coded by using on average 256 bits per block.

Blocks statistics

Total number of frames 1200

Frame size 300� 450

Stationary blocks 40 %

Nonstationary blocks 60 %

Solution:

The stationary blocks are transmitted only for the first frame. Thus, the total

number of bits used to represent the coefficients from the stationary blocks is:

ns ¼ 40

100

300 � 450
64

� 256
� �

¼ 216 � 103b:

In the case of nonstationary blocks, we observe the sequences of coefficients

which are on the same position within different video frames. Hence, each

sequence having N¼ 1200 coefficients, is represented by using K Hermite
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coefficients, where N/K¼ 1.4 holds. The total number of bits used to encode

the coefficients from the nonstationary blocks is:

nn ¼ 1200 � K
N
� 60

100
� 300 � 450

64
� 256

� �� �
¼ 2:77 � 108 b:

The number of bits that is required for sequence coding is:

p ¼ 1200 � 300 � 450 � 4 ¼ 6:4 � 108 b:

The compression factor is: 6:4�108
216�103þ2:77�108 ¼ 2:33:

5.6. A part of the video sequence contains 126 frames in the JPEG format (Motion

JPEG—MJPEG format) and its total size is 1.38 MB. The frame resolution is

384� 288, while an average number of bits per 8� 8 block is B¼ 51.2.

Starting from the original sequence, the DCT blocks are classified into sta-

tionary S and nonstationary NS blocks. The number of the blocks are No{S}¼
1142 and No{NS}¼ 286. The coefficients from the S blocks are almost

constant over time and can be reconstructed from the first frame. The coeffi-

cients from the NS blocks are represented by using the Hermite coefficients.

Namely, the each sequence of 126 coefficients is represented by 70 Hermite

coefficients. Calculate the compression ratio between the algorithm based on

the blocks classification and Hermite expansion, and the MJPEG algorithm.

Solution:

A set of 126 frames in the JPEG format requires No Sf g � B � 126 bits for

stationary and No NSf g � B � 126 bits for nonstationary blocks. In other words,

the total number of bits for the original sequence in the MJPEG format is:

No Sf g � B � 126þ No NSf g � B � 126 ¼
1142þ 286ð Þ � 51:2 � 126 ¼ 9:21 � 106 b

The algorithm based on the classification of blocks will encode the station-

ary blocks from the first frame only: No Sf g � B.
For nonstationary blocks, instead of 126 coefficients over time, it uses

70 Hermite coefficients, with the required number of bits equal to:

No NSf g � N � B.
The total number of bits for stationary and nonstationary blocks is:

No Sf g � Bþ No NSf g � N � B ¼ 1142 � 51:2þ 286 � 70 � 51:2 ¼ 1:083 � 106 b

In this example, the achieved compression factor is approximately 8.5

times.
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5.7. Consider the H.264 quantization procedure. For QP¼ 4 determine the multi-

plication factor MF for the position (0,2).

Solution:

Qstep¼ 1.0

(i,j)¼ (0,2), SF¼ a2¼ 0.25

qbits¼ 15, hence 2qbits¼ 32768

hence, MF¼ (32768� 0.25)/1¼ 8192

5.8. Consider an image block B (4� 4) and a given quantization parameter QP¼ 9

(H.264 algorithm is considered). Calculate the integer transform X, the mul-

tiplication factors MF for each (i,j), i¼ {0,. . .,3} and j¼ {0,. . .,3}. Further,
calculate the rescaling factor V for the inverse quantization for each position

(i,j) and the rescaled transform X0 and the output block of pixels B0.

B ¼
i ¼ 0

1

2

3

11 14 18 11

9 10 14 11

1 4 8 1

14 18 19 17

2
664

3
775

j ¼ 0 1 2 3

Solution:

X ¼ HBHT ;

where H is defined by Eq. (5.8). The resulting transform matrix X (non-scaled

version or the core transform) is given by:

X ¼
i ¼ 0

1

2

3

180 �23 �30 21

2 2 �2 16

64 1 �2 �7

�74 11 �16 13

2
664

3
775

j ¼ 0 1 2 3

The multiplication factors for each of the positions (i,j) are given by the

following matrix (the values can be found in Table 5.2 forQP corresponding to

mod(QP,6)¼ 3):

MF ¼
i ¼ 0

1

2

3

9363 5825 9363 5825

5825 3647 5825 3647

9363 5825 9363 5825

5825 3647 5825 3647

2
664

3
775

j ¼ 0 1 2 3

:
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The quantized and scaled coefficients are calculated as:

Z ¼ round X�MF

216

� �
;

where� denotes multiplication of elements on the same positions (i,j), and:

X�MF

216
¼

25:7135 �2:0443 �4:2856 1:8665
0:1778 0:1113 �0:1778 0:8904
9:1426 0:0889 �0:2857 �0:6222

� 6:5773 0:6121 �1:4221 0:7234

2
664

3
775:

The quantized and scaled coefficients are obtained as follows:

Z ¼
26 � 2 � 4 2

0 0 0 1

9 0 0 � 1

�7 1 � 1 1

2
664

3
775:

The rescaling factors V(i,j) for the inverse quantization for QP¼ 9 has the

following values obtained from Table 5.3 (use the row corresponding to mod

(QP,6)¼ 3):

V ¼
14 18 14 18

18 23 18 23

14 18 14 18

18 23 18 23

2
664

3
775:

Prior to the inverse transform the coefficients needs to be rescaled using the

rescaling factors V(i,j) multiplied by 2floor(QP/6)¼ 2:

X0 ¼ 2Z� V ¼
728 � 72 � 112 72

0 0 0 46

252 0 0 � 36

� 252 46 � 36 46

2
664

3
775:

Then the inverse transform is applied as follows:

B0 ¼ H�1
� �T

X0H�1;
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while the block pixels are obtained after the post-scaling by 64:

B00 ¼ round B0=64ð Þ ¼
11 13 17 10

9 10 15 8

2 4 8 0

15 17 20 14

2
664

3
775:

Appendix

Table 5.7 Coeff-Token coding (TrailingOnes-TO, Total number of nonzero coefficients is

numCoeff)

Table 1 Table 2 Table 3 Table 4

TO TotalCoeff 0� nC< 2 2� nC< 4 4� nC< 8 8� nC

0 0 1 11 1111 000011

0 1 000101 001011 001111 000000

0 2 00000111 000111 001011 000100

0 3 000000111 0000111 001000 001000

0 4 0000000111 00000111 0001111 001100

0 5 00000000111 00000100 0001011 010000

0 6 0000000001111 000000111 0001001 010100

0 7 0000000001011 00000001111 0001000 011000

0 8 0000000001000 00000001011 00001111 011100

0 9 00000000001111 000000001111 00001011 100000

0 10 00000000001011 000000001011 000001111 100100

0 11 000000000001111 000000001000 000001011 101000

0 12 000000000001011 0000000001111 000001000 101100

0 13 0000000000001111 0000000001011 0000001101 110000

0 14 0000000000001011 0000000000111 0000001001 110100

0 15 0000000000000111 00000000001001 0000000101 111000

0 16 0000000000000100 00000000000111 0000000001 111100

1 1 01 10 1110 000001

1 2 000100 00111 01111 000101

1 3 00000110 001010 01100 001001

1 4 000000110 000110 01010 001101

1 5 0000000110 0000110 01000 010001

1 6 00000000110 00000110 001110 010101

1 7 0000000001110 000000110 001010 011001

1 8 0000000001010 00000001110 0001110 011101

1 9 00000000001110 00000001010 00001110 100001

1 10 00000000001010 000000001110 00001010 100101

1 11 000000000001110 000000001010 000001110 101001

1 12 000000000001010 0000000001110 000001010 101101

1 13 000000000000001 0000000001010 000000111 110001

(continued)
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Chapter 6

Compressive Sensing

In the era of digital technology expansion, the acquisition/sensing devices are

producing a large amount of data that need to be stored, processed, or transmitted.

This is a common issue in sensing systems dealing with multimedia signals,

medical and biomedical data, radar signals, etc. The required amount of digital

information given as the number of digital samples, measurements or observations

per time unit is defined by the fundamental theorem in the communications which

has been known as the Shannon–Nyquist sampling theorem. Accordingly, a signal

can be reconstructed if the sampling frequency is at least twice higher than the

maximal signal frequency (2fmax). Obviously the sampling procedure results in a

large number of samples for signals with considerably high maximal frequency.

Until recently, the signal acquisition process in the real applications was mainly

done according to the sampling theorem and then, in order to respond to the storage,

transmission, and computational challenges, the data are compressed up to the

acceptable quality by applying complex and demanding algorithms for data com-

pression. As discussed in the previous chapters, the lossy compression algorithms

are mainly based on the fact that signals actually contain a large amount of

redundant information not needed for perceiving good signal quality. For lossy

compression, we used two basic assumptions: the imperfection of human percep-

tion (sense), and the specific signals properties in a certain transform domain. For

instance, in the case of images, a large energy compaction in the low-frequency

region is achieved by using the DCT transform. Hence, a large number of coeffi-

cients can be omitted without introducing visible image quality degradation. In

summary, this means that the entire information is firstly sensed and then most of it

is thrown away through compression process, which seems to be a waste of

resources. The data acquisition process has still remained demanding in terms of

resources (e.g., sensors technology) and acquisition time. The question is whether it

is possible to significantly reduce the amount of data during the acquisition process?

Is it always necessary to sample the signals according to the Shannon–Nyquist

criterion?
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In recent years, the compressive sensing approaches have been intensively

developed to overcome the limits of traditional sampling theory by applying a

concept of compression during the sensing procedure. Compressive sensing aims to

provide the possibility to acquire much smaller amount of data, but still achieving

the same quality (or almost the same) of the final representation as if the physical

phenomenon is sensed according to the conventional sampling theory. In that sense,

significant efforts have been done toward the development of methods that would

allow to sample data in the compressed form using much lower number of samples.

Compressive sensing opens the possibility to simplify very expensive devices and

apparatus for data recording, imaging, sensing (for instance MRI scanners, PET

scanners for computed tomography, high-resolution cameras, etc.). Furthermore,

the data acquisition time can be significantly reduced, and in some applications

even to almost 10 or 20 % of the current needs.

The compressive sensing theory states that the signal can be reconstructed using

just a small set of randomly acquired samples if it has a sparse (concise) represen-

tation in a certain transform domain. Sparsity means that the signal, in certain

domain (usually transform domain), can be represented with small number of

nonzero samples, which implies its compressibility, decreasing numerical compu-

tations and memory usage. Another important condition, apart from the signal

sparsity, is incoherence between the measurement matrix and the sparsity basis.

Higher incoherence will allow fewer measurements to be used for successful signal

reconstruction.

Compressive sensing is a field dealing with the above problem of interest and

provides a solution that differs from the classical signal theory (Fig. 6.1). If the

samples acquisition process is linear, than the problem of data reconstruction from

Fig. 6.1 A classical approach for signal sampling and its compressive sensing alternative
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acquired measurements can be done by solving a linear system of equations.

Assume that a measurement process can be modelled by the measurement

matrix Φ. Hence, the linear measurement process of certain signal f with

N samples can be represented as a signal reconstruction problem using a set of

M measurements obtained by the measurement matrix Φ as follows:

Φ f ¼ y; ð6:1Þ

where y represents the acquired measurements.

Note that that in the traditional sampling systems, the number of measurements

M is set to be at least as large as the signal length N. However, compressive sensing

systems allows us to selects M measurements in a random manner, and to recon-

struct the signal even though the number of measurement can be much smaller than

the signal length, M<<N. Hence, it is necessary to reconstruct the original signal

by using just a small set of samples. Recall that the sparsity is one of the main

requirements that should be satisfied, in order to efficiently perform the signal

reconstruction. In compressive sensing, the full signal reconstruction is actually

formulated as a problem of solving undetermined system of linear equations using

sparsity constraint. Properly chosen basis can provide a sparse signal representa-

tion. If the signal is not sparse, then it cannot be accurately reconstructed from

compressive measurements.

Compressive sensing is based on powerful mathematical algorithms for error

minimization. There are several standard algorithms that are commonly employed

for this purpose. For instance, the constrained ‘1-norm minimization has been used

as one of the first approaches for finding the sparse solutions and it is known as basis

pursuit. Alternative approaches are called greedy algorithms and among them the

most popular is the iterative orthogonal matching pursuit (with a variety of mod-

ifications). In this chapter, the focus is made on different reconstruction algorithms

and its applications to multimedia signals. Here, we also mention the construction

of a linear measurement process. It is defined as a problem of designing a mea-

surement matrix, which would be adequate and optimal for the observed compres-

sive sensing scenario. In most compressive sensing applications, the commonly

used are random matrices such as the Gaussian matrix, with random variables

distributed according to the normal distribution, and Bernoulli matrices with ran-

dom variables þ1 and �1 having equal probability of appearing. Also, partial

random Fourier transform matrices, as well as partial random Toeplitz and circular

matrices have been widely used.

6.1 The Compressive Sensing Requirements

6.1.1 Sparsity Property

Sparsity means that the signal in a transform domain contains only a small number

of nonzero coefficients comparing to the signal length. Most of the real signals can
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be considered as sparse or almost sparse if they are represented in the proper basis.

The signal f(n) with N samples can be represented as a linear combination of the

orthonormal basis vectors:

f nð Þ ¼
XN
i¼1

xiψ i nð Þ, or : f¼Ψx: ð6:2Þ

Now we can firstly define the support of vector x as the set of positions having

non-zero entries:

supp xð Þ¼ n 2 1; . . . ;Nð Þ x nð Þ 6¼ 0jf g: ð6:3Þ

If the number of nonzero coefficients in x is K<<N, i.e., card supp xð Þf g � K, then
we can say that the signal is sparse with the sparsity level (index) K.

The advantages of signal sparsity have been exploited in compression algo-

rithms: coding is done for the K most significant coefficients in the transform

domain. Namely, the signals in real applications are approximately sparse (not

strictly sparse), meaning that the remaining N�K coefficients are negligible and

can be considered as zeros. Note that different basis can be used, such as: the

Fourier basis (DFT), the DCT basis, the wavelet basis, etc.

In compressive sensing theory, the sparsity property is usually written by using

the ‘0-norm, defined as the number of nonzero elements in a certain vector:

xk k
0
¼ card supp xð Þf g � K; ð6:4Þ

where xk k0 ¼ lim p!0 xk k p
p ¼ lim p!0

XN
n¼1

x nð Þj j p ¼
XN

n¼1; x nð Þ6¼0
1 ¼ K.

Now, we can summarize the assumptions we have introduced so far (Fig. 6.2):

– The set of random measurements are selected from the signal f (N� 1), which

can be written by using the random measurement matrix Φ (M�N ) as follows:

y¼Φ f: ð6:5Þ

– In order to reconstruct f from y, the transform domain representation of

f (defined by the orthogonal basis matrix Ψ (N�N )), should be sparse:

f¼Ψx, where xk k0 � K, K � N: ð6:6Þ

Using Eqs. (6.5) and (6.6) we have:

y¼ΦΨx ¼ Ax: ð6:7Þ

Now, we may observe that the measurements vector is M samples long and

the matrix A is of size (M�N ). Thus, we have M linear equations with
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N unknowns in x. Hence, the system is undetermined and may have infinitely many

solutions. However, there is an important fact we know about x and that is the

sparsity property.

Hence, most of the entries in x are zeros, and consequently, we need to determine

only the non-zero components. It will reduce the problem dimension.

Let us observe the systems from Eqs. (6.6) and (6.7) in a matrix form. The signal

f can be represented using a transform domain vector x in a basis Ψ as follows:

ð6:8Þ

However due to the compressive sensing process we will miss some of the signal

values, for example those marked in red, and this can be modelled using the

multiplication with a measurement matrix. Now the measurement vector can be

represented in matrix form (compliant with Eq. (6.7)) as follows:

Fig. 6.2 An illustration of the compressive sensing concept (white fields represent zero values)
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y 1ð Þ
. . .
y jð Þ
. . .
y Mð Þ

266664
377775

|fflfflfflffl{zfflfflfflffl}
y

¼

f 2ð Þ
. . .
f ið Þ
. . .
f Nð Þ

266664
377775¼

ψ2,1 ψ2,2 ψ2,3 . . . ψ2,i�1 ψ2,i . . . ψ2,N

. . . . . . . . .
ψ i,1 ψ i,2 ψ i,3 . . . ψ i,i�1 ψ i,i . . . ψ i,N

. . . . . . . . .
ψN,1 ψN,2 ψN,3 . . . ψN,i�1 ψN,i . . . ψN,N

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x 1ð Þ
x 2ð Þ
x 3ð Þ
. . .
x i�1ð Þ
x ið Þ
. . .
x Nð Þ

266666666664

377777777775
|fflfflfflfflffl{zfflfflfflfflffl}

x

ð6:9Þ

Note that the matrix A is obtained as a partial random transform matrix, by keeping

only the rows of Ψ that correspond to the positions of measurements. If we use the

notation with bothΦ andΨmatrices, thenΦ should be modelled as a matrix of size

M�N having only one entry per row equal to 1 at the position of available

measurements, and zeros otherwise:

A ¼

0 1 0 . . . 0 0 . . . 0

. . . . . . . . .
0 0 0 . . . 0 1 . . . 0

. . . . . . . . .
0 0 0 . . . 0 0 . . . 1

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Φ

�

ψ1,1 ψ1,2 ψ1,3 . . . ψ1, i�1 ψ1, i . . . ψ1,N

ψ2,1 ψ2,2 ψ2:3 . . . ψ2, i�1 ψ2, i . . . ψ2,N

ψ3,1 ψ3,2 ψ3,3 . . . ψ3, i�1 ψ3, i . . . ψ3,N

. . . . . . . . .
ψ i�1,1 ψ i�1,2 ψ i�1,3 . . . ψ i�1, i�1 ψ i�1, i . . . ψ i�1,N
ψ i, 1 ψ i, 2 ψ i, 3 . . . ψ i, i�1 ψ i, i . . . ψ i,N

. . . . . . . . .
ψN, 1 ψN, 2 ψN, 3 . . . ψN, i�1 ψN, i . . . ψN,N

266666666664

377777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ψ

In order to generalize the notations, we use the set of available samples given by the

indices: NM ¼ n1; n2; . . . ; nMf g, and then we can write:

y 1ð Þ
. . .
y jð Þ
. . .
y Mð Þ

266664
377775

|fflfflfflffl{zfflfflfflffl}
y

¼

ψn1, 1 ψn1, 2 ψn1, 3 . . . ψn1, i�1 ψn1, i . . . ψn1,N

. . . . . . . . .
ψni, 1 ψni, 2 ψni, 3 . . . ψni, i�1 ψni, i . . . ψni,N

. . . . . . . . .
ψnM , 1 ψnM , 2 ψnM , 3 . . . ψnM , i�1 ψnM, i . . . ψnM ,N

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x 1ð Þ
. . .
x i�1ð Þ
x ið Þ
. . .
x Nð Þ

26666664

37777775
|fflfflfflfflffl{zfflfflfflfflffl}

x

:

ð6:10Þ
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The measurement procedure and the measurement matrix should be properly

created to provide the reconstruction of signal f (of length N ) by using M<<N
measurements. The reconstructed signal is obtained as a solution of M linear

equations with N unknowns. Having in mind that this system is undetermined and

can have infinitely many solutions, the optimization based mathematical algorithms

should be used to search for the sparsest solution, consistent with the linear

measurements.

Consider a simplified case when a signal has three possible values in the

transform domain vector x: x(1), x(2), x(3) (for N¼ 3). Also, we assume that x is

sparse with K¼ 1 component, meaning that only one coefficient is nonzero:

x(1)¼ 0, x(2) 6¼ 0, x(3)¼ 0. Now, in the case when we have only one measurement,

there is only one equation:

y 1ð Þ ¼ ψn1, 1
ψn1, 2 ψn1, 3

� � x 1ð Þ
x 2ð Þ
x 3ð Þ

24 35: ð6:11Þ

The measurement y 1ð Þ ¼ x 1ð Þψn1, 1 þ x 2ð Þψn1, 2 þ x 3ð Þψn1, 3 represents the three-

dimensional plane, which has three intersection points with the coordinate axis,

meaning that we have three different solutions. Consequently, we need to include

more measurements (equations) to obtain the unique solution of the problem. Now,

we observe the system obtained for two measurements y(1) and y(2):

y 1ð Þ
y 2ð Þ

� �
¼ ψn1, 1 ψn1, 2 ψn1, 3

ψn2, 1 ψn2, 2 ψn2, 3

� � x 1ð Þ
x 2ð Þ
x 3ð Þ

24 35; ð6:12Þ

or equivalently,

plane A : y 1ð Þ ¼ x 1ð Þψn1, 1 þ x 2ð Þψn1, 2 þ x 3ð Þψn1, 3

planeB : y 2ð Þ ¼ x 1ð Þψn2, 1 þ x 2ð Þψn2, 2 þ x 3ð Þψn2, 3

: ð6:13Þ

In this case, we have two planes A and B (Fig. 6.3). The intersection of the planes is

line p. If p intersects with only one coordinate axis in only one point then this is the
unique solution of the problem. In other words, the direction vector of p does not

have any zero coordinate.

Next, we discuss a few additional interesting cases. For instance, if p intersects

with two coordinate axes (p lies in one of the coordinate planes), then there will be

two possible solutions. Hence, the two planes are not sufficient to find the unique

solution. If p belongs to one of the axes, the solution cannot be determined.

The direction vector of p is normal to the vectors of the planes A and B. The

coordinates of the direction vector of p are:
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~d ¼ d1; d2; d3ð Þ ¼
~i ~j ~k

ψn1, 1 ψn1, 2 ψn1, 3

ψn2, 1 ψn2, 2 ψn2, 3

������
������

where,

d1 ¼ ψn1, 2ψn2, 3 � ψn1, 3ψn2, 2,

d2 ¼ ψn1, 1ψn2, 3 � ψn1, 3ψn2, 1,

d3 ¼ ψn1, 1ψn2, 2 � ψn1, 2ψn2, 1:
ð6:14Þ

For K¼ 1, the solution is unique if:

min d1j j; d2j j; d3j jf g > 0; ð6:15Þ

meaning that p does not belong to any of the coordinate planes.

6.1.2 Restricted Isometry Property

There are two important conditions that should be met in order to achieve success-

ful reconstruction for a wider range of sparsity level. One is the Restricted Isometry

Property (RIP). For a proper isometry constant, RIP ensures that any subset of

columns in A with cardinality less than sparsity level K, is nearly orthogonal. This

results in better guarantees for the successful signal reconstruction from small set of

measurements. Another condition is a small mutual coherence between the mea-

surement matrix and the transform representation matrix (incoherence property).

The two conditions will be analyzed in the sequel.

A matrix A satisfies the isometry property if it preserves the vector intensity in

the N-dimensional space:

x(1)

x(2)

x(3)

p

A

B

Fig. 6.3 An illustration of

the two planes A and B,

intersection line p, and the

common point on the

coordinate axis
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Axk k2
2
¼ xk k2

2
: ð6:16Þ

For instance in the case when A is the full Fourier transform matrix:

A ¼ NΨ, we can write:

N Ψxk k2
2
¼ xk k2

2
; ð6:17Þ

which corresponds to the Parseval’s theorem in the Fourier domain analysis stating

that the total energy of signal calculated over all time instants is equal to the total

energy of its Fourier transform calculated over all frequency components (the

unitary property of the Fourier transform). The relation Eq. (6.17) can be also

written as:

N Ψxk k2
2
� xk k2

2

xk k2
2

¼ 0: ð6:18Þ

Now, we can also define the restricted isometry property of certain matrix A, where

Awill refer to the compressive sensing matrix (of sizeM�N,M<N) in the sequel.

For each integer number K (representing the sparsity index), the isometry constant

δK of the matrix A is the smallest number for which the relation:

1� δKð Þ xk k2
2
� Axk k2

2
� 1þ δKð Þ xk k2

2
; ð6:19Þ

holds for all K-sparse vectors, where A¼ΦΨ. Equivalently, the restricted isometry

property can be rewritten as:

Axk k2
2
� xk k2

2

xk k2
2

�����
����� � δK; ð6:20Þ

where 0 < δK < 1 is the restricted isometry constant. Note that for the restricted

isometry constants holds:

δ1 � δ2 � : :: � δK � . . . � δN: ð6:21Þ

If the matrix A satisfies RIP we may say that it acts as a near-isometry on sparse

vectors and approximately preserves the Euclidian length of sparse vectors. Hence,

for the RIP matrix A with (2K, δK) and δK< 1 we can say that all subsets of 2K
columns are linearly independent. In other words:

spark Að Þ > 2K; ð6:22Þ
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where spark represents the smallest number of dependent columns, and

spark Að Þ � rank Að Þ þ 1. For the matrix A of size M�N (M columns, N rows)

we can write:

2 � spark Að Þ � M þ 1: ð6:23Þ

Only in the case when one of the columns has all zero values, then spark Að Þ ¼ 1. If

there are no dependent columns: spark Að Þ ¼ M þ 1. Then according to Eq. (6.22):

K <
1

2
spark Að Þ � 1

2
M þ 1ð Þ: ð6:24Þ

It means that the number of measurements should be at least twice the number of

components K: M � 2K, which can be proven on a previous simple example: two

measurements y¼ [y(1)y(2)]
T, N¼ 3 and x¼ [x(1)x(2) . . . x(N )]

T¼ [x(1)x(2)x(3)]
T. Then

the observed system of equations y¼Ax can be written as:

y 1ð Þ
y 2ð Þ

� �
¼ An1, 1 An1, 2 An1, 3

An2, 1 An2, 2 An2, 3

� � x 1ð Þ
x 2ð Þ
x 3ð Þ

24 35;
where A can be random partial Fourier matrix as discussed before (or any other

compressive sensing matrix):

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

� �
¼ ψn1, 1 ψn1, 2 ψn1, 3

ψn2, 1 ψn2, 2 ψn2, 3

� �
:

If every pair of columns in A is independent, i.e.,

A1,1A2,2 � A2,1A1,2 6¼ 0

A1,2A2,3 � A2,2A1,3 6¼ 0

A1,1A2,3 � A2,1A1,3 6¼ 0

ψn1, 1ψn2, 2 � ψn2, 1ψn1, 2 6¼ 0

ψn1, 2ψn2, 3 � ψn2, 2ψn1, 3 6¼ 0

ψn1, 1ψn2, 3 � ψn2, 1ψn1, 3 6¼ 0

and there are no zero columns, then we can conclude:

spark Að Þ ¼ 3;

meaning that the signal can be recovered if K < 3
2
¼ 1 (since spark Að Þ > 2K

according to Eq. (6.22)).

The RIP property has been used to establish sufficient conditions for sparse

signal recovery. For instance, for any sparse vector x, the exact recovery is possible
by the ‘1-minimization, if the CS matrix satisfies the RIP of order 2K with

δ2K< 0.414 (or even for δ2K< 0.465). Namely, if δ2K< 1 then the ‘0-minimization

has a unique solution with sparsity index K, while if δ2K< 0.414 the solution of the

‘1-minimization problem corresponds exactly to the solution of ‘0-minimization

problem.
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Finally, the RIP has been established for some commonly used matrices in

compressive sensing such as random Gaussian, Bernoulli, and partial random

Fourier matrices. Generally, for random matrices, the columns are linearly inde-

pendent, i.e., spark Að Þ ¼ M þ 1 with high probability.

6.1.2.1 Restricted Isometry Property of Some Common Matrices

The commonly used measurement matrices that satisfy the RIP include random

Gaussian, Bernoulli, partial random Fourier matrices, etc. Each type of measure-

ment matrix has a different lower bound for the number of measurements. Hence, in

the case of Gaussian and Bernoulli random matrix with zero mean and variance

1/M, the lower bound:

M � C � K � log N=Kð Þ; ð6:25Þ

is achievable and can guarantee the exact reconstruction of x with overwhelming

probability (C is a positive constant). The same condition can be applied to binary

matrices with independent entries taking values �1= ffiffiffiffiffi
M
p

. As another example,

consider the partial random Fourier matrix obtained by selecting M normalized

rows from full DFT matrix. The lower bound of M will be:

M � CK logNð Þ4 : ð6:26Þ

In the case of general orthogonal matrix A obtained by randomly selecting M rows

from N�N orthonormal matrix and renormalizing the columns so that they are

unit-normed, the lower bound is given by:

M � CμK logNð Þ6 : ð6:27Þ

The recovery condition depends on the mutual coherence denoted by μ, which
measures the similarity between Φ and Ψ, and is further discussed below.

6.1.3 Incoherence

The incoherence is an important condition that matrices Ψ and Φ should satisfy to

make compressive sensing possible. It is related to the property that signals, having

sparse representation in the transform domain Ψ, should be dense in the domain

where the acquisition is performed (e.g., time domain). For instance, it is well-know

that the signal, represented by the Dirac pulse in one domain, is spread in an another

(inverse) domain. Hence, the compressive sensing approach assumes that a signal is

acquired in the domain where it is rich of samples, so that by using random

sampling we can collect enough information about the signal.

6.1 The Compressive Sensing Requirements 295



The relation between the number of nonzero samples in the transform domainΨ
and the number of measurements (required to reconstruct the signal) depends on the

coherence between the matrices Ψ and Φ. For example, if Ψ and Φ are maximally

coherent, then all coefficients would be required for signal reconstruction. The

matrices Φ and Ψ are incoherent if the rows of Φ are spread out in the domain Ψ
(rows of Φ cannot provide sparse representation of the columns of Ψ, and vice

versa). The mutual coherence between two matrices Ψ and Φ measures the

maximal absolute value of correlation between two elements from Ψ and Φ, and

it is defined as1:

μ Φ;Ψð Þ ¼ max
i 6¼ j

ϕi;ψ j

	 

ϕik k2 ψ j

�� ��2
�����

�����; ð6:28Þ

where ϕi and ψ j are rows of Φ and columns of Ψ, respectively.

Since, A¼ΦΨ, the mutual coherence can be also defined as the maximum

absolute value of normalized inner product between all columns in A:

μ Að Þ ¼ max
i6¼ j, 1�i, j�M

Ai;A j

	 

Aik k2 A j

�� ��2
�����

�����; ð6:29Þ

where Ai and Aj denote columns of matrix A. The maximal mutual coherence will

have the value 1 in the case when certain pair of columns coincides.

Proposition If the matrix A has ‘2-normalized columns A0,. . .,AN�1 or equiva-

lently Ank k22 ¼ 1 for all columns then2:

δK ¼ K � 1ð Þμ:

1 Depending whether the elements of matrices are normalized or not, different forms of the

coherence can be found in the literature.
2Proof:

Axk k22 ¼
XN�1
k¼0

x kð ÞA1,k

�����
�����
2

þ . . .þ
XN�1
k¼0

x kð ÞAM,k

�����
�����
2

¼
XN�1
k1¼0

x k1ð ÞA1,k1

XN�1
k2¼0

x* k2ð ÞA*
1,k2
þ . . .þ

XN�1
k1¼0

x k1ð ÞAM,k1

XN�1
k2¼0

x* k2ð ÞA*
M,k2

¼
XM
i¼1

XN�1
k1¼0

x k1ð Þj j2 Ai,k1j j2 þ
XN�2
k1¼0

XN�1
k2¼k1þ1

2Re x k1ð Þx* k2ð Þf g
XM
i¼1

Ai,k1A
*
i,k2
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The coherence of a matrix A of sizeM�Nwith ‘2-normalized columns satisfies:

μ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N �M

M N � 1ð Þ

s
; ð6:30Þ

that represents a fundamental lower bound called Welch bound. Therefore we have:

μ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N�M

M N�1ð Þ
q

; 1
h i

. Note that for large N, μ � 1=
ffiffiffiffiffi
M
p

. For proving this lower bound,

we start from two matrices derived from A:

G¼A*A (of size N�N ), and H¼AA* (of size M�M ),

where A* denotes conjugate transpose of A.

Axk k22 ¼ x 0ð Þj j2
XM
i¼1

Ai, 0j j2 þ . . .þ x N � 1ð Þj j2
XM
i¼1

Ai,N�1j j2

þ
XN�2
k1¼0

XN�1
k2¼k1þ1

2Re x k1ð Þx* k2ð Þf g
XM
i¼1

Ai,k1A
*
i,k2

Axk k22 <
XN�1
k1¼0

x k1ð Þj j2 þ
XN�2
k1¼0

XN�1
k2¼k1þ1

2 x k1ð Þx* k2ð Þj jμ k1; k2ð Þ

Here, we have used the condition:
PM
i¼1
jAi, 0j2 ¼ � � � ¼

PM
i¼1
jAi,N�1j2 ¼k An k22ðn¼0, ...,N�1Þ¼ 1.

The previous relation can be rewritten as follows:

k Ax k22 � k x k22
k x k22

<
XN�2
k1¼0

XN�1
k2¼k1þ1

2jxðk1Þx∗ðk2Þjμðk1, k2Þ
k x k22

δ ¼ 2μmax
XN�2
k1¼0

XN�1
k2¼k1þ1

jxðk1Þx∗ðk2Þj
k x k22

( )
:

Assuming that we have K components in x:x ¼ x k p1

� 
, . . . , x k pK

� � �
, the RIP constant δK can

be derived as follows:

δK ¼ μmax
2fjxðk p1 Þjjxðk p2 Þj þ jxðk p1 Þjjxðk p3 Þj þ :::þ jxðk pK�1 Þjjxðk pK Þjg

jxðk p1 Þj2 þ jxðk p2 Þj2 þ � � � þ jxðk pK Þj2
( )

¼ μmax

�
jxðk p1 Þj þ jxðk p2 Þj þ � � � þ jxðk pK Þj

�2
jxðk p1 Þj2 þ jxðk p2 Þj2 þ � � � þ jxðk pK Þj2

� 1

8><>:
9>=>;

¼ μ
K2jxðk pÞj2
Kjxðk pÞj2

� 1

( )
for jxðk p1 Þj ¼ � � � ¼ jxðk pK Þj

Finally, we can say that: δK ¼ μ K � 1ð Þ.
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Then the trace of matrix G and matrix H is used:

tr Gð Þ ¼
XN
i¼1

Aik k22 ¼ N and tr Hð Þ ¼ tr Gð Þ: ð6:31Þ

Furthermore, the following inequality holds:

tr Hð Þ �
ffiffiffiffiffi
M
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr GG*
� q

;

or equivalently, trðGÞ � ffiffiffiffiffi
M
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðGG∗Þ
p

,

which leads to:

N � ffiffiffiffiffi
M
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

XN
j¼1

Ai;A j

	 
� 2vuut ,

N2 � M
XN
i¼1

Aið Þ2 þ
XN
i¼1

XN
j¼1, j6¼i

Ai;A j

	 
� 2 !
:

ð6:32Þ

The ‘2-normalized columns of A are denoted as Ai and Aj. Since Ai;A j

	 
 � μ and

there are N2�N of such terms, we obtain:

N2 � M
�
N þ ðN2 � NÞμ2

��
: ð6:33Þ

Therefore, from Eq. (6.33) follows:

μ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � N

M N � 1ð Þ

s
: ð6:34Þ

If the number of measurements M is of order:

M � C � K � μ Φ;Ψð Þ � logN; ð6:35Þ

then the sparsest solution is exact with a high probability (C is a constant). It is

assumed that the original signal f 2 ℝN is K-sparse in Ψ. Lower the coherence

betweenΦ andΨ, a smaller number of random measurements is required for signal

reconstruction.

6.2 Signal Reconstruction Approaches

The main challenge of the CS reconstruction is to solve an underdetermined system

of linear equations using sparsity assumption. However, it has been shown that in

the case of CS matrices that satisfy RIP, instead of ‘0-minimization problem, it is
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much easier to use the ‘1-optimization based on linear programming methods to

provide signal reconstruction with high accuracy. Due to their complexity, the

linear programming techniques are not always suitable in practical applications,

and thus, many alternative approaches have been proposed in the literature, includ-

ing the greedy and threshold based algorithms.

Before we start describing some commonly used signal reconstruction algo-

rithms, we will observe one simplified case of the direct search method for the

reconstruction of missing signal samples.

6.2.1 Direct (Exhaustive) Search Method

A simple and intuitive approach based on a direct parameter search is considered to

provide a better insight into the problem of recovering missing data by exploiting

the sparsity property. Let assume that the original vector with 20 entries (original

signal samples) is given below:

f¼ [0, 0.5878, 0.9511, 0.9511, 0.5878, 0, �0.5878, �0.9511, �0.9511,
�0.5878, 0, 0.5878, 0.9511, 0.9511, 0.5878, 0, �0.5878, �0.9511,
�0.9511, �0.5878];

Now, assume that we have a vector of measurements y with two missing samples

compared to the original vector f, and the 7th and the 19th samples are missing. Hence:

y¼ [0, 0.5878, 0.9511, 0.9511, 0.5878, 0, �0.9511, �0.9511, �0.5878,
0, 0.5878, 0.9511, 0.9511, 0.5878, 0, �0.5878, �0.9511, �0.5878];

Furthermore, let us use the Fourier transform domain as a domain of signal

sparsity (the samples in f belongs to a single sinusoidal signal producing two

symmetric components in the Fourier domain). It means that the matrix A will be

partial random Fourier transform matrix Ψ obtained by omitting the 7th and the

19th row of the full Fourier transform matrix. The signal with missing samples is

plotted in Fig. 6.4a, while the corresponding Fourier transform, which is referred to

as the initial Fourier transform, is plotted in Fig. 6.4b. Note that the omitted rows in

the Fourier transform matrix produce the same result as if zeros are inserted at the

Fig. 6.4 (a) Time domain samples (missing samples are marked by red star), (b) Fourier

transform vector for the case when two measurements are missing
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positions of missing samples. It is obvious that the initial transform vector is not

sparse, due to the effects caused by missing samples. These effects are analyzed

later in this chapter.

If we search for missing samples by a direct exhaustive search method taking:

a¼�1:0.0001:1 and b¼�1:0.0001:1.
f¼ [0, 0.5878, 0.9511, 0.9511, 0.5878, 0, a, �0.9511, �0.9511, �0.5878,

0, 0.5878, 0.9511, 0.9511, 0.5878, 0, �0.5878, �0.9511, b, �0.5878];
we would obtain the exact samples as a pair of values from a and b that provides the

sparsest solution, i.e., the solution with the lowest number of non-zero components

in the Fourier transform vector (Fig. 6.5).

In this case, for given ranges of a and b, the number of search iterations is

approximately 108. If one additional sample is missing and the search is performed

in the same range, we would needmore than 1012 iterations. It is obvious that for larger

number of missing samples this procedure would be computationally exhaustive and

impossible. In practice, we cannot use the direct search method to reconstruct missing

information, but much more sophisticated reconstruction algorithms are needed.

6.2.2 Signal Recovering via Solving Norm Minimization
Problems

The method of solving the undetermined system y¼ΦΨx¼Ax, by searching for the
sparsest solution can be described as:

Fig. 6.5 The discrete Fourier transform of f for different values of (a,b): (a) (0.95,0.92), (b)
(0.25,0.44), (c) close to exact values (�0.4,�0.8), (d) exact values (�0.5878,�0.9511)
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min xk k0 subject to y ¼ Ax; ð6:36Þ

where kxk0 represents the ‘0-norm defined as the number of nonzero elements in x.

This is a non-convex combinatorial optimization problem and the solution requires

exhaustive searches over subsets of columns of A with exponential complexity.

Namely, in order to solve this system:

ATAx ¼ ATy or x ¼ ðATAÞ�1ATy,

we need to search over all possible sparse vectors x with K entries, where the subset

of K-positions of entries are from the set {1,. . .,N}. The total number of possible

K-position subsets is
N
K

� �
, which can mean a large number of combinations, and

thus this method is not efficient for the applications (e.g., for N¼ 512 and K¼ 8 we

would have more than 1017 systems to solve).

A more efficient approach uses the near optimal solution based on the ‘1-norm
which is defined as:

xk k1 ¼
XN
i¼1

xij j: ð6:37Þ

Minimization based on the ‘1norm is given by:

min xk k1 subject to y ¼ Ax: ð6:38Þ

The ‘1-norm is convex and thus the linear programming can be used for solving the

above optimization problem.

In real applications, we deal with noisy signals. Thus, the previous relation

should be modified to include the influence of noise. Namely, it is assumed that

in the presence of noise the observations contain error:

y ¼ ΦΨxþ e ¼ Axþ e; ð6:39Þ

where e represents the error with the energy limited by the level of noise: ek k2 ¼ ε.
The optimization problem Eq. (6.38) can now be reformulated as follows:

min xk k1 subject to y� Axk k2 � ε: ð6:40Þ

The ‘2-norm is defined as: ak k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP
i¼1

aið Þ2
s

, with P being the total number of

samples in the vector a.
The reconstructed signal will be consistent with the original one in the sense that

y� Ax will remain within the noise level.
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6.2.3 Different Formulations of CS Reconstruction Problem

In practice, most of the numerical methods and algorithms used for signal recon-

struction fall into one of the following categories: ‘1 minimization, greedy algo-

rithms or total variation (TV) minimization. Among the ‘1-norm minimization

problems, here we focus to a few commonly used formulations: Basis Pursuit

(BP), Least Absolute Shrinkage and Selection Operator (LASSO) and Basis Pursuit

Denoising (BPDN).

According to the Eqs. (6.38) and (6.40), the general system of equations that

should be solved in compressive sensing approach is:

min xk k1 s:t: Ax ¼ y,

or, min xk k1 s:t: Ax� yk k2 < ε
ð6:41Þ

where s.t. stands for subject to. This approach is known as BP, which was intro-

duced in computational harmonic analysis to extract sparse signal representation

from highly overcomplete dictionaries. The optimization problems are solved using

some of the known solvers such as simplex and interior point methods (e.g., primal-

dual interior point method).

A modification of Eq. (6.41) has been known as LASSO and it is defined as:

min
x

1

2
y� Axk k2

2
s:t: xk k1 < τ; ð6:42Þ

where τ is a nonnegative real parameter.

Another frequently used approach is the Basis Pursuit denoising (BPDN) which

considers solving this problem in Lagrangian form:

min
x

1

2
y� Axk k2

2
þ λ xk k1; ð6:43Þ

where λ> 0 is a regularization parameter.

The most commonly used greedy algorithms are Orthogonal Matching Pursuit

(OMP) and Iterative thresholding. The OMP provides a sparse solution by using an

iterative procedure to approximate vector y as a linear combination of a few

columns of A. In each iteration, the algorithm selects the column of A that best

correlates with the residual signal. The residual signal is obtained by subtracting the

contribution of a partial signal estimate from the measurement vector.

The iterative hard thresholding algorithm starts from an initial signal estimateex ¼ 0 and then iterates a gradient descent step followed by hard thresholding until a

convergence criterion is met.
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6.2.4 An Example of Using Compressive Sensing Principles

In order to provide a better understanding of the compressive sensing, we consider

one simple example, which aims to demonstrate some of the concepts introduced in

this chapter (such as vector of measurements, sensing matrices, etc.).

For the purpose of signal visualization, it is a good idea to choose the sample rate

several times faster than is required by the sampling theorem. Hence, a given signal

fx(n) has N¼ 21 samples and it is defined as:

f x nð Þ ¼ sin 2 � π � 2=Nð Þ � nð Þ for n ¼ 0, ::, 20: ð6:44Þ

The values of the signal samples are given in the form of vector:

fx ¼ ½0 0:5633 0:9309 0:9749 0:6802 0:149 � 0:4339 � 0:866
� 0:9972 � 0:7818 � 0:2948 0:2948 0:7818 0:9972 0:866
0:4339 � 0:149 � 0:6802 � 0:9749 � 0:9309 � 0:5633

�
The Fourier transform of the observed signal consists of two frequency peaks: one

belonging to the positive and the other belonging to the negative frequencies. The

vector with the DFT coefficients of fx is denoted as Fx (Fx corresponds to x from the

previously presented theory):

Fx ¼ ½0 0 0 0 0 0 0 0 10:5 j 0 0 0 � 10:5 j 0 0 0 0 0 0 0 0	;

where parameter j is used a imaginary unit. The signal fx and its DFT Fx are given in

Fig. 6.6.

Note that fx is sparse in the frequency domain. Hence, we may consider the

signal reconstruction based on the small set of randomly selected signal samples.

For this purpose, we have to define the sensing matrix.

First we calculate the elements of inverse and direct Fourier transform matrices,

denoted by Ψ and Ψ�1 respectively:

Fig. 6.6 (a) The signal fx, (b) the absolute value of DFT vector Fx
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Ψ ¼ 1

21

1 1 1 1 . . . 1

1 e j
2π
21 e2 j

2π
21 e3 j

2π
21 . . . e20 j

2π
21

1 e2 j
2π
21 e4 j

2π
21 e6 j

2π
21 . . . e40 j

2π
21

. . . . . . . . . . . . . . . . . .

1 e19 j
2π
21 e38 j

2π
21 e57 j

2π
21 . . . e380 j

2π
21

1 e20 j
2π
21 e40 j

2π
21 e60 j

2π
21 . . . e400 j

2π
21

26666666666664

37777777777775

Ψ�1 ¼

1 1 1 1 . . . 1

1 e� j
2π
21 e�2 j

2π
21 e�3 j

2π
21 . . . e�20 j

2π
21

1 e�2 j
2π
21 e�4 j

2π
21 e�6 j

2π
21 . . . e�40 j

2π
21

. . . . . . . . . . . . . . . . . .

1 e�19 j
2π
21 e�38 j

2π
21 e�57 j

2π
21 . . . e�380 j

2π
21

1 e�20 j
2π
21 e�40 j

2π
21 e�60 j

2π
21 . . . e�400 j

2π
21

26666666666664

37777777777775
The matrices are of size N�N. The relation between fx and Fx is:

fx ¼ ΨFx: ð6:45Þ

Now, we would like to select M¼ 8 random samples/measurements in the time

domain, which will be used to reconstruct the entire signal fx by using the com-

pressive sensing approach. In other words, we should define the measurement

matrix Φ of size M�N, which is used to represent a measurement vector as:

y ¼ Φ fx: ð6:46Þ

The measurement matrix Φ can be defined as a random permutation matrix, and

thus y is obtained by taking the first M permuted elements of fx. For instance, the

vector y can be given by:

y ¼ 0:7818 � 0:7818 0:8660 0:2948 � 0:9972 � 0:6802 0:6802 � 0:9309½ 	;

where the random permutation of N¼ 21 elements is done according to:

perm ¼ 13, 10, 15, 12, 9, 18, 5, 20, 16, 4, 8, 1, 2, 11, 6, 21, 17, 19, 7, 14, 3½ 	;

or equivalently by taking only M¼ 8 first elements we have:

perm 1 : Mð Þ ¼ 13, 10, 15, 12, 9, 18, 5, 20½ 	:
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The N points Fourier transform that corresponds to the vector y is obtained as:

Fy ¼ Ψ�1y; ð6:47Þ

Fy¼ ½ ð�0:0793�0:0997 jÞ ð0:0533�0:0739 jÞ ð�0:0642�0:0514 jÞ ð0:0183þ0:0110 jÞ
ð0:1005þ0:0284 jÞ ð�0:0263�0:0178 jÞ ð0:0704þ0:0174 jÞ ð0:0089�0:1007 jÞ
ð�0:0270þ0:2307 jÞ ð�0:0363�0:0171 jÞ ð�0:0365þ0:0000 jÞ ð�0:0363þ0:0171 jÞ
ð�0:0270�0:2307 jÞ ð0:0089þ0:1007 jÞ ð0:0704�0:0174 jÞ ð�0:0263þ0:0178 jÞ
ð0:1005�0:0284 jÞ ð0:0183�0:0110 jÞ ð�0:0642þ0:0514 jÞ ð0:0533þ0:0739 jÞ
ð�0:0793þ0:0997 jÞ	

The starting Fourier transform vector Fy significantly differs from Fx which we aim

to reconstruct (Fig. 6.6). Based on equations Eqs. (6.45) and (6.46) we have:

y ¼ ΦΨFx ¼ AFx: ð6:48Þ

In analogy with the random measurements vector y, the matrix A¼ΦΨ can be

obtained by using the permutation of rows in Ψ and then selecting the first M¼ 8

permuted rows. The matrix A for this example is:

AM�N ¼ ΦΨ ¼ 1

21

1 e12 j
2π
21 e24 j

2π
21 . . . e240 j

2π
21

1 e9 j
2π
21 e18 j

2π
21 . . . e180 j

2π
21

1 e14 j
2π
21 e28 j

2π
21 . . . e280 j

2π
21

1 e11 j
2π
21 e22 j

2π
21 . . . e220 j

2π
21

1 e8 j
2π
21 e16 j

2π
21 . . . e160 j

2π
21

1 e17 j
2π
21 e34 j

2π
21 . . . e340 j

2π
21

1 e4 j
2π
21 e8 j

2π
21 . . . e80 j

2π
21

1 e19 j
2π
21 e38 j

2π
21 . . . e380 j

2π
21

2666666666666666666664

3777777777777777777775
Finally, we obtain the system with 8 equations and 21 unknowns.

The vector of measurements is depicted in Fig. 6.7a, where the available samples

are denoted by the blue dots, while the missing samples are denoted by the red dots.

The initial Fourier transform is shown in Fig. 6.7b. It is important to note that due to

the missing samples, the initial Fourier transform vector is not sparse and contains

noise-like components on the non-signal positions that should be zeros. The level of

this kind of noise becomes higher as the number of missing samples increases. Also,

note that the components on the signal frequencies do not have the true values

shown earlier in Fig. 6.6.

Now assume that the signal and non-signal components differ in amplitudes, so

that we can set the threshold that will separate these components in the initial
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Fourier transform vector (Fig. 6.8). The components above the threshold belongs to

the signal, while the components below the threshold are non-signal components

(belonging to noise) and these should be actually zeros. The threshold is derived

analytically, later in this chapter.

The support of the detected K signal components (K¼ 2 in our case) can be

denoted as Ω¼ {k1, k2,. . .,kK} and it contains the positions of components in the

sparse transform vector. Thus instead of N components in Fx, we are looking for the

K components whose support is defined by Ω.
It further means that we should select only those columns from A that belong to

the support Ω:

AΩ ¼ A Ωf g; ð6:49Þ

where matrix AΩ is of size M�K.

Fig. 6.7 (a) The original signal and randomly selected samples denoted by the red dots, (b)
N point discrete Fourier transform Fy

Fig. 6.8 (a) The N point Fourier transform Fy, (b) the discrete Fourier transform of reconstructed

signal. In order to center the spectrum at zero frequency in Fig. 6.7 and in this figure, the shifting

operation is performed as follows: Fx ¼ Fx 11 : 21ð Þ Fx 1 : 10ð Þ½ 	. It means that the illustrated

components positions �2 and 2, actually correspond to positions 19 and 2
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In the considered example the support is defined by the two-component set of

frequency instants:

Ω ¼ 2; 19f g: ð6:50Þ

The corresponding matrix AΩ is obtained by choosing the 2nd and the 19th

column of A:

AΩ ¼ 1

21

e12 j
2π
21 e216 j

2π
21

e9 j
2π
21 e162 j

2π
21

e14 j
2π
21 e252 j

2π
21

e11 j
2π
21 e198 j

2π
21

e8 j
2π
21 e144 j

2π
21

e17 j
2π
21 e306 j

2π
21

e4 j
2π
21 e72 j

2π
21

e19 j
2π
21 e342 j

2π
21

2666666666666666666664

3777777777777777777775
Now, the following system can be observed:

AΩeFx ¼ y; ð6:51Þ

and can be solved in the least square sense to find the exact amplitudes of the

components (in vector eFx):

AT
ΩAΩeFx ¼ AT

ΩyeFx ¼ ðAT
ΩAΩÞ�1AT

Ωy
: ð6:52Þ

Note that the resulting vector eFx has K elements and thus:

Fx Ωð Þ ¼ eFx,

Fx N\Ωð Þ ¼ 0, where N ¼ 1, . . . , Nf g: ð6:53Þ

The signal is accurately reconstructed and it is shown in Fig. 6.9.

Note that the previously presented least square solution can be derived as

follows. Define an error ε and minimize the error as:

ε ¼ y� AΩeFx

��� ���2
2

and
∂ε

∂eFx

¼ 0; ð6:54Þ
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2AT
Ω y� AΩeFx

� �
¼ 0 ) AT

Ωy ¼ AT
ΩAΩeFx; ð6:55Þ

Finally, we have eFx ¼ AT
ΩAΩ

� �1
AT

Ωy as in Eq. (6.52).

6.3 Algorithms for Signal Reconstruction

6.3.1 Orthogonal Matching Pursuit: OMP

OMP is a greedy signal reconstruction algorithm that in each iteration searches for

the maximum correlation between the measurements and the matrix A¼ΦΨ.

Particularly, if A is a partial random Fourier transform matrix, then the columns

of A correspond to the randomly selected Fourier transform basis vector. Some-

times the matrix A is called dictionary, while its columns are called atoms. Thus,

through the iterations it selects a certain number of columns from A, where this

number is defined by a given number of iterations.

Algorithm: Orthogonal Matching Pursuit

Input:

• Transform matrix Ψ, Measurement matrix Φ
• Matrix A: A¼ΦΨ (usually A is obtained as a random partial Fourier transform

matrix: A¼Ψ{ϑ}, ϑ ¼ ψn1 ;ψn2 ; . . . ;ψnM

� �
)

• Atoms are columns of A¼ A j j ¼ 1, . . . ,Mj� � ¼ ψn1 ;ψn2 ; . . . ;ψnM

� �
• Measurement vector y¼Φf

Output:

1: r0  y (Set initial residual)
2: Ω0  ∅ (Set initial indices)

Fig. 6.9 (a) The reconstructed signal (time domain samples), (b) the Fourier transform of the

reconstructed signal
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3: Θ0  ½	 (Set matrix of chosen atoms)
3: for i¼ 1, . . ., K
4: ωi  argmax

j¼1, ...,M
j⟨ri�1,A j⟩j (Maximum correlation column)

5: Ωi  Ωi�1 [ ωi (Update set of indices)
6: Θi  ½Θi�1 Aωi

	 (Update set of chosen atoms)

7: xi ¼ argminx k ri�1 �Θix k22 (Solve the least squares)
8: ai  Θixi (New data approximation)
9: ri  y� ai (Update the residual)
10: end for
11: return xK, aK, rK, ΩK

In the first step of the algorithm, the initial residual vector r0 is equal to the

measurements vector y. The atom from dictionary A having maximum correlation

with residual is determined next. This atom (a column from A) is added to the

matrix of chosen atoms Θi (initially this matrix is empty). The least square

optimization is performed afterwards in the subspace spanned by all previously

picked columns to determine a new signal estimate. The new approximation of the

data and the new residual are calculated by removing the contribution of already

chosen atoms. The final signal estimate has nonzero values at the positions given in

ΩK. The values of these nonzero components are equals to the components in xK.

6.3.2 Adaptive Gradient Based Signal Reconstruction
Method

This recently defined algorithm belongs to the group of gradient-based minimiza-

tion approaches. The missing samples are considered as variables with the zero

initial value (minimum energy solution). Then the algorithm performs an iterative

procedure, where in each iteration the initial state of missing samples is changed

toward their exact values. Namely, the missing samples are altered iteratively for

value þΔ and �Δ, where Δ is an appropriately chosen step. Then, we need to

measure the influence of the changes�Δ (for each missing sample separately) and

to determine the value of the gradient which is used to update the values of missing

samples. Here, the measure of concentration in the transform domain representation

is used to determine the value of the gradient.

A measure of concentration for a certain vector x of transform coefficients is

defined by:

η xð Þ ¼
XN�1

k¼0 x kð Þj j: ð6:56Þ

Note that the transform domain vector x can be DFT, DCT, Hermite transform

vector, etc. Through the iterations, the missing samples are changed to decrease the
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values of sparsity measure, in order to achieve the minimum of the ‘1-norm based

sparsity measure.

Let us consider now how the algorithm works. Assume that the initial set of

M measurements is modified by embedding zero values on the positions of missing

samples:

y nð Þ ¼ f nð Þ, for n 2 NM

0, for n 2 N\NM;

�
ð6:57Þ

where f is the original signal, the set of available samples is NM, while the total set

of samples is N¼ {1,2,. . .,N}. In the i-th iteration, the values of vector y on the

positions of missing samples are changed as follows:

yþ nð Þ ¼ yi nð Þ þ Δδ n� nsð Þ,
y� nð Þ ¼ yi nð Þ � Δδ n� nsð Þ: ð6:58Þ

The initial set up assumes yi(n)¼ y(n) for i¼ 0 and n2N. The missing samples

positions are denoted as ns 2 N\NM, while δ is the Kronecker delta function. The

initial value of the step is calculated as follows:

Δ ¼ max
n

y nð Þj jf g: ð6:59Þ

Next, it is necessary to calculate the transform domain representations of both

vectors yþ and y� which will be used to determine the concentration measure in the

transform domain and therefore to determine the corresponding gradient. The

transform domain vectors corresponding to yþ and y� are given by:

xþ ¼ Ψyþ,

x� ¼ Ψy�;
ð6:60Þ

respectively, while Ψ is a transform matrix. Furthermore, the gradient vector is

calculated as follows:

Gi nsð Þ ¼ η xþð Þ � η x�ð Þ
N

, ns 2 N\NM; ð6:61Þ

where the concentration measure η is defined by Eq. (6.56).

Note that, the gradient vector on the positions of available samples is equal to

zero: Gi nð Þ ¼ 0 for n 2 NM.

An iteration is completed when all values of the gradient vector for the positions

of missing samples ns 2 N\NM are calculated. The measurement vector is then

updated as:
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yiþ1 nð Þ ¼ yi nð Þ � Gi nð Þ: ð6:62Þ

The procedure is repeated through the iterations. The missing values will converge

toward the exact values, producing the minimal concentration measure in a chosen

transformation domain.

Note that a difference of concentration measures is used to estimate the gradient.

Once the gradient becomes constant, it means that the optimal point is reached.

However, in practice, instead of having constant gradient at the optimal point, there

will be some oscillations of the gradient direction within consecutive iterations. In

this situation, we can reduce the step value Δ (for example: Δ=
ffiffiffiffiffi
10
p

) in order to

approach to the stationary zone.

The oscillations of the gradient vector can be detected by measuring an angle

between successive gradient vectors Gi�1 and Gi. The angle between two gradient

vectors corresponding to iteration (i� 1) and i, can be calculated as follows:

β ¼ arccos
Gi�1Gi
	 

Gi�1�� ��2

2
Gi
�� ��2

2

; ð6:63Þ

where a scalar (dot) product of two vectors is calculated in the brackets hi. When the

angle β becomes higher than 170
, we can assume that the vector oscillation state is

achieved, and the value of Δ should be decreased.

Various stopping criteria can be used to stop the iteration process. For example,

when the value of Δ becomes sufficiently small, we might say that the algorithm

achieved sufficient precision. Also, we can calculate the ratio between the recon-

struction error and the signal in the current iteration as follows:

Ξ ¼ 10log10

X
n2N∖NM

jy pðnÞ � yiðnÞj2X
n2N∖NM

jyiðnÞj2 , ð6:64Þ

where yp(n) is the reconstructed signal before decreasing Δ, while yi(n) is the

reconstructed signal in the current iteration. If Ξ is larger than the required preci-

sion, the value of Δ should be decreased.

In the sequel, the special case of the gradient-based algorithm using the DFT is

summarized.

Algorithm: Adaptive Gradient-Based Signal Reconstruction

Input:

• Available samples position NM ¼ n1, n2, . . . nMf g
• Missing samples position N\NM, where N ¼ 1; 2; . . . ;Nf g
• Available samples f nð Þ, n 2 NM

• Measurement vector: y nð Þ ¼ f nð Þ, for n 2 NM

0, for n 2 N\NM

�
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Output:

6.3.3 Primal-Dual Interior Point Method

Let us briefly consider the primal-dual interior point method, which has been

widely used in literature. The optimization problem:

min xk k1 s:t: Ax ¼ y; ð6:65Þ
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can be recast as:

min
u

X
u s:t: Ax ¼ y, f u1 ¼ x� u, f u2 ¼ �x� u; ð6:66Þ

Generally, the minimization problem can be observed by forming the Lagrangian:

Λ x; u; v; λu1 ; λu2ð Þ ¼ f uð Þ þ v Ax� yð Þ þ λu1 f u1 þ λu2 f u2 : ð6:67Þ

Finding its first derivatives in terms of x, u, v, λu1 and λu2 the following relations are
obtained:

Ru
dual ¼ 1� λu1 � λu2 , Rx

dual ¼ λu1 � λu2 þ ATv, Rv
prim
¼ Ax� y; ð6:68Þ

Rλu1
cent ¼ λu1 f u1 þ

1

τ
, Rλu2

cent ¼ λu2 f u2 þ
1

τ
: ð6:69Þ

Note that beside A and b which are known, we should initialize the following

variables: x¼ x0, u¼ u0 (e.g., which is obtained by using x0), λu1 and λu2 , v ¼ �A
λu1 � λu2ð Þ and τ.
In order to compute the Newton steps, the following system of equations is

solved:

∂Ru
dual

∂x
Δxþ ∂Ru

dual

∂u
Δuþ ∂Ru

dual

∂v
Δv ¼ �Ru

dual,

∂Rx
dual

∂x
Δxþ ∂Rx

dual

∂u
Δuþ ∂Rx

dual

∂v
Δv ¼ �Rx

dual,

∂Rv
prim

∂x
Δxþ ∂Rv

prim

∂u
Δuþ ∂Rv

prim

∂v
Δv ¼ �Rv

prim;

ð6:70Þ

∂Rλu1
cent

∂x
Δxþ ∂Rλu1

cent

∂u
Δuþ ∂Rλu1

cent

∂λu1
Δλu1 ¼ �∂Rλu1

cent,

∂Rλu2
cent

∂x
Δxþ ∂Rλu2

cent

∂u
Δuþ ∂Rλu2

cent

∂λu2
Δλu2 ¼ �∂Rλu2

cent:

ð6:71Þ

From Eq. (6.70), we have:

� 1

τ f 2u1
þ 1

τ f 2u2

 !
Δxþ 1

τ f 2u1
þ 1

τ f 2u2

 !
Δu ¼ �1� 1

τ

1

f u1
þ 1

f u2

� �
1

τ f 2u1
þ 1

τ f 2u2

 !
Δxþ � 1

τ f 2u1
þ 1

τ f 2u2

 !
Δuþ ATΔv ¼ 1

τ

1

f u1
� 1

f u2

� �
� ATv

AΔx ¼ �Axþ b
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After calculating Δx, Δu, and Δv (e.g., by using linsolve in Matlab) we compute

Δλu1 and Δλu2 by using:

Δλu1 ¼ λu1 f
�1
u1
�Δxþ Δuð Þ � λu1 �

1

τ f u1
,

Δλu2 ¼ λu2 f
�1
u2

Δxþ Δuð Þ � λu2 �
1

τ f u2
;

which are derived from Eq. (6.71). The Newton step actually represents the step

direction. In order to update the values of variables for the next iteration:

x ¼ xþ sΔx, u ¼ uþ sΔu, v ¼ vþ sΔv, λu1 ¼ λu1 þ sΔλu1 , λu2 ¼ λu2 þ sΔλu2 ,

the step length s should be calculated. For this purpose, the backtracking line search
can be applied. The general backtracking method is explained in the sequel.

Backtracking method
Let assume that f(x) is the function that should be minimized. One solution would

be to use the step length s (s� 0), which minimizes the function f(xkþ sΔxk):

argmin
s�0

f xk þ sΔxkð Þ:

This method can be computationally demanding, and thus the backtracking line
search has been used:

f or given s s > 0ð Þ
while f xkþ1ð Þ > f xkð Þ þ α � s � f 0 xkð Þ � Δxk
s ¼ β � s
end

The constants α and β can take values in the range α 2 0; 0:5ð Þ, β 2 0; 1ð Þ. Since we
have five variables that should be updated, the condition in while loop can be

modified as follows:

rkþ1k k2 > 1� α � sð Þ rkk k2;

where r is a vector that contains the elements of Ru
dual, R

x
dual, R

v
dual, R

λu1
cent, R

λu2
cent.
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6.4 Analysis of Missing Samples in the Fourier
Transform Domain

Observe a signal that consists of K sinusoidal components in the form:

f nð Þ ¼
XK
i¼1

aie
j2πkin=N ð6:72Þ

where ai and ki denote amplitudes and frequencies of the i-th signal components,

respectively. The DFT of such signal can be written as:

F kð Þ ¼ N �
XN
n¼1

XK
i¼1

aie
� j2π k�kið Þn=N: ð6:73Þ

In the compressive sensing scenario we are dealing with just a small subset of

samples from f(n) taken at the random positions defined by the following set:

NM ¼ n1, n2, . . . , nMf g � N ¼ 1, 2, . . . ,Nf g: ð6:74Þ

Therefore, NM represents the positions of measurements. Following the definition

of the DFT in Eq. (6.73), let us observe the following sets:

f{ ¼ f { nð Þ f { nð Þ ¼�� XK
i¼1

aie
� j2π k�kið Þn=N , n ¼ 1, 2, . . . ,N

( )
: ð6:75Þ

In other words, instead of signal samples, we consider a product of samples and the

Fourier basis functions. Accordingly, for a set of available samples on the positions

defined by Eq. (6.74), the vector ofMmeasurements out of N from the full vector f{

can be written as:

y ¼ y mð Þ y mð Þ ¼j
XK
i¼1

aie
� j2π k�kið Þnm=N, nm 2 NM

( )
: ð6:76Þ

The Fourier transform of randomly chosen set of samples (initial Fourier transform)

is not sparse, although the Fourier transform of the original (full) signal is sparse.

Namely, missing samples in the time domain will cause a noisy spectral represen-

tation, which will influence the signal sparsity. By analyzing the statistical proper-

ties of the Fourier coefficients (on the positions of signal and non-signal

components), we can characterize the variance of the noise.
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Monocomponent signal: Let us start the analysis by the simplest signal case having

only one component a1¼ 1, ki¼ k1. The sets of samples given by Eqs. (6.75) and

(6.76) become:

f {ðnÞ ¼ e� j2πðk�k1Þn=N , n 2 N

yðmÞ ¼ e� j2πðk�k1Þnm=N , nm 2 NM
, ð6:77Þ

where it is assumed that f { 1ð Þ þ f { 2ð Þ þ . . .þ f { Nð Þ ¼ 0 for k 6¼ k1 since,

E
XN
n¼1

e� j2π k�k1ð Þn=N
( )

¼ E
1� e� j2π k�k1ð Þ=N� N
1� e� j2π k�k1ð Þ=N

( )
¼ 0;

i.e., all samples are not statistically independent for k 6¼ k1. The Fourier transform of

measurements vector y can be written as follows:

Y kð Þ ¼
XM

m¼1 y mð Þ ¼
XN

n¼1 f { nð Þ � ε nð Þ� �
; ð6:78Þ

where the noise can be modelled as:

εðnÞ ¼ e� j2πðk�k1Þn=N , n 2 fN∖NMg
0, n 2 NM

�
ð6:79Þ

In other words, on the positions of available samples NM, we will have y(m), while
on the remaining positions we will have zeros. It can be observed that the

expected value of the Fourier coefficients on the position of signal component

k¼ k1 is:

E Yk¼k1f g ¼ E
XM
m¼1

e� j2π k1�k1ð Þnm=N
( )

nm2NM

¼ E
XM
m¼1

e0

( )
¼ M:

On the positions of non-signal components k� k1¼ kx, we have:

E Yk 6¼k1, k�k1¼kx
� � ¼ 0;

since E y mð Þf g ¼ 0 with high probability (y(m) takes values from the original

sinusoid at random positions and the expectation for different realizations will

tend to zero with high probability).
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Now, the variance of noise in F can be calculated as follows3:

σ2 Yk 6¼k1
�  ¼ E y 1ð Þ þ . . .þ y Mð Þ½ 	 � y 1ð Þ þ . . .þ y Mð Þ½ 	*

n o
¼ M � E y nð Þy* nð Þ� �þM M � 1ð Þ � E y nð Þy* mð Þ� �
¼ M � 1þM M � 1ð Þ �1

N � 1

where �ð Þ* denotes the complex conjugate. Therefore, we obtain the variance in the

form:

σ2 Yk 6¼k1
�  ¼ M

N �M

N � 1

3A detailed derivation of variance at non-signal positions is given below:

σ2 Yk 6¼k1
�  ¼ E y 1ð Þ þ . . .þ y Mð Þ½ 	 � y 1ð Þ þ . . .þ y Mð Þ½ 	*

n o
¼ E y 1ð Þj j2

n o
þ . . .þ E y Mð Þj j2

n o
þ E y 1ð Þy 2ð Þ*

n o
þ ::þ E y 1ð Þy Mð Þ*

n o
þ . . .

þE y Mð Þy 1ð Þ*
n o

þ . . .þ E y Mð Þy M � 1ð Þ*
n o

(1) Since y mð Þj j ¼ e� j2π k�k1ð Þnm=N�� �� ¼ 1) E y 1ð Þj j2
n o

þ . . .þ E y Mð Þj j2
n o

¼ M � 1 ¼ M

(2) Assuming that: f { 1ð Þ þ f { 2ð Þ þ . . .þ f { Nð Þ ¼ 0 for k 6¼ k1

) f { ið Þ f { 1ð Þ þ . . .þ f { Nð Þ� * ¼ 0)
XN
j¼1

E f { ið Þ f { jð Þ� *n o
¼ 0

(3) Set: E f { ið Þ f {* jð Þ
n o

¼ B for i 6¼ j,

while from (1) we have: E y ið Þj j2
n o

¼ 1 f or i ¼ j.

Therefore:
XN
j¼1

E f { ið Þ f { jð Þ� *n o
¼ N � 1ð ÞBþ 1 ¼ 0 ) B ¼ � 1

N�1

(4) Since y ið Þ ¼ f { ið Þ for available samples i 2 NM , we have:

E y ið Þy* jð Þ� � ¼ E f { ið Þ f {* jð Þ
n o

¼ B ¼ � 1

N � 1
:

Using (1) and (4), it can be concluded that:

σ2 Yk 6¼k1
�  ¼ M þ M � 1ð ÞB ¼ M þM M � 1ð Þ � 1

N � 1

� �
¼ M

N �M

N � 1
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Here, we have applied the following equalities:

XN
m¼1

E f { nð Þ f {* mð Þ
n o

¼ 0; ð6:80Þ

E y nð Þy* nð Þ� � ¼ E f { nð Þ f {* nð Þ
n o

¼ 1; ð6:81Þ

E y nð Þy* mð Þ� �
n 6¼m ¼ E f { nð Þ f {* mð Þ

n o
n6¼m
¼ �1

N � 1
: ð6:82Þ

According to the previous analysis, we can conclude that in the case of a sparse

K-component signal, the variance of noise that appears in the spectral domain as a

consequence of missing samples is:

σ2MS ¼ σ2 Yk 6¼ki
� � ¼ M

N �M

N � 1

XK
i¼1

a2i : ð6:83Þ

The variance of noise produced in the spectral domain depends on the number of

missing samples (N�M ) (or alternatively on the number of available samples M ).

Observe that for M¼N the variance of spectral noise will be zero.

However, for M� N, we have N�M
N�1 ! 1, or equivalently σ2MS � M

XK
i¼1

ai
2.

Thus, for low values ofM, the noise level exceeds the values of some (or all) signal

component.

The DFT variance at the positions of the i-th signal components is:

σ2i ¼ σ2fYk¼kig ¼ M
N �M

N � 1

XK
l¼1, l6¼i

a2l : ð6:84Þ

In order to detect the signal components from the noisy DFT representation, it

would be important to define the probability of having all signals components above

the noise. In that sense, let us observe the two types of DFT values:

(a) DFT values at the position of signal components (signal positions),

(b) DFT values at the positions of non-signal components (noise-alone positions).

The error during the components detection (false components detection) may

appear in the situation when the DFT values at noise-alone positions are higher than

the DFT value of the signal component. Hence, with a certain probability, we need

to assure the case when all (N�K ) noise-alone components are below the signal

components values in the DFT domain.
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The probability that all (N�K ) non-signal components are below a certain

threshold value T is4:

P Tð Þ ¼ 1� exp � T2

σMS
2

� �� �N�K
: ð6:85Þ

Accordingly, we can define the probability of error (false components detection) as

follows:

Perr Tð Þ ¼ 1� P Tð Þ: ð6:86Þ

In practical applications, the approximate expression for probability P can be used.

Namely, assume that the DFT of the i-th signal component is not random but equal

toMai (positioned at the mean value of the signals DFT). It means that the influence

of noise to amplitude is symmetric and equally increases and decreases the DFT

signal value. Then the approximate expression is obtained in the form:

Pi ffi 1� exp �M2ai
2

σMS
2

� �� �N�K
; ð6:87Þ

where i¼ 1,. . .,K. For a given Pi, we can calculate the number of available samples

M, which will ensure detection of all signal components.

6.4.1 Threshold Based Single Iteration Algorithm

The threshold based signal reconstruction algorithm is based on the idea of sepa-

rating signal components from spectral noise. Consequently, we first assume a fixed

4According to the central limit theorem, the real and imaginary parts of non-signal DFT values can

be described by Gaussian distribution: N(0, σ2MS/2).

The probability density function for the absolute DFT values at non-signal positions is

Rayleigh distributed: p ξð Þ ¼ 2ξ
σ2
MS

e�ξ
2=σ2MS , ξ � 0.

Consequently, the DFT coefficients at non-signal (noise-alone) position takes a value greater

than T, with the following probability: p Tð Þ ¼
ð1
T

2ξ

σ2MS

e�ξ
2=σ2MS ¼ e�T

2=σ2MS

Then, the probability that only one non-signal component in DFT is below threshold T is:

Q Tð Þ ¼ 1� p Tð Þ ¼ 1�
ð1
T

2ζ

σ2
e�ζ

2=σMS
2

dζ ¼ 1� e�T
2=σMS

2

.

Consequently, when all N-K non-signal components are below Twe have: P(T )¼ (1�Q(T ))N�K,
which is given by (6.85).
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value for the probability P(T ) defined by Eq. (6.85) (for example P(T )¼ 0.99) in

order to calculate threshold according to:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2MSlog 1� P Tð Þ 1

N�K
� �r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2MSlog 1� P Tð Þ1N

� �r
; ð6:88Þ

where the sparsity assumption assures that the number of components K is K<<N,
so that K can be neglected in Eq. (6.88). Now based on the derived threshold we can

define a blind signal reconstruction procedure, which does not require a priori

knowledge of sparsity level.

In the case that all signal components are above the noise level in DFT, the

component detection and reconstruction is achieved by using a simple single-

iteration reconstruction algorithm summarized below.

Algorithm: Automated Single-Pass Solution
Input:

• Transform matrix Ψ, Measurement matrix Φ
• NM¼ {n1,n2,. . .,nM}, M—number of available samples, N—original signal

length

• Matrix A: A¼ΦΨ (A is obtained as random partial (inverse) Fourier transform:

A¼ΦΨ¼Ψ{ϑ}, ϑ ¼ ψn1 ;ψn2 ; . . . ;ψnM

� �
)

• Measurement vector y¼Φf

Output:

1: P 0:99 (Set desired probability P)

2: σ2MS  MN�M
N�1

XM
i¼1

y mð Þj j2
M

(Calculate variance)

3: T  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2MSlog 1� P Tð Þ1N

� �r
(Calculate threshold)

4: X0 y(ΦΨ�1) (Calculate initial DFT of y)

5: k arg X0j j > T
N

� �
(Find positions of components in X higher than normalized

threshold T )
6: Acs A(k) (Form CS matrix by using only k columns from A)

7: eX ¼ Acs
TAcs

� �1
Acs

Ty

return eX, k

The resulting vector X will contain the values eX at positions k, while the rest of
the DFT coefficients are zero.

First we calculate the variance σ2MS for a known number of available samples

M and total number of samples N. Since, the signal amplitudes may not be known in

advance, we use:

XK
i¼1

ai
2 ¼

XM
i¼1

y mð Þ
M

;
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to obtain the variance from (6.83). Then the threshold is calculated in step 3 of the

algorithm and the initial Fourier transform X0 with N elements (step 4), that

corresponds to the available measurements y. The vector k in step 5 will contain

all positions (frequencies) of components in DFT vector X0 that are above the

normalized threshold. The CS matrix Acs is obtained from the matrix A, using

columns that correspond to the frequencies k. Note that A is primarily obtained

from the inverse DFT matrix by using only rows that correspond to M available

measurements. Generally, it is assumed that K¼ length(k)<M. The exact DFT

values at positions k are obtained by solving the system in step 7 in the least square

sense.

6.4.2 Approximate Error Probability and the Optimal
Number of Available Measurements

According to the approximate expression Eq. (6.87), we can write the error prob-

ability as follows:

Pi
err ¼ 1� Pi ffi 1� 1� exp �M2ai

2

σ2MS

� �� �N�K
; ð6:89Þ

which can be used as a rough approximation. Since the DFT amplitudes lower than

Mai contribute more to the error than those above Mai, a more precise approxima-

tion can be obtained by correcting the mean valueMai for the value of one standard
deviation5:

Pi
err ffi 1� 1� exp � Mai � σið Þ2

σMS
2

 ! !N�K
; ð6:90Þ

where σ2i ¼ MðN�MÞ
ðN�1Þ

PK
l¼1, l 6¼i

a2l is the variance at a frequency point of the observed

signal component with the expected amplitude ai.
Based on the previous analysis, we can define an optimal number of available

samples M that would allow detecting all signal components. For a fixed (desired)

5Note that real and imaginary parts of the DFT values at signal component position can be described

by Gaussian distribution: N(Mai, σ2i /2) and N(0, σ2i /2), respectively. σ
2
i is defined for a missing

amplitude ai, and real-valued ai is assumed without loss of generality. The pdf for the absolute

DFT values at the position of the i-th signal component, is Rice-distributed:

p ξð Þ ¼ 2ξ
σ2i
e� ξ2þM2a2ið Þ=σ2i I0 Mai2ξ=σ2i

� 
, ξ � 0, where I0 is zero order Bessel function. The mean

value of Rice distributed absolute DFT values can be approximated asMai and the variance is σ2i .
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Pi
err ¼ Perr for 8i, the optimal number of available samples can be obtained as a

solution of the minimization problem:

Mopt � argmin
M

Perrf g, i ¼ 1, . . . ,K: ð6:91Þ

In other words, for each chosen value of Perr and the expected value of the minimal

amplitude ai, there is an optimal value of M that will assure the components

detection. The relation between the Perr andM for different values ai are illustrated
in Fig. 6.10: a1¼ 4.5, a2¼ 4, a3¼ 3.5, a4¼ 3, a5¼ 2.5, a6¼ 2, a7¼ 1.5, a8¼ 1,

a9¼ 0.5 (additional Gaussian noise is added with σ2N ¼ 4). In the considered case,

amin¼ 1.75 and from Fig. 6.10, we can observe that for Perr¼ 10�2 we need at least
M¼ 180 measurements.

6.4.3 Algorithm 2: Threshold Based Iterative Solution

In the case when the number of available samples is such that some of the signal

components are masked by noise in the spectral domain (the initial Fourier trans-

form), we can employ the iterative threshold based algorithm, summarized below.

In each iteration, we firstly detect some of the signal components that are above the

threshold. Hence, in each iteration we obtain a set of components on positions ki

that are above the threshold. Then it is necessary to remove the contribution of

detected components and to recalculate the threshold. It will reveal the remaining

components that are below the noise level. Since the algorithm detects a block of

components in each iteration, it needs just a few iterations to recover all signal

components.

Fig. 6.10 Probability of the component misdetection in terms of the number of available

measurements
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Algorithm: Automated Threshold Based Iterative Solution

Input:

• Transform matrix Ψ, Measurement matrix Φ
• NM¼ {n1,n2,. . .,nM}, M—number of available samples, N—original signal

length

• Matrix A: A¼ΦΨ (A is obtained as a random partial Fourier transform matrix:

A¼ΦΨ¼Ψ{ϑ}, ϑ ¼ ψn1 ;ψn2 ; . . . ;ψnM

� �
)

• Measurement vector y¼Φf

Output:

1: Set i¼ 1, NM¼ {n1,n2,. . .,nM}
2: p¼∅.

3: P 0.99 (Set desired probability P)

4: σ2MS  MN�M
N�1

XM
i¼1

y mð Þj j2
M

(Calculate variance)

5: Ti  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2MSlog 1� P Tð Þ1N

� �r
(Calculate threshold)

6: Xi A�1y (Calculate initial DFT of y)

7: ki  arg Xi
�� �� > Ti

N

n o
(Find components in Xi above the threshold)

8: Update p p [ ki
9: Acs

i A(ki) (CS matrix)

10: eXi  Acs
iTAcs

i
� ��1

Acs
iTy

11: for 8p2p: y y� M
N Xi pð Þexp j2π pNM=Nð Þ; (Update y)

13: Update σ2MS  M N�Mð Þ
N�1

X
yj j2=M

14: If
X

yj j2=M < δ break; Else

15: Set i¼ iþ 1, and go to 5.

return eXi, k

A signal reconstruction example based on the iterative algorithm is illustrated in

Fig. 6.11. The signal contains seven components with amplitudes: {4.5, 4, 2, 1.75,

2, 1.5, 3.5}. The total number of signal samples is N¼ 512, while the available

number of samples is M¼ 128. The stopping parameter, δ¼ 2 is used in the

example. The reconstruction is done within two iterations. The first iteration is

shown in Fig. 6.11a and b (selected and reconstructed DFT components), while the

second iteration is shown in Fig. 6.11c and d (the entire reconstructed signal is

given in Fig. 6.11d). The reconstructed components amplitudes are equal to the

original ones.

6.4.3.1 External Noise Influence

The previous analysis assumed a case when no external noise is present. However,

in practical applications the measurements can be affected by noise. We further
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assume that the signal is corrupted by Gaussian noise with the variance σ2N .
Therefore, in the spectral domain, the signal components will be disturbed by two

types of noise: noise that appears as a consequence of missing samples character-

ized by σ2MS, and external noise with variance σ2N . The total noise variance can be

calculated as a sum of variances of external noise and noise due to the missing

samples (we assume that the involved random variables are uncorrelated):

σ2 ¼ σ2MS þMσ2N ¼ M
N �M

N � 1

XK
i¼1

a2i þMσ2N: ð6:92Þ

In order to achieve the same probability of error as in the case with no external

noise, it is necessary to increase the number of available samples from M to some

new value MN. In this way, we would be able to keep the value of resulting noise

variance σ2 at the level of variance in the noiseless case which is equal to σ2MS.

Consequently, the following requirement needs to be satisfied:

Fig. 6.11 (a) Selecting components above the threshold in the first iteration, (b) the reconstructed
components in the first iteration, (c) selecting components in the second iteration, (d) the

reconstructed signal
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σ2MS

σ2
¼

M
N �M

N � 1

XK
i¼1

a2i

MN
N �MN

N � 1

XK
i¼1

a2i þMNσ
2
N

¼ 1: ð6:93Þ

Here, MN denotes an increased number of measurements required to achieve

successful components detection, as in the case with no external noise. Having in

mind that:

SNR ¼
XK

i¼1 a
2
i =σ

2
N; ð6:94Þ

we have:

M N �Mð Þ
MN

SNR

SNR N �MNð Þ þ N � 1ð Þ ¼ 1: ð6:95Þ

Now, for given N, M and SNR, the required number of available samples MN in the

presence of external Gaussian noise follows as a solution of the equation:

MN
2 � SNR�MN SNR � N þ N � 1ð Þ þ SNR � MN �M2

�  ¼ 0: ð6:96Þ

For example, let us consider the case N¼ 256 and M¼ 192, while SNR¼ 10 dB is

assumed. According to the previous relation, the number of available samples must

be increased to MN¼ 227.

6.4.3.2 The Influence of Signal Reconstruction on the Resulting SNR

Here, it will be shown that the threshold based reconstruction method in the Fourier

transform domain significantly reduces the input SNR. For a K component signal

with the signal amplitudes denoted by ai, the input SNR of the full data set of length

N is by definition:

SNRi ¼ 10log10

XN�1
n¼0

x nð Þj j2

XN�1
n¼0

v nð Þj j2
: ð6:97Þ

However, we are dealing with M measurements instead of N. Note that the

amplitude of i-th signal components in the DFT domain for a full set of samples

is Nai, while in the case of CS signal with M measurements the DFT amplitude is

Mai. Therefore, during the signal reconstruction, the amplitudes of components are
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scaled from Mai to Nai using the constant factor N/M. However, the noise on the

observed components will be scaled with the same factor as well:

SNR ¼ 10log10

XN�1
n¼0

x nð Þj j2

XM�1
m¼0

N=Mð Þv mð Þj j2
¼ 10log10

XN�1
n¼0

x nð Þj j2

N2

M2

XM�1
m¼0

v mð Þj j2
: ð6:98Þ

Furthermore, all components detected by thresholding in the DFT domain represent

the signal components. Other DFT values are set to zero. Thus, the noise remains

only on K out of N components and the reconstruction error is decreased by the

factor K/N:

SNRout ¼ 10log10

XN�1
n¼0

x nð Þj j2

K

N

N2

M2

XM�1
m¼0

v mð Þj j2
¼ 10log10

XN�1
n¼0

x nð Þj j2

KN

M2

XM�1
m¼0

v mð Þj j2
; ð6:99Þ

where SNRout is the output SNR.

Since the variance of noise is the same whether it is calculated using N or only

M available samples: 1
N

XN�1
n¼0

ν nð Þ ¼ 1
M

XM�1
m¼0

ν mð Þ, the resulting SNR can be written as

follows:

SNRout ¼ 10log10

XN�1
n¼0
jxðnÞj2

KN
M2

XM�1
m¼0
jvðmÞj2

¼ 10log10

XN�1
n¼0
jxðnÞj2

K
M

XN�1
n¼0
jvðnÞj2:

ð6:100Þ

Hence, we have:

SNRout ¼ SNRi � 10log10 K=Mð Þ: ð6:101Þ

The resulting SNR is a function of the sparsity level and the number of available

samples.

326 6 Compressive Sensing



6.5 Relationship Between the Robust Estimation Theory
and Compressive Sensing

Next, we analyze and discuss a relationship between the robust estimation theory

(discussed in Chap. 1) and compressive sensing. This relationship is established

through a simple algorithm for signal reconstruction with a flexibility of using

different types of minimization norms for different noisy environments.

Let us consider a multicomponent signal that consists of K sinusoidal

components:

f nð Þ ¼
XK
i¼1

f i nð Þ ¼
XK
i¼1

aie
j2πkin=N; ð6:102Þ

where ai and ki denote the i-th signal amplitude and frequency, while N is the total

number of samples. According to the compressive sensing concept, assume that

only M (M<N ) samples are available. Furthermore, we observe the generalized

loss function L, used in the definition of the robust estimation theory:

L ε nð Þf g ¼ L f nð Þψ n; kð Þ � eF kð Þ�� ��n o
; ð6:103Þ

where ψ(n, k) are basis functions (e.g., ψðn, kÞ ¼ e� j2πkn=N in the DFT case), whileeF kð Þ is a robust estimate (the DFT of the signal)6:

eF kð Þ ¼
mean

n
f f ðnÞψðn, kÞg, standard form� Gaussian noise

median
n
f f ðnÞψðn, kÞg, robust form� impulsive noise

:

(
ð6:104Þ

The generalized loss function is defined as the p-th norm of the estimation error:

L εf g ¼ εj j p: ð6:105Þ

Here, we have a flexibility to use any value of p and to adapt the norm to the

problem of interest. For example, the standard transforms are obtained by using the

‘2-norm: L εf g ¼ εj j2, while the robust forms based on ‘1-norm (L εf g ¼ εj j) are
used in the presence of impulse and heavy-tailed noises.

In the case of compressive sampling the number of available samples is much

lower than N. The samples f(n1), f(n2), . . ., f(nM) are chosen randomly at the points

from the set NM ¼ n1, n2, . . . , nMf g.

6 Recall that, when the data set is complex-valued, the marginal median is applied independently to

the real and imaginary parts of set values.
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The errors can be calculated for each available sample:

ε nm; kð Þ ¼ f nmð Þψ nm; kð Þ � eF kð Þ�� ��; ð6:106Þ

where nm 2 NM and k¼ 0,1,. . ., N� 1. The total deviations of estimation errors is

defined as an average of the loss function L{ε(nm, k)} calculated for each frequency
k¼ 0, 1,. . ., N� 1:

D kð Þ ¼ 1

M

X
nm2NM

L ε nm; kð Þf g; ð6:107Þ

and will be referred as generalized deviations. For the sake of simplicity, let us

focus to the case of DFT withψðn, kÞ ¼ e� j2πkn=N and the loss functionL εf g ¼ εj j2.
The following notation will be used:

e nm; kð Þ ¼ f nmð Þe� j2πknm=N ) eF kð Þ ¼ mean e n1; kð Þ, . . . , e nM; kð Þf g:

According to Eqs. (6.106) and (6.107), the total deviations of estimation errors can

be calculated as:

D kð Þ ¼ 1

M

X
nm2NM

e nm; kð Þ � mean e n1; kð Þ, . . . ,e nM; kð Þf gj j2; ð6:108Þ

or equivalently, it can be written in terms of variance as follows:

D kð Þ ¼ var e n1; kð Þ, e n2; kð Þ, . . . , e nM; kð Þf g: ð6:109Þ

Furthermore, since f(n) is a K-components signal defined by Eq. (6.102), the

variable e(nm, k) can be written as:

e nm; kð Þ ¼
XK
i¼1

aie
j2πkinm=Ne� j2πknm=N ¼

XK
i¼1

aie
j2π ki�kð Þnm=N: ð6:110Þ

It is important to note that e(nm, k) has the form of random variables given by

Eq. (6.76) in Sect. 6.4. Depending on whether the frequency point k corresponds to
a position of signal component or not, we observe two characteristic cases:

(a) k ¼ kq (position of the q-th component):

ea nm; kð Þ ¼
XK

i¼1, i 6¼q
aie

j2π ki�kð Þnm=N: ð6:111Þ
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(b) k 6¼ ki, for any i¼ 1, 2, . . ., K:

eb nm; kð Þ ¼
XK
i¼1

aie
j2π ki�kð Þnm=N: ð6:112Þ

According to the derivations in Sect. 6.4, particularly the expressions Eqs. (6.83)

and (6.84), the variances of random variables are given by:

σ2 ea nm; kð Þf g ¼ M
N �M

N � 1

XK
i¼1, i 6¼q

a2i ;

σ2 eb nm; kð Þf g ¼ M
N �M

N � 1

XK
i¼1

a2i : ð6:113Þ

Therefore, the observed cases are asymptotically related as:XK

i¼1, i6¼q a
2
iXK

i¼1 a
2
i

< 1: ð6:114Þ

A similar inequality holds for other norms. It can be used as an indicator whether a

considered frequency k belongs to the signal component or not. In other words, the

variance (or any deviation in general) will have lower values at K signal frequencies

than at the N�K frequencies that do not contain signal components.

An illustration of variance at signal and non-signal positions is given in Fig. 6.12

(signal with three sinusoidal components is used). The Fourier transform of the full

set of samples is shown in Fig. 6.12a in order to see the signal components

positions. The total deviations are given in Fig. 6.12b (the number of available

samples isM¼ 25%N ). It is obvious that the total deviations have smaller values at

the positions of signal components, which can be used to detect their frequencies.

Another way to combine compressive sensing with the robust estimation theory

is in implementation of the L-estimation approach for noisy signals presented in

Fig. 6.12 (a) The Fourier transform of original signal, (b) variances at signal (marked by red
symbols) and non-signal positions
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Chap. 1. Namely, in the L-estimation, the possibly corrupted signal samples are

discarded and the transform domain representation is calculated using the

remaining samples. Although the noise will be removed, discarding a certain

amount of samples will decrease the quality of transform domain representation.

If the discarded samples are treated as the missing samples in the context of CS,

then these discarded samples can be accurately recovered using CS reconstruction

algorithms. Therefore, the L-estimation transforms can benefit from the CS

approach to achieve high quality signal representation.

6.5.1 Algorithm Based on Generalized Deviations

In order to summarize the above theoretical considerations, we present one simple

algorithm based on the total deviations. The description of the algorithm steps

follows.

1. Calculate the Fourier transform estimate eF kð Þ and the generalized deviation D
(k). Choose the norm p according to the assumed noise model.

2. Find the total deviation minima by applying the threshold:

k ¼ arg D kð Þ < Tf g; ð6:115Þ

where Τ can be calculated, for example, with respect to median{D(k)}, e.g.,
α � median D kð Þf g (where α is a constant close to 1). The vector of positions

k should contain all signal frequencies:

ki 2 k for any i¼ 1,. . .,K.

3. Set eF kð Þ ¼ 0 for frequencies k =2 k.

4. The estimates of the DFT values can be calculated by solving the set of

equations, at the localized frequencies from the vector k. Assume that

k contains only K frequencies belonging to the signal components: k¼ {k1,
k2,. . .,kK}. We set a system of equations:XK

i¼1 F kið Þe j2πkinm ¼ f nmð Þ for nm 2 NM: ð6:116Þ

The CS matrix is formed as a partial DFT matrix: columns correspond to the

positions of available samples, rows correspond to the selected frequencies. The

system is solved in the least square sense:

F ¼ ðAT
csAcsÞ�1AT

cs fðNMÞ:

The reconstructed components in F are exact for all frequencies ki.
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6.6 Applications of Compressive Sensing Approach

6.6.1 Multicomponent One-Dimensional Signal
Reconstruction

In order to illustrate compressive sensing reconstruction, first we consider a sparse

signal composed of a few non-zero components, e.g., 5 different sinusoids. The

signal length is N¼ 500 samples. The analytic form of signal can be written as:

f x nð Þ ¼
X5
i¼1

sin 2π f ið Þn=Nð Þ, n ¼ 0, . . . ,N � 1; ð6:117Þ

where the vector of frequencies is: f ¼ 25 45 80 100 176½ 	.
In the Fourier domain, the signal consists of five components. Consequently, the

signal can be considered as sparse in the frequency domain. Thus, the signal

reconstruction can be done by using a small set of samples that are chosen randomly

from 500 signal samples. The measurements are taken from the time domain, while

the sparsifying matrix is obtained by taking the first M¼ 150 rows of the permuted

inverse Fourier basis matrix.

The signal is reconstructed by using 30 % of the total number of coefficients. The

original and the reconstructed signals in the time domain are shown in Fig. 6.13.

Fig. 6.13 (a) The original signal, (b) the reconstructed signal, (c) the reconstruction error
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The original and the reconstructed Fourier transform of this signal are shown in

Fig. 6.14.

The reconstruction error is very small and negligible comparing to the signal

amplitudes (an average absolute error is e ~ 10�4, while the average signal ampli-

tude is higher than 1). The maximal and mean absolute errors for different numbers

of measurements M are plotted in Fig. 6.15.

Next we consider an audio signal representing a flute tone, with a total length of

2000 samples. In this application we will use the DCT transform domain (for the

matrixΨ). The rows ofΨ are then randomly permuted and the firstM rows are used

for sensing. The signal is reconstructed by using M¼ 700 random measurements

out of N¼ 2000 signal samples. The results are shown in Fig. 6.16. By using the

listening test it is proved that the quality of the reconstructed audio file is preserved

without introducing any audible distortions.

6.6.2 Compressive Sensing and Image Reconstruction

In this section, we consider the compressive sensing applications to image

processing. Hence, let us consider the images Lena and Baboon (of size

Fig. 6.14 (a) The Fourier transform of the original signal, (b) The Fourier transform of the

reconstructed signal

Fig. 6.15 The maximal and the mean absolute errors of signal reconstruction
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256� 256). First we split the image into block of size 64� 64. The compressive

sensing is performed as follows:

• Each block is represented as a vector f with N¼ 4096 elements;

• As an observation set we select only M¼ 1500 random measurements (within a

vector y) from the block elements;

• The DCT (of size 4096� 4096) is used, while A¼ΦΨ is obtained by taking

M rows of the randomly permuted transform matrix Ψ.

Fig. 6.16 (a) The original (left) and reconstructed (right) flute signal, (b) a zoomed-in region of

the original (left) and reconstructed (right) signal, (c) the Fourier transform of the original (left)
and reconstructed (right) signals
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The original and the reconstructed Lena and Baboon images are shown in

Fig. 6.17. Note that the quality of reconstructed images needs to be further

improved due to the fact that the images are not strictly sparse in the DCT domain.

6.6.2.1 Total-Variation Method

One of the approaches used in various image processing applications is based on the

variational parameters, i.e., the total-variation of an image. An example of using the

total-variationmethod is denoising and restoringofnoisy images.Hence, ifxn ¼ x0 þ e
is a “noisy” observation of x0, we can restore x0 by solving the following minimization

problem:

min
x

TV xð Þ s: t: xn � xk k2
2
< ε2; ð6:118Þ

where ε ¼ ek k22 should holds and TV denotes the total-variation. The total-variation

of x represents the sum of the gradient magnitudes at each point and can be

approximated as:

Fig. 6.17 ‘1-minimization based reconstruction: (a) the original “Lena” image, (b) the

reconstructed “Lena” image, (c) the original “Baboon” image, (d) the reconstructed “Baboon”

image
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TV xð Þ ¼
X
i, j

Di, jx
�� ��

2
, Di, jx ¼ x iþ 1, jð Þ � x i; jð Þ

x i, jþ 1ð Þ � x i; jð Þ
� �

: ð6:119Þ

The TV based denoising methods tend to remove the noise while retaining the

details and edges. The TV approach could be applied in compressive sensing to

define an efficient reconstruction method. Thus, in the light of compressive sensing

we may write:

min
x

TV xð Þ s: t: Ax� yk k2
2
< ε2: ð6:120Þ

TV minimization provides a solution whose variations are concentrated on a small

number of edges. The results obtained by applying the TV minimization algorithm

for image reconstructions are given in Fig. 6.18. The algorithm is applied to 64� 64

blocks. The total number of samples per block is N¼ 4096, while the random

M¼ 1500 measurements are used for reconstruction (the DFT matrix is used).

Note that the quality of results is significantly improved compared to the images

in Fig. 6.17. The l1-magic toolbox (see the link given in the literature) is used for

solving the minimization problems.

Fig. 6.18 TV reconstruction: (a) the original “Lena” image, (b) the reconstructed “Lena” image,

(c) the original “Baboon” image, (d) the reconstructed “Baboon” image
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6.6.2.2 Gradient-Based Image Reconstruction

Next, we consider the application of gradient-based algorithm presented in

Sect. 6.3.2 to the image reconstruction. The reconstruction is performed on a

block basis. Assume that the i-th image block is denoted by I(n,m) with

M available pixels out of N elements.

y n;mð Þ ¼
I n;mð Þ, for n;mð Þ 2 Ω

0, for n;mð Þ 2 N\Ω

(
; ð6:121Þ

where the set of available pixels is denoted byΩ, while the total set of a block pixels
is N. Then, only on the position of missing pixels the values of y are changed as

follows:

yþ n;mð Þ ¼ yi n;mð Þ þ Δ, for n;mð Þ 2 N\Ω ,

y� n;mð Þ ¼ yi n;mð Þ � Δ, for n;mð Þ 2 N\Ω
ð6:122Þ

where Δ ¼ max n;mð Þ2Ω I n;mð Þj jf g, while i denotes the i-th iteration. Furthermore,

the gradient vector is calculated as follows:

Gi n;mð Þ ¼ η DCTþð Þ � η DCT�ð Þ
N

, n;mð Þ 2 N\Ω; ð6:123Þ

where DCTþ and DCT� denote 2D DCT of image blocks with changed values

yþ n;mð Þ and y� n;mð Þ, and:

η DCTþð Þ ¼
XN�1

k1¼0
XN�1

k2¼0 DCTþ k1; k2ð Þj j,

η DCT�ð Þ ¼
XN�1

k1¼0
XN�1

k2¼0 DCT� k1; k2ð Þj j:

The gradient vector on the positions of available pixels n;mð Þ 2 Ω is zero. The

pixels values are updated as follows:

yiþ1 n;mð Þ ¼ yi n;mð Þ þ Gi n;mð Þ: ð6:124Þ

The result obtained by applying the gradient-based image reconstruction algo-

rithm using 16� 16 blocks is given in Fig. 6.19. The Lena image is firstly

preprocessed in the DCT domain: all except the 32 highest coefficients are set

to zero in each block.
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6.7 Examples

6.1. Consider a set of samples with one missing sample at the last position:

f¼ [0.7071þ 0.7071j, j, �0.7071þ 0.7071j, �1, �0.7071� 0.7071j, �j,
0.7071� 0.7071j, P].

Determine the sample value P such that the solution is sparse in the Fourier

transform domain.

Solution:

The total number of samples is N¼ 8, while the number of available samples is

M¼ 7. The missing sample is on the 8th position within the original signal

vector f. Hence, the measurement vector y can be defined as follows:

y ¼ f 1ð Þ, f 2ð Þ, . . . , f 7ð Þ½ 	:

Now we can calculate N coefficients of the Fourier transform (Fig. 6.20)

corresponding to the measurement vector y. In other words, it has the same

result as if we calculate Fourier transform of f assuming that P¼ 0.

Fig. 6.19 Gradient-based image reconstruction: (a) the original “Lena” sparsified image, (b) the
reconstructed “Lena” image

Fig. 6.20 The Fourier

transform vector

(8 coefficients) of y
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Due to the sparsity assumption, we can observe from the Fourier transform

that the signal contains one component at k¼ 1 which obviously originates

from a single sinusoid. The remaining spectral components appear as a con-

sequence of missing sample. Now we can show that the sparse solution is

achieved if P corresponds to the appropriate sample of the sinusoid.

According to the definition, the Fourier transform of signal f with missing

sample P can be written as:

X kð Þ ¼
X7
n¼1

f nð Þe� j2πnk=8 þ Pe� j2π8k=8

¼
X8
n¼1

f nð Þe� j2πnk=8 þ P� f 8ð Þð Þe� j2π8k=8

¼ Nδ k � 1ð Þ þ P� f 8ð Þð Þe� j2π8k=8

Since we are searching for the sparsest X:

min Xk k0 subject to y ¼ AX;

we can determine the missing value P as: P ¼ f 8ð Þ, where f represents a

sinusoid in the form: f nð Þ ¼ e j2πn=N , n ¼ 1, 2, . . . , 8. Therefore, we can

conclude P ¼ f 8ð Þ ¼ e j2π8=8 ¼ 1.

6.2. Consider a signal in the form:

f ðnÞ ¼ 2:5expð2π j8n=NÞ þ 4expð2π j24n=NÞ, n ¼ 1, . . . , 32:

The number of available samples is M¼ 16 out of the total number of

samples N¼ 32. The positions of available samples are given in the vector p:

p¼ [7, 22, 23, 14, 8, 27, 2, 32, 19, 15, 26, 5, 31, 29, 10, 20];

Using the threshold with probability P¼ 0.95 perform the signal reconstruc-

tion from the available set of measurements.

Solution:

The first step is to calculate the variance of spectral noise that appears in the

Fourier transform domain due to the missing samples.

σ2MS ¼ M
N �M

N � 1

XK
i¼1

ai
2 ¼ M

N �M

N � 1

1

M

X
n2 p

f nð Þj j2
 !

¼ 8:2581 � 22:25 ¼ 183:7419

Further, we calculate the threshold value for P(T )¼ 0.95 using the follow-

ing expression:
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T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σMS

2log 1� P Tð Þ1N
� �r

¼ 34:39:

Since we need the normalized threshold value: T=N ¼ 1:0747.
The initial Fourier transform is calculated by assuming zero values at the

position of missing samples. The Fourier transform coefficients are plotted in

Fig. 6.21a. The thresholding procedure is then applied to the initial Fourier

transform vector X.
The positions of signal components in the Fourier transform vector X are

determined as follows:

k ¼ arg Xj j > T

N

� �
¼ 9, 25½ 	:

The compressive sensing matrix is obtained from the inverse Fourier trans-

form matrix by keeping only the rows that corresponds to available samples

(rows defined by vector p) and columns that correspond to vector k. The

inverse DFT matrix for N¼ 32 is given below.

Ψ ¼

1 1 1 1 . . . 1

1 e j
2π
32 e2 j

2π
32 e3 j

2π
32 . . . e31 j

2π
32

1 e2 j
2π
32 e4 j

2π
32 e6 j

2π
32 . . . e62 j

2π
32

. . . . . . . . . . . . . . . . . .

1 e30 j
2π
32 e60 j

2π
32 e90 j

2π
32 . . . e930 j

2π
32

1 e31 j
2π
32 e62 j

2π
32 e93 j

2π
32 . . . e961 j

2π
32

266666666664

377777777775
;

Then, Acs ¼ Ψ p; kð Þ. The least square problem is solved:

Fig. 6.21 (a) The initial discrete Fourier transform and normalized threshold, (b) the

reconstructed discrete Fourier transform of signal f
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eX ¼ Acs
TAcs

� �1
Acs

Ty;

resulting in X
e
¼ ½4 j, � 2:5 j	 and thus eX��� ��� ¼ 4, 2:5½ 	. The reconstructed

vector of the original Fourier transform is obtained as (Fig. 6.21b):

F ¼ X
e
, for k 2 ½9, 25	
0, otherwise

:

(

6.3. The original signal is defined in the form:

f ðnÞ ¼ a1ψ5ðnÞ þ a2ψ10ðnÞ þ a3ψ13ðnÞ þ a4ψ21ðnÞ þ a5ψ40ðnÞ þ a6ψ45ðnÞ,

where ψ i(n) represents a Hermite function of the i-th order, while

a1 ¼ a2 ¼ a3 ¼ a4 ¼ a5 ¼ a6 ¼ 1. The original signal length is N¼ 60,

while the number of available samples is M¼ 30. Define the signal recon-

struction problem in the Hermite transform domain using the analogy with the

Fourier transform domain and reconstruct the missing samples.

Solution:

Note that the signal is made of a linear combination of 6 Hermite functions.

Assume that we use N¼ 60 Hermite functions in the Hermite expansion. Thus,

the Hermite transform coefficients are calculated as:

C¼Η f;

where C is a column vector of Hermite transform coefficients, f is a column

vector of original time domain signal samples, while the Hermite transform

matrix is given by:

H ¼ 1

N

ψ0 0ð Þ
ψN�1 0ð Þð Þ2

ψ0 1ð Þ
ψN�1 1ð Þð Þ2 . . .

ψ0 N � 1ð Þ
ψN�1 N � 1ð Þð Þ2

ψ1 0ð Þ
ψN�1 0ð Þð Þ2

ψ1 1ð Þ
ψN�1 1ð Þð Þ2 . . .

ψ1 N � 1ð Þ
ψN�1 N � 1ð Þð Þ2

. . . . . . . . . . . .

ψN�1 0ð Þ
ψN�1 0ð Þð Þ2

ψN�1 1ð Þ
ψN�1 1ð Þð Þ2 . . .

ψN�1 N � 1ð Þ
ψN�1 N � 1ð Þð Þ2

266666666664

377777777775
Recall that: Ψ0 nð Þ ¼ 1ffiffi

π4
p e�n

2=2, Ψ1 nð Þ ¼
ffiffi
2
p

nffiffi
π4
p e�n

2=2;

Ψ p nð Þ ¼ n
ffiffiffi
2
p

q
Ψ p�1 nð Þ �

ffiffiffiffiffiffiffi
p�1
p

q
Ψ p�2 nð Þ, 8 p � 2, where points n are zeros

of the N-th order Hermite polynomial.

The original signal and its Hermite transform are illustrated in Fig. 6.22.
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Now, we consider the measurement vector y obtained from f by randomly

selecting M out of N samples, at the positions:

p¼ [46, 58, 15, 26, 9, 11, 8, 27, 54, 28, 35, 2, 47, 6, 17, 29, 60, 51, 16,

23, 3, 42, 56, 57, 34, 45, 38, 22, 43, 37].

The initial vector of Hermite coefficients that correspond to measurements

y is calculated as:

Cy¼Hpy;

where Hp is obtained from H by omitting rows that correspond to missing

samples and keeping only the rows that correspond to positions of available

samples defined by vector of positions p. Vector Cy is plotted in Fig. 6.23.

Now, we can apply a simple threshold on Cy, for example:

k ¼ arg Cyj j > 0:3f g;

resulting in a vector of positions k:

[ , 7, , ,  , 24, 35,5 10 13 21 4 , 43, ]0 54=k .

Within the vector of selected positions k, we have 6 positions corresponding

to the signal components (marked in red), while remaining 4 positions are

Fig. 6.22 (a) The reconstructed signal in the time domain, (b) the reconstructed Hermite

transform of the signal

Fig. 6.23 A vector of

Hermite coefficients

corresponding to the

available measurements y
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false. However, false components can be eliminated by solving the system in

the least square sense, which will set zero values for false components and the

exact values for the true signal components.

The solution of the equation:

y ¼ Acs
eC; ð6:125Þ

can be found in the least square sense as follows:

eC ¼ AT
csAcs

� �1
AT

csy: ð6:126Þ

The compressive sensing matrix Acs is obtained from the inverse Hermite

transform matrix Ψ by keeping only rows on the positions defined by p and

columns on the positions defined by k:

Acs ¼ Ψ p; kð Þ; ð6:127Þ

Ψ ¼
ψ0 0ð Þ ψ1 0ð Þ . . . ψN�1 0ð Þ
ψ0 1ð Þ ψ1 1ð Þ . . . ψN�1 1ð Þ
. . . . . . . . . . . .

ψ0 N � 1ð Þ ψ1 N � 1ð Þ . . . ψN�1 N � 1ð Þ

2664
3775

The resulting vector eC has only 10 entries (the number of entries corre-

sponds to the length of vector k):

eC ¼ 1 , 0, 1, 1, 1, 0, 0, 1, 0, 1½ 	:

Note that the non-zero coefficients are obtained only at the positions that

correspond to true signal components.

The reconstructed sparse Hermite transform vector is given by:

CR ¼
eC, for k 2 k
0, otherwise

�
ð6:128Þ

and it is illustrated in Fig. 6.24, as well as the reconstructed signal in the time

domain.

6.4. For a signal in the form:

f nð Þ ¼
XK
i¼1

aie
j2πkin=N , for N ¼ 128 and n ¼ 1, 2, . . . ,N ð6:129Þ

perform the reconstruction using single iteration threshold base algorithm for a

different number of components K¼ {1,. . .,30}, and a different number of
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available samplesM¼ {1,2,. . .,120}. The amplitudes of components should be

chosen randomly from the set:

ai ¼ 2 : 0:05 : 5, while the signal frequencies are chosen randomly from the

integer set ki¼ 1:128. For each chosen par of (M, K ) perform the reconstruc-

tion 10 times and find the mean values of a signal to reconstruction-error ratio

(SRR).

Solution:

The SRR is calculated as follows:

SRR m; kð Þ ¼ 10log10

XN
n¼1

f nð Þj j2

XN
n¼1

f nð Þ � f m,krec nð Þ�� ��2 ; ð6:130Þ

where f m;krec (n) represents the reconstructed signal for a number of available

samples M¼m and a number of components (sparsity level) K¼ k. The

threshold is set as follows:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σMS

2log 1� P Tð Þ1N
� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σMS

2log 1� 0:9
1
N

� �r
;

or in other words the probability is set to 0.9 (90 %).

The SRR is calculated for different values of M and K, namely:

M¼ 1,2,..,120 and K¼ 1,2,. . .,30. The results are depicted in Fig. 6.25. The

values of K are on the horizontal axis, while the values ofM are on the vertical

axis. It can be observed that as the number of components increases, we need

to increase the number of measurements in order to achieve successful recon-

struction with SRR> 50 dB.

6.5. Sparsify the grayscale image in the DCT domain such that in each 16� 16

block there is only 1/8 of nonzero coefficients. From each block discard

randomly 60 % of pixels. Perform image reconstruction using the adaptive

gradient-based algorithm in the 16� 16 block-based DCT domain.

Fig. 6.24 (a) The reconstructed signal in the time domain, (b) the reconstructed Hermite

transform of the signal
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Solution:

The image is firstly divided into 16� 16 blocks and each block is then

sparsified as follows:

1: Block Image (i:iþ 16,j:jþ 16);

2: X DCT{Block}; (Calculate DCT of each block)

3: V X (Rearrange block to vector)

4: Ind arg{sort(abs(V)}; (Sort in descending order)

5: X(ind(Kþ 1:end)) 0; (Set all except K¼ 32 values to 0)

6: Block IDCT(Block);

For each 16� 16 Block, select 60 % of samples that will be declared as

missing and put a referent value 0 on the positions of missing samples:

7: Pos randperm(256);
8: Pos Pos(1: round(0.6*256));
9: Block (Pos) 0;

Then set the number of iteration to Iter¼ 150 and perform the gradient based

reconstruction method on each Block using the DCT transform to calculate the

concentration measure and the gradient vector. Note thatΔ¼ 128 is used in the

case of images. The set of available samples is denoted by

n;mð Þ 2 n1;m1ð Þ; n2;m2ð Þ; . . . ; nM;mMð Þf g.
10: For q¼ 1:Iter
11: Set i=2 n1; n2; . . . ; nMf g and j=2 m1;m2; . . . ;mMf g
12:

yþ n;mð Þ ¼ yq n;mð Þ þ Δδ n� i,m� jð Þ
y� n;mð Þ ¼ yq n;mð Þ � Δδ n� i,m� jð Þ

13: Xþ k1; k2ð Þ  DCT2 yþ n;mð Þf g
14: X� k1; k2ð Þ  DCT2 y� n;mð Þf g
15: Gq n;mð Þ  1

N

XN�1
k1¼0

XN�1
k2¼0

Xþ k1; k2ð Þj j � X� k1; k2ð Þj j

(Gradient corresponding to the missing pixel at (m,n) position)
16: yqþ1 n;mð Þ ¼ yq n;mð Þ � Gq n;mð Þ

Fig. 6.25 The signal to

reconstruction-error ratio in

[dB]
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(Each value at the position of missing pixel is changed in the direction of the

gradient)

Note that the change on the positions of available pixels is 0, and conse-

quently the gradient on the position of available signal samples is 0 as well.

17: βq ¼ arcos

XN�1
n¼0

XN�1
m¼0

Gq�1 n;mð ÞGq n;mð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1
n¼0

XN�1
m¼0

Gq�1 n;mð Þ� 2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1
n¼0

XN�1
m¼0

Gq n;mð Þ� 2s
18: if βq > 170


19: Δ Δ=
ffiffiffiffiffi
10
p

20: End

21: End
The procedure should be repeated in the same way for each image block

(Fig. 6.26).

Fig. 6.26 (a) The original image, (b) the sparsified image, (c) the image with 60 % missing

samples, (d) the reconstructed image
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Chapter 7

Digital Watermarking

Advances in the development of digital data and the Internet have resulted in

changes in the modern way of communication. A digital multimedia content, as

opposed to an analog one, does not lose quality due to multiple copying processes.

However, this advantage of digital media is also their major disadvantage in terms

of copyright and the unauthorized use of data.

Cryptographic methods and digital watermarking techniques have been intro-

duced in order to protect the digital multimedia content. Cryptography is used to

protect the content during transmission from sender to recipient. On the other hand,

digital watermarking techniques embed permanent information into a multimedia

content. The digital signal embedded in the multimedia data is called digital

watermark. A watermarking procedure can be used for the following purposes:

ownership protection, protection and proof of copyrights, data authenticity protec-

tion, tracking of digital copies, copy and access controls.

The general scheme of watermarking is shown in Fig. 7.1. In general, a

watermarking procedure consists of watermark embedding and watermark detec-

tion. Although the low watermark strength is preferable in order to meet the

imperceptibility requirement, one must ensure that such a watermark is detectable,

as well. This can be achieved by using an appropriate watermark detector.

Watermark embedding can be based on additive or multiplicative procedures. In

multiplicative procedures, the watermark is multiplied by the original content.

Watermark detection can be blind (without using the original content) or

non-blind (in the presence of the original content).

7.1 Classification of Digital Watermarking Techniques

A number of different watermarking techniques have been developed. Most of them

can be classified into one of the categories given in Fig. 7.2. From the perceptual

aspect, the watermark can be classified as either perceptible or imperceptible.
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Noticeable watermark visibly changes the original content. It is sometimes used to

protect images and videos, but generally it is not very popular nowadays. This

technique involves embedding characters that uniquely identify the owners of the

content and appear as a background image, or as a visible sign. However, water-

mark of this type can be removed. Almost all currently used techniques fall into the

class of imperceptible techniques.

Imperceptible techniques are further divided into robust techniques, semi-fragile

and fragile watermarking techniques. Fragile watermarking assumes embedding of

certain watermark that will be significantly damaged or removed in an attempt to

modify the content. These techniques are useful in proving the data authenticity. In

semi-fragile watermarking, the watermark should be resistant to certain signal

Fig. 7.1 A block scheme of a watermarking procedure

Fig. 7.2 Classification of digital watermarking techniques
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processing techniques (e.g., compression), while it is fragile under any other attack.

However, the most commonly used techniques are based on the robust

watermarking and are considered in the next sections.

Robust techniques involve embedding a watermark in the original signal, such

that the watermark removal causes serious degradation of the signal quality.

Watermark should be designed to be robust to the standard signal processing

approaches (compression, filtering, etc.), as well as to intentional attempts to

remove the watermark.

Classification in terms of the embedding domain
Watermarking techniques are further divided by the domains in which the water-

mark is embedded. Namely, the watermark can be embedded directly in the signal

domain, or in one of the transform domains. The choice of the watermarking

domain depends on the type of multimedia data and the watermarking application.

The most frequently used transform domains are based on the DFT, DCT, and DWT

transforms. The transform domain watermarking is more convenient for modeling

the spectral characteristics of watermark according to the human perceptual model.

For highly nonstationary signals, the modeling can be achieved by using time-

frequency transforms.

7.2 Common Requirements Considered in Watermarking

Depending on the application and the type of data to be watermarked, the

watermarking procedure should fulfill a number of requirements. In the sequel,

we discuss some general and very common watermarking requirements.

1. The watermark should be accessible only to the authorized users. This issue is

referred as security of the watermarking procedure and it is generally achieved

by using cryptographic keys.

2. The watermark detectability should be assured regardless of the conventional

signal processing or malicious attacks that may be applied.

3. Generally, although one should provide an unremovable watermark, it should be

imperceptible within the host data.

4. The watermark should convey a sufficient amount of information.

As stated above, the first requirement is related to the security of the watermark

and watermarking procedure in general. In some applications, the specific security

keys (which can be encrypted) are used during the watermark embedding and

extraction. If the watermark is created as a pseudo-random sequence, then the

key used to generate a sequence can be considered as a watermarking key.

The next requirement is watermark robustness, which is one of the main

challenges when designing the watermarking procedure. The watermark should

be robust not only to the standard signal processing techniques, but also to the

malicious attacks aiming to remove the watermark. All algorithms that may lead to
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the loss of the watermark information are simply called attacks. Some of the

common examples are compression algorithms, filtering, change of the data format,

noise, cropping signal samples, resampling, etc. The list of commonly present

attacks for audio signals and images is given in Table 7.1.

Perceptual transparency is one of the most important requirements. Watermark

should be adapted to the host content, and should not introduce any perceptible

artifacts or signal quality degradations. However, the imperceptibility is usually

confronted with the watermark robustness requirement. In order to be imperceptible,

the watermark strength should be low, which directly affects its robustness. Hence,

an efficient watermarking procedure should always provide a trade-off between the

imperceptibility and robustness. In order to perform the watermark embedding just

below the threshold of perception, various masking procedures can be employed.

In some applications it is desirable that the watermark convey a significant number

of bits, which will be extracted by detector. Hence, it is sometimes required that the

watermark data rate (payload) is high.The property that describes the ability to embed a

certain amount of information is known as a capacity of the watermarking algorithm.

Besides the general watermarking requirements discussed above, there could be

some specific requirements, as well, related to the following issues:

– Real-time implementation,

– Complete extraction/reconstruction of the watermark at the decoder,

– The absence of the original data during the watermark extraction (blind

extraction), etc.

7.3 Watermark Embedding

This section considers the additive and multiplicative watermark embedding

techniques.

Table 7.1 Common attacks in audio and image watermarking procedures

Attacks

Audio watermarking Image watermarking

Resampling Requantization

Wow and flutter JPEG compression

Requantization Darkening

mp3 with constant bit rate Lightening

mp3 with variable bit rates Mean filter (of size 3� 3, 5� 5, 7� 7)

Pitch scaling Median filter (of size 3� 3, 5� 5, 7� 7)

Audio samples cropping Image cropping

Echo and time-scale modifications Image resize

Filtering Rotation

Amplitude normalization Adding noise Gaussian or impulse
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Additive embedding techniques can be defined as:

Iw ¼ I þ αw; ð7:1Þ

where I represents the vector of signal samples or transform domain coefficients

used for watermarking, Iw is the vector of watermarked coefficients, w is the

watermark, while the parameter α controls the watermark strength. If the parameter

α should be adjusted to the signal coefficients then the watermark embedding can be

written as:

Iw ¼ I þ α Ið Þw: ð7:2Þ

Another frequently used approach is multiplicative embedding, given by the

relation:

Iw ¼ I þ αwI: ð7:3Þ

In order to provide that the watermark does not depend on the sign of selected

watermarking coefficients, a modified version of Eq. (7.3) can be used:

Iw ¼ I þ αw Ij j: ð7:4Þ

Multiplicative watermarking is often used in the frequency domain, to ensure that

the watermark energy at a particular frequency is proportional to the image energy

at that frequency. An additional advantage of multiplicative watermark embedding

is that it is difficult to estimate and remove watermark by averaging a set of

watermarked signals, which is one of the common attacks.

Let us consider an example of robust imagewatermarking in the transform domain.

The two-dimensional DFT of an image is shown in Fig. 7.3a, while its

two-dimensional DCT is illustrated in Fig. 7.3b. Note that the DCT is real and has

only positive part of the spectrum,making it suitable for applications inwatermarking.

Fig. 7.3 (a) The DFT of “Baboon” image, (b) The DCT of “Baboon” image
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The region marked by the red line corresponds to low-frequency coefficients,

which contain most of the image energy. Consequently, the modification of

these coefficients can cause significant image quality degradation. Therefore, the

low-frequency coefficients are usually avoided in watermarking. Outside the

blue circle, we have high-frequency components. These components carry certain

image details and can be filtered out, without significant image degradation.

Therefore, the high-frequency components are also often omitted in watermarking.

It follows that the watermarking should be done in the middle frequency part

(between the blue and red circles in Fig. 7.3).

Consider the sorted DCT coefficients of an image. Given the nature of the DCT

transform, it is necessary to omit the first L coefficients (which are mostly the

low-frequency components) and choose the next M coefficients (mostly belonging

to the middle frequencies). Watermarking is then performed as:

Iw ið Þ ¼ I ið Þ þ α I ið Þj jw ið Þ for i ¼ Lþ 1, Lþ 2, . . . , LþM; ð7:5Þ

where I(i) denotes a DCT coefficient of an image. The watermark w can be created

as a pseudo-random sequence. The inverse DCT is then applied to obtain the

watermarked image. The original and watermarked “Lena” images are shown in

Fig. 7.4 (peak signal to noise ratio PSNR¼ 47 dB).

7.4 Watermark Detection

7.4.1 Hypothesis Testing Approach

The goal of each algorithm for watermark detection is to provide a reliable proof of

the watermark presence within the signal. Denote by Ix a set of coefficients on

which the watermark detection is performed (Ix can be either Iw or I depending
whether the watermark is present or not), and the watermark is w. A general

Fig. 7.4 (a) Original “Lena” image, (b) watermarked “Lena” image
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approach for watermark detection is based on a hypothesis testing problem. The
assumptions are:

H0: Ix does not contain watermark w,
H1: Ix contains watermark w.

The problem of watermark detection is based on a reliable threshold, used to

decidewhether a watermark is present or not. The threshold is determined by defining

a criterion that ensures a minimum probability of detection error. Since the water-

mark detection can be viewed as a detection of signal in noise, the likelihood ratio is
used to minimize the error. Detection errors can occur in two cases: G10—when the

assumption of H0 is accepted as true, although the correct hypothesis is H1, G01—

when the assumption H1 is accepted as true, but the correct hypothesis is H0.

The criterion that determines the presence of the watermark is defined as

follows:

Φ Ixð Þ ¼ 1, Ix 2 R1,

0, Ix 2 R0;

�
ð7:6Þ

where R1 and R0 are regions in which the assumptions H1 and H0 are tested. In order

to minimize error during detection, a likelihood ratio l is defined by using the

conditional probability density functions p Ix
��H1

� �
and p Ix

��H0

� �
:

l Ixð Þ ¼ p Ix
��H1

� �
p Ix

��H0

� � : ð7:7Þ

The minimum probability of error will be achieved when the region R1 is deter-

mined as:

R1 ¼ Ix : l Ixð Þ > p0P01

p1P10

� �
; ð7:8Þ

where p0 and p1 are a priori known probabilities of the assumptions H0 and H1

occurrence, while P01 and P10 are decision weights associated with G01 and G10,

respectively. The criterion for the detection can be written as:

Φ Ixð Þ ¼ 1, l Ixð Þ > p0P01

p1P10

0, otherwise:

8<
: ð7:9Þ

Therefore, the detection is done by comparing the likelihood ratio with:

λ ¼ p0P01

p1P10

: ð7:10Þ
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The threshold λ can be set to minimize the total probability of error that occurs

during detection:

Pe ¼ p0P f þ p1 1� Pdð Þ; ð7:11Þ

where Pf is the probability that the watermark is detected, when in fact it is not

present (false alarm), and (1�Pd) is the probability of watermark misdetection.

The error minimization procedure is commonly performed under the assumption

that P01¼P10 and p0¼ p1, or in other words for λ¼ 1. It means that the probabil-

ities of false alarm Pf and misdetection Pm¼ (1�Pd) are the same.

In practice, we usually have a predefined maximum false alarm probability from

which the threshold λ is calculated as follows:

ð1
λ

p l
��H0

� �
dl ¼ P f ; ð7:12Þ

where p l
��H0

� �
is the pdf of l under H0. After the threshold λ is determined, the

probability of misdetection is calculated as:

Pm ¼
ðλ

�1
p l

��H1

� �
dl: ð7:13Þ

7.4.1.1 Additive White Gaussian Model

Let us consider the procedure to minimize the detection error in the case of additive

white Gaussian noise (AWGN) model, which is the simplest one encountered in

practice. This model assumes that the coefficients are uncorrelated and have a

Gaussian distribution. Note that the watermark is considered as a noisy signal:

Ix ¼ I þ wþ n; ð7:14Þ

where Ix, I and w are the coefficients of the watermarked content, the original

content and the watermark, respectively. The watermarked content can be modified

in the presence of attack, which is modeled by noise n (white Gaussian noise).

Under the assumption that the original coefficients, as well as the noise coefficients,

are uncorrelated and follow the Gaussian distribution, Eq. (7.14) can be written as

follows:

Ix ¼ In þ w: ð7:15Þ

In also has the Gaussian distribution with the modified mean value and the variance

compared to the original content I. Now, the previously defined hypothesis can be

written as:
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H0 : Ix ¼ In
H1 : Ix ¼ In þ w:

In order to minimize the similarity measure l Ixð Þ ¼ p Ix

��H1

� �
p Ix

��H0

� � ; it is necessary to know
the conditional probability density function, which in the case of the Gaussian

distribution is defined as:

p Ix
��H1

� � ¼ YM
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2x

p e
� Ix ið Þ�μx�w ið Þð Þ2

2σ2x

p Ix
��H0

� � ¼ YM
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2x

p e
� Ix ið Þ�μxð Þ2

2σ2x ;

ð7:16Þ

where μx is the mean value of signal coefficients used in watermark detection, while

M is the length of watermark. Now the measure of similarity is calculated as:

l Ixð Þ ¼ p Ix
��H1

� �
p Ix

��H0

� � ¼
YM
i¼1

e
� Ix ið Þ�μx�w ið Þð Þ2

2σ2x

YM
i¼1

e
� Ix ið Þ�μxð Þ2

2σ2x

: ð7:17Þ

Equation (7.17) can be written in a simplified form by applying the logarithmic

function:

‘ Ixð Þ ¼
Xn
i¼1

1

2σ2x
Ix ið Þ � μxð Þ2 � Ix ið Þ � μx � w ið Þð Þ2

h i

¼ 1

2σ2x

Xn
i¼1

2Ix ið Þw ið Þ �
Xn
i¼1

2μxw ið Þ �
Xn
i¼1

w2 ið Þ
" #

;

ð7:18Þ

where ‘(Ix) indicates the natural logarithm function of l(Ix). Note that the last two

terms within the brackets do not depend on Ix. Therefore, the term representing

linear correlation of Ix and w is used as a watermark detector:

D ¼
XM
i¼1

Ix ið Þw ið Þ; ð7:19Þ

which is optimal under the considered assumptions and is called the standard

correlator. In the case when the signal statistics is not distributed according to the

Gaussian distribution, other detector forms can be used.
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According to the procedure for determining the general detection threshold λ, we
can now determine the threshold for the standard correlator as:

ð1
T p

p D
��H0

� �
dD ¼ P f ; ð7:20Þ

where p D
��H0

� �
is the pdf of detector responses D under H0. The pdf of D under H0

and H1 are illustrated in Fig. 7.5. If the response of the detector is D< Tp, we
conclude that the watermark is not present, and vice versa. In the case of equal

probabilities Pf¼ 1�Pd, the optimum threshold is A/2 (Fig. 7.5).

In order to determine the threshold and the probability of error, we need to know

how the watermark is embedded, the statistical characteristics of the image coeffi-

cients, as well as the characteristics of attacks.

7.4.2 A Class of Locally Optimal Detectors

According to the signal detection theory, it is difficult to define a general test that

maximizes the signal detection probability. Also, it is known that for detection of

weak signals a locally optimal detector can be created (in our case a watermark

signal is weak in comparison to the host signal). It is defined as follows:

D ¼ g
LO

Ixð Þ � w; ð7:21Þ

where gLO is the local optimum nonlinearity, defined by:

g
LO

Ixð Þ ¼ � p0 Ixð Þ
p Ixð Þ ; ð7:22Þ

with p(Ix) and p0(Ix) indicating the coefficients probability density function and its

derivative, respectively. Note that, the detector contains the nonlinear part gLO,
which is correlated with the watermark signal. If the coefficients have the Gaussian

distribution, the proposed detector corresponds to the standard correlator.

Fig. 7.5 Illustration of the errors that may occur in watermark detection
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7.4.2.1 The Most Commonly Used Distribution Functions

and the Corresponding Detector Forms

The coefficients distribution for most images can be modeled by the Gaussian,

Laplace, generalized Gaussian or Cauchy distribution functions. For example,

recall that the generalized Gaussian function can be defined as:

GGF ¼ αβ

2Γ 1=αð Þ e
�β x�μj jð Þα , α > 0, β ¼ 1

σ

Γ 3=αð Þ
Γ 1=αð Þ

� 	1=2
: ð7:23Þ

For α¼ 1, this function is equal to the Laplace distribution, and for α¼ 2 it is equal

to the Gaussian distribution. Figure 7.6 shows the coefficients distribution of an

image. The form of the detector, which corresponds to the generalized Gaussian

distribution, is given by:

D1 ¼
XM
i¼1

sign Ix ið Þð Þ Ix ið Þj jα�1w ið Þ; ð7:24Þ

while the detector form for Cauchy distribution, CF ¼ γ

π γ2þ x�δð Þ2ð Þ, is equal to:

D2 ¼
XM
i¼1

2 Ix ið Þ � δð Þ
Ix ið Þ � δð Þ2 þ γ2

w ið Þ: ð7:25Þ

Note that x (in the pdf) corresponds to the watermarked coefficients Ix in the

detector form (M is the length of watermarked sequence and watermark). It is

Fig. 7.6 The distribution of

coefficients: Gaussian

(green line) and Laplace

distribution (purple line)
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important to emphasize that the locally optimum detector form can be quite

sensitive to the pdf variations.

A simple measure of detection quality can be defined as:

R ¼ Dwr � Dwwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σwr2 þ σww2

p ; ð7:26Þ

whereD and σ are mean values and standard deviations of detector responses, while

the indices wr and ww are used for right keys (watermarks) and wrong keys (wrong

trials), respectively. The wrong trial is any sequence which is not the watermark,

but is generated in the same way.

7.4.3 Correlation Coefficient and Similarity Measure

In order to determine the similarity between the original watermark w and the

watermark w* extracted from the protected data at the detection side, we can use the

similarity measure defined as follows:

Simðw,w∗Þ ¼ w � w∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w � w∗

p : ð7:27Þ

The similarity measure is usually given in the form of the correlation coefficient,

which can be calculated as:

ρ w,w*ð Þ ¼

XM
i¼1

w ið Þw* ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

w ið Þð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1

w* ið Þ� �2s ; ð7:28Þ

where M is the length of watermark.

7.5 Examples of Watermarking Procedures

7.5.1 Audio Watermarking Techniques

Audio watermarking procedures are mainly based on the specific audio signal

characteristics and psychoacoustics. In the next subsections, a brief description of

audio watermarking approaches such as the spread-spectrum audio watermarking,

two-sets method and echo embedding, is provided.
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7.5.1.1 Spread-Spectrum Watermarking

Spread-spectrum watermarking is an example of correlation based method that

assumes a pseudo-random sequence embedding, where the standard correlator is

used for detection. This is a commonly used watermarking approach. The pseudo-

random sequence, r(n), i.e., the wide-band noise sequence, can be embedded in the

time or in the transform domain. This sequence is used to modulate the binary

message υ ¼ 0; 1f g, or equivalently b ¼ �1, 1f g. The watermarked sequence w nð Þ
¼ br nð Þ obtained in this way, is scaled according to the energy of the host signal s
(n), to provide a compromise between the watermark imperceptibility and robust-

ness. The watermark embedding can be done, for example, by an additive proce-

dure: sw nð Þ ¼ s nð Þ þ αw nð Þ:A suitable pseudo-random sequence should have good

correlation properties, in the way that it should be orthogonal to the other pseudo-

random sequences. The commonly used sequence is called the m-sequence (max-

imum length sequence), and its autocorrelation is given by:

1

M

XM�1

i¼0

w ið Þw i� kð Þ ¼
1, for k ¼ 0,

� 1

M
, for k 6¼ 0:

(
ð7:29Þ

7.5.1.2 Two Sets Method

This blind audio watermarking procedure is based on the two sets A and B of audio

samples. A value d (watermark) is added to the samples within the set A, while it is

subtracted from the samples in B:

a*i ¼ ai þ d, b*i ¼ bi � d;

where ai and bi are samples from A and B, respectively. When making decision

about watermark presence, the expected value E a* � b
*

h i
is employed, where ā*

and b
*

are mean values of samples a�i and b�i . This method is based on the

assumption that the mean values of the samples from different signal blocks are

the same, i.e., that E a� b

 � ¼ 0 holds (which may not be always the case in the

practice). Only in this case, the watermark can be detected as:

E a* � b
*

h i
¼ E aþ dð Þ � b� d

� �
 � ¼ E a� b
� �þ 2d ¼ 2d: ð7:30Þ

7.5.1.3 Echo Embedding

The echo embedding procedure can be realized according to:

x nð Þ ¼ s nð Þ þ αs n� dð Þ; ð7:31Þ
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where d represents a certain delay of the echo signal. The extraction of the

embedded echo requires the detection of delay d. The signal copy is usually delayed
for approximately 1 ms. The echo amplitude is significantly lower than the original

signal amplitude, and hence, the signal quality is not degraded. On the contrary, the

sound is enriched. There is also a variant of this procedure, where two delays are

considered: one is related to the logical value “1”, while the other is related to “0”.

The double echo embedding operation can be written as:

x nð Þ ¼ s nð Þ þ αs n� dð Þ � αs n� d � Δð Þ; ð7:32Þ

where the difference between delays corresponding to “1” and “0” is denoted by Δ,
and its value does not exceed four samples. The delay detection is done by using the

cepstrum autocorrelation, which is the inverse Fourier transform of the -

log-magnitude spectrum. The complexity of cepstrum calculation is one of the

main disadvantages of this method.

7.5.1.4 Watermarking Based on the Time-Scale Modifications

Time-scale modifications are related to compressing and expanding of the time

axis. The basic idea of time-scale watermarking is to change the time scale between

two successive extremes (maximum and minimum). The interval between two

extremes is divided into N segments with equal amplitudes. The signal slope is

changed within a certain amplitudes range according to the bits that should be

embedded. Namely, the steep slope corresponds to bit “0”, while the mild slope

corresponds to bit “1”.

7.5.2 Image Watermarking Techniques

A simple watermarking algorithm for digital image protection is based on the

additive watermark embedding procedure in the 8� 8 DCT domain. First, an

image is divided into 8� 8 blocks of pixels as in the case of JPEG algorithm.

Then, the 2D DCT transform is applied to each block separately. The watermark is

embedded into the set of selected coefficients. In order to provide a good compro-

mise between the watermark imperceptibility and robustness, the coefficients are

selected from the middle frequency region, as illustrated in Fig. 7.7.

Watermark embedding is based on the standard additive procedure: Iw ¼ I þ αw;
where I denotes the original middle-frequency DCT coefficients (from 8� 8 block),

while Iw are the watermarked DCT coefficients. Next, we perform the inverse DCT

transform that results in watermarked 8� 8 block. This is repeated for each block.

Watermark detection can be performed by using a standard correlation detector

(assuming that the distribution of selected coefficients can be modeled by the

Gaussian function). However, more accurate modeling can be obtained by using
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generalized Gaussian and Cauchy function, where the corresponding detectors D1

and D2 (defined by Eqs. (7.24) and (7.25)) are used for detection.

7.5.3 The Procedure for Watermarking of Color Images

Unlike the previous procedure, where the block-based DCT is performed, here we

use the 2D DCT transform of the entire image. The procedure is described in the

sequel.

(a) The selection of coefficients for watermark embedding is done through the

following steps:

1. The color channels are separated (e.g., R, G, B), Fig. 7.8.

2. 2D DCT is computed for each color matrix

3. The matrices of DCT coefficients are transformed into vectors and sorting

operation is performed

4. The largest L coefficients are omitted and the next M coefficients are

selected for watermarking.

(b) Watermark embedding

Let us denote the sorted DCT coefficients by I, while w is the watermark

created as a pseudo-random sequence. The watermarked DCT coefficients are

calculated as:

Iw ið Þ ¼ I ið Þ þ α � ��I ið Þ�� � w ið Þ, i ¼ Lþ 1, . . . ,M þ L;

where i denotes the coefficient position in the sorted sequence.

(c) Reorder the sequence into matrix form.

(d) Calculate the 2D inverse DCT (with rounding to integer values).

Fig. 7.7 A region of

middle frequency DCT

coefficients within 8� 8

block (shaded in gray)
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7.5.4 An Overview of Some Time-Frequency Based
Watermarking Techniques

The time-frequency based watermarking can be used for different types of multime-

dia data: audio signals, images and video signals. The time-frequency domain can be

efficient regarding the watermark imperceptibility and robustness. Namely, the

watermark with specific time-frequency characteristics can be designed and adapted

to the host signal components, which enhances the efficiency of the watermarking

procedure. Note that the time-frequency representations defined for one-dimensional

signals can be extended to two-dimensional case in order to be applied to images. In

this case, they are usually referred as the space/spatial-frequency representations.

1. The watermark can be created with specific space/spatial-frequency character-

istics, while its embedding can be done even in the space domain. This approach

is among the first space/spatial-frequency based image watermarking proce-

dures. Namely, a two dimensional chirp signal is used as watermark:

W x; yð Þ ¼ 2A cos ax2 þ by2
� � ¼ A e j ax2þby2ð Þ þ e� j ax2þby2ð Þ� 

: ð7:33Þ

Fig. 7.8 Color image “Lena” and the separated color channels
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The watermark is embedded within the entire image:

Iw x; yð Þ ¼ I x; yð Þ þW x; yð Þ: ð7:34Þ

It is interesting to observe that multiple different chirps with small amplitudes

can be used for watermarking. The parameters of the chirp signals and the

random sequence that defines the amplitudes of chirps, serve as the watermark

key. Since the watermark is embedded within the entire image in the spatial

domain, a proper masking that provides imperceptibility should be applied. Note

that the Wigner distribution provides an ideal representation for the chirp signal.

Hence, the watermark detection is performed by using a form of the Radon–

Wigner distribution:

P ωx;ωy;Wv

� � ¼ FT2D Iw x; yð ÞWv x; yð Þð Þj j2 ¼ð1
�1

ð1
�1

Iw x; yð ÞWv x; yð Þe� j xωxþyωyð Þdxdy
����

����
2

;
ð7:35Þ

where FT2D denotes the 2D Fourier transform, while:

Wv x; yð Þ ¼ e� j avx
2þbv y

2þcvxyð Þ: ð7:36Þ

Different values of parameters av, bv, and cv define a set of projection planes.

The additional term cvxy is used to detect some geometrical transformations, as

well. In order to make a decision about the watermark presence within the

image, the maxima of the Radon–Wigner distribution are calculated:

M av; bv; cvð Þ ¼ max
ωx,ωy

P ωx;ωy;Wv

� �
; ð7:37Þ

and compared with a reference threshold. This procedure provides robustness to

various attacks, some being a median filter, geometrical transformations (trans-

lation, rotation and cropping simultaneously applied), a high-pass filter, local

notch filter and Gaussian noise.

2. Digital audio watermarking can be done by using time-frequency expansion and

compression. The audio signal is firstly divided into frames of size 1024 sam-

ples, where the successive frames have 512 samples overlapping. If the original

frame is lengthened or shortened, the logical value 1 is assigned, otherwise the

“normal frames” corresponds to the logical value 0. The watermark is a sequence

obtained as a binary code of the alphabet letters, converted to the ASCII code.

The frames with signal energy level above a certain threshold are selected. The

signal is transformed to frequency domain and a psychoacoustic model is used to

determine the masking threshold for each selected frame. The frames length is

changed in frequency domain by adding or removing four samples with ampli-

tudes that do not exceed the masking threshold. It prevents a perceptual distor-

tion. In order to preserve the total signal length, the same number of expanded
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and compressed frames is used (usually an expanded frame is followed by a

compressed frame). The detection procedure is non-blind, i.e., the original signal

is required. The difference between the original and watermarked samples in

time domain will have diamond shape for the pair expanded-compressed frame

(Diamond frames), while the difference is flat and close to zero for unaltered

frames. The pair of Diamond frames is used to represent the binary 1, while the

logical values 0 are assigned to the unaltered frames. Hence, it is possible to

detect binary values, and consequently the corresponding alphabetical letters.

3. A spread spectrum based watermarking in the time-frequency domain
The watermark is created as:

wi nð Þ ¼ a nð Þmi nð Þpi nð Þ cos ω0 nð Þnð Þ; ð7:38Þ

where mi(n) is the watermark before spreading, pi(n) is the spreading code or the
pseudo-noise sequence (bipolar sequence taking the values þ1 and �1 with

equal probabilities), while ω0 is the time-varying carrier frequency which

represents the instantaneous mean frequency of the signal. The parameter a(n)
controls the watermark strength. The masking properties of the human auditory

system are used to shape an imperceptible watermark. The pseudo-noise

sequence is low-pass filtered according to the signal characteristics. Two differ-

ent scenarios of masking have been considered. The tone- or noise-like charac-

teristics are determined by using the entropy:

H ¼ �
Xωmax

i¼1

PðxiÞlog2PðxiÞ: ð7:39Þ

The probability of energy for each frequency (within a window used for the

spectrogram calculation) is denoted by P(xi), while ωmax is the maximum

frequency. A half of the maximum entropy Hmax¼ log2ωmax is taken as a

threshold between noise-like and tone-like characteristics. If the entropy is

lower than Hmax, it is considered as a tone-like, otherwise it is a noise-like

characteristic.

The time-varying carrier frequency is obtained as the instantaneous mean

frequency of the host signal, calculated by:

ωi nð Þ ¼

Xωmax

ω¼0

ωTFD n;ωð Þ
Xωmax

ω¼0

TFD n;ωð Þ
: ð7:40Þ

The instantaneous mean frequency is computed over each time window of the

STFT, and the TFD(n,ω) is the energy of the signal at a given time and

frequency.
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Finally, after the watermark is modulated and shaped, it is embedded in the

time domain as: swi
nð Þ ¼ si nð Þ þ wi nð Þ. During the detection, the demodulation

is done by using the time-varying carrier and then the watermark is detected by

using the standard correlation procedure.

4. Watermarking approach based on the time-frequency shaped watermark
In order to ensure imperceptibility constraints, the watermark can be modeled

according to the time-frequency characteristics of the signal components. For

this purpose the concept of nonstationary filtering is adapted and used to create a

watermark with specific time-frequency characteristics. The algorithm includes

the following steps:

1. Selection of signal regions suitable for watermark embedding;

2. Watermark modeling according to the time-frequency characteristics of the

host signal;

3. Watermark embedding and watermark detection in the time-frequency

domain.

Due to the multicomponent nature of multimedia signals (e.g., speech sig-

nals), the cross-terms free time-frequency distributions (TFD) should be used,

such as the spectrogram and the S-method. If a region selected from the TFD is:

D ¼ t;ωð Þ : t 2 t1; t2ð Þ, ω 2 ω1;ω2ð Þf g; ð7:41Þ

we can define a time-frequency mask as follows:

LM t;ωð Þ ¼ 1 for t;ωð Þ 2 D and TFD t;ωð Þj j > ξ,
0 for t;ωð Þ =2 D or TFD t;ωð Þj j < ξ:

�
ð7:42Þ

The parameter ξ is a threshold which can be calculated as a portion of the TFD

maximum: ξ ¼ λ10λlog10 max TFD t;ωð Þj jð Þð Þ (λ is a constant). The mask LM contains the

information about the significant components within the region D. Hence, if we
start with an arbitrary random sequence p, the modeled watermark is obtained at

the output of the nonstationary (time-varying) filter:

w tð Þ ¼
X
ω

LM t;ωð ÞSTFT p t;ωð Þ; ð7:43Þ

where STFTp stands for the short-time Fourier transform of p. The watermark

embedding is done according to:

STFTIw t;ωð Þ ¼ STFTI t;ωð Þ þ STFTwkey
t;ωð Þ; ð7:44Þ

where Iw, I and w are related to the watermarked signal, original signal and

watermark, respectively.
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The watermark detector can be made by using the correlation in the time-

frequency domain:

D ¼
XM
i¼1

STFT i
wkeySTFT

i
Iw
: ð7:45Þ

Note that the time-frequency domain provides a larger number of coefficients

for correlation (compared to time or frequency domains), which enhances the

detection performance.

7.6 Examples

7.1. Consider a vector with a few image DFT coefficients chosen for watermarking.

DFT¼ [117 120 112 145 136 115].

The watermarking procedure should be done in the following way:

(a) Sort the vector of DFT coefficients.

(b) Add a watermark given by w¼ [�3.5 �2 4 5 9 �7].

(c) Assume that the sequence wrong¼ [3 2 �5 �7 2 4] provides the highest

response of the correlation based detector among large number of wrong

trials (wrong keys) used for testing.

(d) Prove that the watermark can be successfully detected by using the

standard correlator.

Solution:

DFTsort ¼ 112 115 117 120 136 145½ �;
DFTw ¼ DFTsort þ w ¼ 108:5 113 121 125 145 138½ �:

In order to ensure a reliable watermark detection using the standard correlator,

the detector response for the watermark should be higher than the maximal

detector response when using wrong trials:

ΣDFTw � w > ΣDFTw � wrong,
ΣDFTw � w ¼ 842:25,

ΣDFTw � wrong ¼ �86:5:

Having in mind the results, we may conclude that the watermark detection is

successful.

7.2. Write a program in Matlab which perform the image watermarking as follows:

(a) Calculate and sort the DCT coefficients of the considered image;

368 7 Digital Watermarking



(b) Create a watermark as a pseudo-random sequence, e.g.,

watermark¼ 0.5�rand(1500,1);
(c) After omitting the strongest 1500 coefficients, embed the watermark into

the next 1500 coefficients by using the multiplicative procedure with

α¼ 0.8;

(d) Check if the watermark is imperceptible within the protected image;

(e) Perform the watermark detection in the DCT domain by using the stan-

dard correlator. It is necessary to demonstrate that the detector response

for the watermark is higher than the detector response for any of the

100 wrong trials (Fig. 7.9).

Solution:

alfa¼0.8;

Det¼zeros(2,100);

image¼imread(’lena512.bmp’);

image¼image(1:2:512,1:2:512);

N¼256;

DCT1¼dct2(image);

Vector¼DCT1(:);

[g,v]¼sort(abs(Vector));

watermark¼0.5*rand(1500,1);

Vectorwat¼Vector;

Vectorwat(v(N*N-1500-1500þ1:N*N-1500))¼Vector(v(N*N-1500-

1500þ1:N*N-1500))þalfa*abs(Vector(v(N*N-1500-1500þ1:N*N-

1500))).*watermark;

DCTwat¼DCT1;

DCTwat(:)¼Vectorwat;

Fig. 7.9 Results of

watermark detection
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imagewat¼idct2(DCTwat);

figure,imshow(uint8(imagewat))

DCTwat1¼dct2(imagewat);

DCTwat1¼DCTwat1(:);

x¼DCTwat1(v(N*N-1500-1500þ1:N*N-1500));

for k¼1:100

wrong¼0.5*rand(1500,1);

Det(1,k)¼sum(x.*watermark);

Det(2,k)¼sum(x.*wrong);

end

figure,

plot(1:100,Det(2,1:100),’r’,1:100,Det(1,1:100),’g’)

7.3. Consider the watermarking procedure described in the sequel. A block of the

8� 8 DCT coefficients is selected. The watermark is added to the block

coefficients: Iw ¼ I þ w. The watermarked image is exposed to the quantiza-

tion attack defined by the quantization matrix Q. Determine which watermark

samples will contribute to the difference between the watermarked and the

original coefficient after quantization attack.

DCT ¼

45 20 54 81 0 0 0 0

15 77 0 11 0 0 0 0

21 0 0 39 0 0 0 0

27 44 52 75 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

w ¼

5 4 1 �3 0 0 0 0

3:5 5 0 5 0 0 0 0

3 3 2 �5 0 0 0 0

0 �2 0 6:5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q ¼

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

Solution:

Approach I: It is possible to perform the quantization of the original and the

watermarked coefficients, to compare them and to select the coefficients that

are different after quantization.
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DCTq ¼

15 4 8 9 0 0 0 0

3 11 0 1 0 0 0 0

3 0 0 3 0 0 0 0

3 4 4 5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

DCTwq ¼

17 5 8 9 0 0 0 0

4 12 0 1 0 0 0 0

3 0 0 3 0 0 0 0

3 4 4 5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Hence, the positions of the selected coefficients are: (1,1), (1,2), (2,1), (2,2).

Approach II: Select the watermark samples higher than Q/2.

Q

2
¼

1:5 2:5 3:5 4:5 5:5 6:5 7:5 8:5
2:5 3:5 4:5 5:5 6:5 7:5 8:5 9:5
3:5 4:5 5:5 6:5 7:5 8:5 9:5 10:5
4:5 5:5 6:5 7:5 8:5 9:5 10:5 11:5
5:5 6:5 7:5 8:5 9:5 10:5 11:5 12:5
6:5 7:5 8:5 9:5 10:5 11:5 12:5 13:5
7:5 8:5 9:5 10:5 11:5 12:5 13:5 14:5
8:5 9:5 10:5 11:5 12:5 13:5 14:5 15:5

w ¼

5 4 1 �3 0 0 0 0

3:5 5 0 5 0 0 0 0

3 3 2 �5 0 0 0 0

0 �2 0 6:5 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The selected watermark samples will produce a difference between the

quantized original and watermarked image coefficients.

7.4. Based on the principles introduced in the previous example, the image

watermarking procedure is implemented as follows:

(a) DCT is calculated for the 8� 8 image blocks

(b) The watermark w is added to the quantized coefficients:

Iq(i,j)¼K(i,j)Q(i,j), (K(i,j) are integers), but the coefficients quantized
to zero value are immediately omitted

(c) The selection of coefficients suitable for watermarking is done according

to the constraints:

– The watermarked DCT coefficients after quantization with Q should

have non-zero values;

– The watermarked coefficients should not be rounded to the same value

as the original coefficients.

Analyze and define the values of K(i,j) and watermark w, that satisfy the

above constraints.

Solution and explanation:

To ensure that the watermarked DCT coefficients after quantization with Q,
have non-zero values, the following relation should hold:
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K i; jð ÞQ i; jð Þj j � wj j � Q i; jð Þ
2

; ð7:46Þ

or equivalently, the watermark should satisfy the condition:

Condition 1

wj j � K i; jð ÞQ i; jð Þj j � Q i; jð Þ
2

: ð7:47Þ

The watermarked coefficients will not be quantized to the same value as the

original coefficients if the following condition is satisfied:

Condition 2

Kði, jÞQði, jÞ þ w < Kði, jÞQði, jÞ � Q=2
or
Kði, jÞQði, jÞ þ w � Kði, jÞQði, jÞ þ Q=2

: ð7:48Þ

From Eq. (7.48) we have: wj j > Q i; jð Þ=2. Combining Condition 1 and

Condition 2, we get:

w 	 � K i; jð Þj j � 1=2½ �Q i; jð Þ, � Q i; jð Þ
2

� [ �Q i; jð Þ
2

, K i; jð Þj j � 1=2½ �Q i; jð Þ
� �

;

Note that K i; jð Þj j � 2 should hold.

7.5. Define the form of a locally optimal watermark detector, that corresponds to

the watermarked coefficients pdf, assuming that they are selected by using the

criterion K i; jð Þj j � 2. The coefficients pdf can be modeled by a function

illustrated in Fig. 7.10.

Solution:

In the considered case, the coefficients pdf from Fig. 7.10 can be approxi-

mately described by using the following function:

p Ixð Þ ¼
Ix
a

� �2n
1þ Ix

a

� �2n e� Ix
aj j2γ ; ð7:49Þ

where parameter a defines the positions of the pdf maxima, while n controls

the pdf decay between the maximum and the origin. The parameter γ is usually
equal to 1/2, 1 or 2.

A locally optimal detector can be defined as:

Dopt ¼ � p0 Ixð Þ
p Ixð Þ � w; ð7:50Þ
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which in the case of the specified function p becomes:

Dopt ¼
XM
i¼1

wi
γ

a2γ
I2γ�1
xi

sgn
Ixi
a

� �2γ

� n

Ixi 1þ Ixi
a

� 2n
� �

0
BB@

1
CCA; ð7:51Þ

where M is the number of watermarked coefficients.

7.6. By using the results obtained in the Example 7.4, derive the condition for

watermarked coefficients selection which would provide the robustness to a

certain JPEG quantization degree defined by the matrix Q0. By robustness we

assume that the coefficients pdf is preserved even after quantization with

matrix Q0, in order to provide successful detection by using locally optimal

detector. Assume that the watermark embedding is done according to:

Iw i; jð Þ ¼ round
I i; jð Þ
Q i; jð Þ

� �
Q i; jð Þ þ Q i; jð Þw; ð7:52Þ

where Q is the quantization matrix with high quality factor QF (i.e., a low

compression ratio).

Solution:

In order to provide robustness to the quantization defined by the matrix Q0

(quality factor QF0), the criterion for coefficients selection should be modified.

The watermarked coefficients will be robust after applying Q0 if they are not

rounded to zero, i.e., if the following condition is satisfied:

K i; jð ÞQ i; jð Þj j � Q i; jð Þwj j > Q
0
i; jð Þ
2

: ð7:53Þ

Fig. 7.10 The distribution

of coefficients after

omitting low-frequency

components
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Note that the worst case is assumed in Eq. (7.53): the coefficient and the

watermark have opposite signs. Hence, we may observe that for efficient

watermark detection, the coefficients should be selected for watermarking if:

K i; jð Þj j � wþ Q
0
i; jð Þ

2Q i; jð Þ : ð7:54Þ

Therefore, if Q with an arbitrary high QF is used for watermark embedding,

the robustness is satisfied even for matrix Q0 as long as the criterion Eq. (7.54)

is satisfied. In this way the procedure provides the full control over the

robustness to any JPEG quantization degree.

Note that if the criterion is satisfied for QF0 <QF, then the watermark

detection will certainly be successful for any quantization Qx defined by QFx

for which QFx>QF0 holds.

7.7. A speech watermarking procedure in the time-frequency domain can be

designed according to the following instructions:

1. Voiced speech regions are used for watermarking.

2. Watermark is modeled to follow the time-frequency characteristics of

speech components in the selected region.

3. Watermark embedding and detection is done in the time-frequency domain

by using the S-method and time-varying filtering procedure.

(a) Design a time-frequency mask for watermark modeling and define the

modeled watermark form.

(b) Define a watermark detection procedure in the time-frequency domain

which includes the cross-terms.

Solution:

(a) By using the S-method (with L¼ 3), a voiced speech region is selected:

D ¼ t;ωð Þ : t 2 t1; t2ð Þ, ω 2 ω1;ω2ð Þf g;

where t1 and t2 are the start and end points in the time domain, while

frequency range is ω 2 ω1;ω2ð Þ. According to Eq. (7.42), the time-

frequency mask can be defined as:

LM t;ωð Þ ¼ 1 for t;ωð Þ2D and SM t;ωð Þj j > ξ
0 for t;ωð Þ=2D or SM t;ωð Þj j < ξ

�
;

where parameter λ within the energy floor ξ can be set to 0.7. The

illustration of speech region is given in Fig. 7.11a, the corresponding

mask is shown in Fig. 7.11b, while the time-frequency representation of

the modeled watermark is shown in Fig. 7.11c. The modeled version of

the watermark is obtained by using Eq. (7.43).
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Note that the time-frequency characteristics of watermark correspond to

the speech components. Hence, it would be difficult to remove the

watermark without introducing serious signal quality degradation.

(b) The watermark detection can be performed by using the S-method with

L¼ 32 to intentionally produce the cross-terms:

D ¼
XN
i¼1

SMi
wkeySM

i
xw
þ

XN
i; j¼1

i 6¼ j

SMi, j
wkeySM

i, j
xw
; ð7:55Þ

where the index w is related to watermark and xw to watermarked

coefficients. Although the cross-terms are usually undesirable in the

time-frequency analysis, they may increase performance of watermark

detector.

7.8. In analogy with one-dimensional case described in the previous example,

design a space/spatial-frequency based image watermarking procedure.

Note: Space/spatial-frequency representation is calculated for each pixel and it

reflects the two-dimensional local frequency content around the pixel. The 2D

form of the STFT for the window of size N�N is extended from the 1D version

as:

STFT n1; n2; k1; k2ð Þ ¼
XN=2�1

i1¼�N=2

XN=2�1

i2¼�N=2

I n1 þ i1, n2 þ i2ð Þw i1; i2ð Þe� j2πN k1i1þk2i2ð Þ:

Solution:

Space/spatial-frequency representation can be used for classification between

the flat and busy image regions. Namely, busy image regions are preferred

in watermarking, because it is easier to provide watermark imperceptibility.

Fig. 7.11 (a) Speech region selected for watermarking, (b) mask function, (c) time-frequency

representation of modeled watermark
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The examples of busy and flat image regions are shown in Fig. 7.12a, b,

respectively. Note that, unlike the busy regions, the flat regions contain

small number of significant components in the space/spatial-frequency

domain, which can be used as a criterion for regions classification.

Following analogy with the procedure for speech signals, watermark can

be modeled according to the local frequency characteristics defined by the

mask L:

wkey n1; n2ð Þ ¼
X
ω1

X
ω2

STFT p n1; n2;ω1;ω2ð ÞL�n1, n2,ω1,ω2

�
; ð7:56Þ

where STFTp is a short-time Fourier transform of the two-dimensional pseudo-

random sequence. The mask is obtained as:

Lðn1, n2,ω1,ω2Þ ¼ 1 for ðω1,ω2Þ : jSTFTðn1,n2,ω1,ω2Þj2 > ξ,
0 for ðω1,ω2Þ : jSTFTðn1,n2,ω1,ω2Þj2 � ξ:

�

Watermark embedding and detection can be done in the space/spatial-

frequency domain in the same way as in the case of speech signals.

Fig. 7.12 (a) Busy region

and its spectrogram, (b) flat
region and its spectrogram
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Chapter 8

Multimedia Signals and Systems
in Telemedicine

Due to the advances in technology and medicine, humans tend to live longer. This

has increased the pressure on health care systems worldwide to provide higher

quality health care for a greater number of patients. A greater demand for health

care services prompted researchers to seek new ways of organizing and delivering

health care services. Telemedicine, as a new research area, promotes the use of

multimedia systems as a way of increasing the availability of care for patients in

addition to cost and time-saving strategies. In other words, telemedicine provides a

way for patients to be examined and treated, while the health care provider and

the patient are at different physical locations. Using telemedicine technologies,

future hospitals will provide health care services to patients all over the world

using multimedia systems and signals that can be acquired over distances. Signal

and image transmission, storage, and processing are the major components of

telemedicine.

8.1 General Health Care

8.1.1 Telenursing

Telenursing requires the use of multimedia systems and signals to provide nursing

practice over the distance. It was developed as a need to alter the current nursing

practices and provide home care to older adults and/or other patient groups, which

preferred to stay in the comfort of their own homes. Multimedia technologies (e.g.,

video-telephony) allow patients to maintain their autonomy by enhancing their

emotional, relational, and social abilities. Generally, the patients welcome the use

of multimedia systems to communicate with a nurse about their physical and

psychological conditions. So far the use of advanced technology did not have any
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significant effects on health care providers and patients, as well as on their abilities

to communicate.

Multimedia systems, when used for patient care, provide various advantages. As

an example, let us mention that the multimedia signals and systems have been used

to significantly reduce congestive heart failure readmission charges. Also, these

systems can reduce the amount of needed time to care for a patient, while providing

the same level of health care as in-patient visits. Similarly, an analysis of

telenursing in the case of metered dose inhalers in a geriatric population have

shown that multimedia systems can provide most of services, and only small

percentage require on-site visits. It should be mentioned that some of the

telenursing systems can reduce the number of visits to emergency departments or

doctors in private practice.

It should be mentioned that other potential applications of telenursing also

include, but are not limited to:

• training nurses remotely;

• caring for patients in war zones;

• global collaboration between nurses.

8.1.2 Telepharmacy

Particularly, in rural and remote areas the pharmacy services to patients are often

limited. This has led to creation of service called telepharmacy, which assumes

providing pharmaceutical care to patients and medication dispensing from distance.

In this way, the Multimedia systems and technology preserve pharmacy services in

remote rural communities. The telepharmacy services adhere to all official regula-

tions and services as traditional pharmacies, including verification of drugs before

dispensing and patient counseling. In other words, telepharmacy services maintain

the same services as the traditional pharmacies and provide additional value-added

features. Additional services provided by telepharmacies can also include point-of-

care refill authorization and medication assistance referrals. Specifically, in a recent

study analyzing the utility of telepharmacy services for education on a metered-

dose inhaler technique, it has been shown that patient education provided by

pharmacists via video was superior to education provided via written instructions

on an inhaler package insert.

8.1.3 Telerehabilitation

Rehabilitation is based on the idea that therapeutic interventions can enhance

patient outcomes, since human physiological system can dynamically alter as a

function of inputs (e.g., exercise). Therefore, telerehabilitation tools enable us to
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decrease the distance between patients and clinicians/researchers, which opens up

new possibilities for discovering and implementing optimized intervention

strategies.

Telerehabilitation was established in 1997 when the National Institute on Dis-

ability and Rehabilitation Research (US Department of Education) ranked it as one

of the top priorities for a newly established Rehabilitation Engineering Research

Center (RERC). While telerehabilitation covers diverse fields of investigations

(e.g., intelligent therapeutic robots and other health gadgets), it also addresses

societal challenges in the delivery of rehabilitative services. The main efforts

have been made to provide telecommunication techniques that are capable to

support rehabilitation services at a distance, then to provide technology for moni-

toring and evaluating the rehabilitation progress, and finally to provide technology

for therapeutic intervention at a distance, Fig 8.1.

Having these comprehensive objectives, telerehabilitation may have

far-reaching effects on patients. One such example is based on using a

videoconsulting system in a community-based post-stroke program that involves

educational talks, exercise, and psychosocial support, proving significant improve-

ments in the health status of the patients after the intervention.

Furthermore, the feasibility of telerehabilitation has been applied for functional

electrical stimulation of affected arm after stroke or for evaluating the speech

and swallowing status of laryngectomy patients following discharge from acute

care. Telerehabilitation tools have been also used to address the fall risks. Never-

theless, we still need to acquire strong evidence regarding the impact of

telerehabilitation on resources and associated costs to support clinical and policy

decision-making.

Fig. 8.1 A typical telerehabilitation system
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8.2 Specialist Health Care

8.2.1 Telecardiology

Telecardiology encompasses merging technology with cardiology in order to pro-

vide a patient with a proper medical care without disturbing the patient’s daily

routines. Due to the advances in multimedia systems, telecardiology is currently a

well-developed medical discipline involving many different aspects of cardiology

(e.g., acute coronary syndromes, congestive heart failure, sudden cardiac arrest,

arrhythmias). It is safe to state that telecardiology has become an essential tool for

cardiologists in either a hospital-based or community-based practices. Patient

consultations with cardiologists via multimedia systems are becoming extremely

common. For example, a consulting cardiologist receives many signals and images

in real time to assess the patient condition (Fig. 8.2).

Further technological advances will be fueled by the development of novel

sensors and multimedia systems. This will result in a move from device-centered

to patient-oriented telemonitoring. By focusing on patient-oriented monitoring, a

comprehensive approach of disease management, based on coordinating health care

interventions, is provided. Such a possibility will not only help us with early

diagnosis and quick interventions, but will also prove to be cost-effective.

Therefore, telecardiology has the two major aims. The first aim is to reduce the

health care cost. The second aim is to evaluate the efficiency of telecardiac tools

(e.g., wireless ECG) at variable distances. By accomplishing these two aims,

telecardiology will enhance the psychological well-being of patients in addition

to bridging the gap between rural areas and hospitals. Note that, the search for new

telecardiac technologies is a big challenge. However, various constraints such as

institutional and financial factors may play a significant role in the further devel-

opment of these multimedia systems needed in telecardiology before we see an

increase of these tools in clinical practices.

Fig. 8.2 An example of multimedia systems in telecardiology
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In order to fulfill the aims of telecardiology, multimedia based technologies have

been increasingly applied to patients in small rural communities needing distance

monitoring of their chronic heart conditions. These multimedia systems provided

an alternative modality for effective cardiac care from a variable distances by

utilizing information and communication technology.

8.2.2 Teleradiology

Teleradiology defines a field in which multimedia systems are used to acquire and

interpret multimedia signals (e.g., radiological images) at different geographical

locations. Teleradiology has especially flourished in recent years due to the

increased development of digital imaging systems and the Internet. Nevertheless,

it should be mentioned that teleradiology is not only acquisition and transmission of

digital images between different locations but also involves sharing of expertise

between radiologists across the globe, providing radiological services to remote

areas, around the clock coverage, etc.

Initially, teleradiology was developed to provide health care to wounded sol-

diers. In 1980s, the first commercial teleradiology system was developed with

ability to capture and transfer radiological videos. However, further development

of teleradiological systems was slowed down to a lack of systems for inexpensive

transfer of radiological videos. Due to the advances in multimedia systems for

acquisition and transfer of video data (e.g., wavelet compression algorithms for

images) and the development of the Internet telecommunication systems, we have

witnessed a significant growth in teleradiological services. An illustration of

teleradiological communication system is shown in Fig. 8.3. A Picture Archive

Communication System is used to store, transfer, and display digital images

acquired in Diagnostic Imaging. The archive server is used to provide a long-

term backup of the data. The Radiology Information Server is used to connect

different aspects of the radiology information system.

Given the current state of the art when it comes to multimedia systems, most of

the current efforts in teleradiology are geared towards medicolegal issues.

Teleradiology is one of the first fields where the development of technologies in

the recent years has sparked intense professional and even legal debates regarding

the role of radiologists in the patient care. For example, teleradiology can provide

great benefits in emergency departments, when used correctly. However, poorly

implemented teleradiological services can degrade the quality of patient care.

Hence, it has been urged that during the design, management, and performance of

teleradiology services radiologists should play a significant role.
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8.2.3 Telesurgery

Dissemination of new surgical skills and techniques across the wide spectrum of

practicing surgeons is often difficult and time consuming, especially because the

practicing surgeons can be located very far from large teaching centers. Therefore,

telesurgery provides multiple advantages to practicing surgeons, including but not

limited to dissemination of expertise, widespread patient care, cost savings, and

improved community care (Fig. 8.4). It is expected that more widespread multime-

dia systems and technologies may exist to launch everyday telesurgery procedures

within a few years.

Specifically, telesurgery has already shown to be a powerful method for

performing minimally invasive surgery (MIS) because patients recover more rap-

idly when small MIS incisions are made in comparison to conventional methods.

To examine the practicality of telesurgery over long distances, a recent study

showed that operators using a telesurgery platform can complete maneuvers with

Fig. 8.3 A teleradiology system
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delays up to 500 ms and no additional increase in error rates. Also, the emulated

surgery in animals can be effectively executed using either ground or satellite,

while keeping the satellite bandwidth above 5 Mb/s.
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